High Performance Computing 2015

Kento Teranishi
Tokyo Institute of Technology

Dept. of mathematical and computing sciences

Reviewed Paper

* Asynchronous parallel stochastic gradient
descent: a numeric core for scalable distributed
machine learning algorithms

[MLHPC '15 Proceedings of the Workshop on
Machine Learning in High-Performance Computing
Environments Article No. 1]

Janis Keuper and Franz-Josef Pfreundt Fraunhofer
ITWM Competence Center High Performance
Computing Kaiserslautern, Germany

A S

Outline

Introduction

Gradient Descent Optimization
Asynchronous Communication
The ASGD Algolithm
Experiments

Conclusions

1.Introduction

 The enduring success of Big Data applications
is leading to a change in paradigm for machine
learning research objectives.

* This presentation propose a novel, lock-free
parallelization method for the computation of
SGD for large scale machine learning
algorithms on cluster environments.

2.Gradient Descent Optimization

Algorithm for supervised learning

dataset X = {xg, ..., X;,, }

semantic labels Y = {y,, ..., ¥}

model function w

loss function x;(w) evaluate the quality of w
step size €

Wri1 = W — anxj (We)

Batch Optimization

Algorithm 1 BATCH optimization with samples X =
{xo,...,zm}, iterations T, steps size € and states w

1 forall 2=0...T deo

2 Init Wi41 = 0

3: update wiy1 = we — € Z(Xjex) Owx;(wt)

4: Wt41 = wt+1/|X|

* The numerically easiest way to solve most gradient
descent optimization problems

A MapReduce parallelization for many BATCH
optimized machine learning algorithms introduced by

[5]

Stochastic Gradient Descent(SGD)

Algorithm 2 SGD with samples X = {xo,...,zm}, itera-
tions T', steps size € and states w

Require: ¢ > 0
1: for allt=0...T do
2: draw j € {1...m} uniformly at random

%5 update W41 & Wt — €8wl'j(’UJ’t)

4: return wr

* Online learning

Parallel SGD

Algorithm 3 SimuParallelSGD with samples X =
{xo,...,xm}, iterations T, steps size ¢, number of threads n
and states w
Require: ¢ > 0.n > 1
1: define H = | ™|
2: randomly partition X, giving H samples to each node
3: for alli € {1,...,n} parallel do

4: randomly shuffle samples on node 1

B init wh =0

6: for allt=0...7T do

i get the tth sample on the ith node and compute
8: update w},, + u,t — eA¢fw})

9: aggregate v = - > ., w;

10: return v

Aj(we) = Owzj(wy).

Mini-Batch SGD

Algorithm 4 Mini-Batch SGD with samples X =
{zo,...,xm}, iterations T, steps size €, number of threads n
and mini-batch size b
Require: € > ()

l1: forallt=0...T do

2: draw mini-batch M + b samples from X

3: InitAw, =0

4: for all z € M do

' aggregate update Aw O, x;(w;)

5
6: update w41 — wy — e Awy
7: return wr

3.Asynchronous Communication

_p p2 p1 p2

\I e
=

time

e Typical synchronous model (left)

* Single-sided asynchronous communication
model (right)

Overview of the asynchronous update
communication used in ASGD

node 1 node 2 node R

internal Buffer

°.

* |:Threads finished the computation of its local
mini-batch update.

* |I:Threads receives an update. When its local
mini-batch update.

* |ll: Potential data race

Global Address Space
Programming Interface (GASPI)

* GASPI uses one-sided RDMA driven
communication with remote completion to
provide a scalable, flexible and failure tolerant
parallelization framework.

* GASPI favors an asynchronous communication
model

4.The ASGD Algorithm

Parameters

T defines the size of the data partition for
each threads.

e sets the gradient step size.
b sets the size of the mini-batch aggregation.

| gives the number of SGD iterations for each
thread.

Initialization

 The data is split into working packages of size
T and distributed to the worker threads.

* A control thread generates initial, problem
dependent values for wy and communicates
wy to all workers.

Updating
(1 external buffer per thread)

At(w;H) = w; — 5 (’wé —+- wi,) + At(wém

* The local state w} of thread i at iteration t is

updated by an externally modified step At(wtiﬂ)

. Wt], :unknown iteration t’ at some random thread j

Updating
(N external buffers per thread)

A(wiy) = wi — i (S0 (wh) +wi) + Ac(wis),

r e ,_ 1 if [wgi]l2 >0
where |l’\| - Zn:())‘(UJ?'))‘(wtr-’) - { §) othcrtwisc

Parzen-Window Optimization

0 otherwise

. '. i 112 27 112
5(i,) ::{ 1 f [|(wi — eAw]) —w) |1 < [|lwi — w) |

* Parzen-window like function 6(i, j) to avoid
“bad” update conditions.

* The evaluation of §(i,j) comes at some
. 1
computational cost : O(E lw|)

The cost is very low.

. 7 1 2 y - . 7
Bt = [ut = 5 (wf +)] 066.3) + Aututia)

(1 external buffer per thread)

Awin) = wi—1/ (TN (66n) +1)

(T 66, mywp) + w})
+A¢(wig)
(N external buffers per thread)

ASGD updating

Legend

Qv @uwi-uv
: i ; .

Qv @;(ui+u)

| : Initial setting

Il : Parzen-window masking of w/

lll : Computing AM(Wti+1)
IV : Updating w§+1 — w — GAM(wf.H)

Mini-Batch Extension

g & : ; _— ;
Ay (u t+1) e [wt ~ 5 (wt T wf)] 0(z,7) + A:\I('wt+1)

(1 external buffer per thread)

The final ASGD Update Algorithm

Algorithm 5 ASGD (X = {xo,...,Zm}, T, €, wo,b)
Require: ¢ > 0,n > 1
1: define H = | = |
2: randomly partition X, giving H samples to each node
3: for alli € {1,...,n} parallel do

4: randomly shuffle samples on node 1

5% init wy =0

6: for allt=0...7 do

i draw mini-batch M < b samples from X
8: update wiy; + wi — eAnr(wi, ;)

9: send w;_., to random node # i

10: return w;

 mini-batch size b, number of iterations T,
learning rate €, global result W,l

Data races and sparsity

* Potential data races during the asynchronous
external update come in two forms:

— (First case) update state w/ is completely
overwritten by a second state w"

— (Second case) w' reads an update from w/ while
this is overwritten by the update from w"

data race effect

* Alost message might slow down the
convergence by a margin, but is completely
harmless otherwise.

* Related work[16] showed that for sparse
problems, data race errors are negligible.

* The asynchronous communication model
causes further sparsity, and decreases the
probability of data races.

[16] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems, pages 693—-701, 2011

Communication load balancing

L. 1 N
Communication frequency - has a significant
impact on the convergence speed.

Trade-off between convergence speed and
runtime.

The choice of an optimal b strongly depends
on the data and the computing environment.

b needs to be determined experimentally.
500 £ b £2000 to be quite stable.

5.Experiment

K-Means Clustering
Cluster Setup

Data

Evaluation
Experimental Results

K-Means Clustering

* unsupervised learning algorithm which tries to
find the underlying cluster structure

* n-dimentional points X = {x;},i =1,..,m
* kclusters, w ={w,},k=1,...,k

Gradient Descent Optimization
(K-Means)

e K-Means is formalized as minimization
problem of the quantization error E(w)

1
E(w) = Z 5(%‘ - wsi(w))2

0

 w = {w;}is the target set of k prototypes

 5;(w) returns the index of closest prototype
to the sample x;

Gradient Descent Optimization

(K-Means)
Aw) — OE (W)
ow

 BATCH and ASGD algorithm
A(wy) = LZ{ zi —uwe if b= silw)

m’ & 0 otherwise
(/]

* SGD (online update)

Awg) = { r; —wr if k= s;(w)

0 otherwise

Cluster Setup

Linux cluster with a BeeGFS* parallel file
system

CPU : Intel Xeon E5-2670
16 CPUs per node

32 GB RAM and interconnected with FDR
Infiniband

64 nodes (1024 CPUs)

Data

* Synthetic Data Sets
— ground-truth

* |Image Classification (real data)

— Bag of Features

Evaluation

* compare 3 algorithms
— SimuParallelSGD by SGD
— MapReduce baseline method by BATCH
— ASGD

* |teration I : global sum over all samples
—Igarch =T = |X]
_ISGD =T - |CPUS|
_IASGD =T = b . |CPUS|

Experimental Results

10° |

10° |

Mean execution time

107 +

10°

Strong Scaling

o
(=
B

Yk BATCH /=10"
¥ BATCH Jw10”
PP BATCH /=10"

®® ASGD /=10 = = linear scaling
Jek ASGD w10/

¥ ASGD /=10"

@9 SGD /=10"
Yok SGD /w1
¥ SGD /=107

Results of a strong
scaling experiment
on the synthetic
dataset

k=10, d =10,
~1TB data samples

Mean execution time

Speedup on real data scaling #CPUs and k

10° }

10*

@ S5GD k=10
-9 ASGD k=10
@ BATCH k=10

% SGD k=50 ¥-¥ SGD k=100 &9 5GD k=500 B8 SGD k=1000
=k ASGD k=50 V¥ ASGD k=100 @9 ASGD k=500 B8 ASGD k=1000
—& BATCH k=50 W¥—¥ BATCH k=100 @@ BATCH k=500 W8 BATCH k=1000

256

512 1024
& CPUs

Strong scaling
of real data

10...1000

Mean execution time

10°

Real Data: Scaling # of clusters k

log scaling

®® SGD @@ ASGD @@ BAICH -

1

10

50 100 500 1000

|Scaling the

number of

iclusters k

on real data.

Convergence speed

1.8

1.6

1.4

T

1.2¢

Median Error per cluster center
© e
()] (o0]
Bl na |

o
F=S
T

o
N
T

ASGD b=500

ASGD b=10000
SGD
BATCH

Parareey |

a2 aaaal ™ . " 2 2 2 aaa28 ™ "
10° 10° 10'°

Number of gradient updates

Mean Test Error

Test Errors and Variance

4% SGD I=10° ¥ ASGD /=10° #4 BATCH /=10°
9 SGD I=10° ¥ ASGD /=10’ #-@ BATCH I=10"
&9 SGD /=10"" $-¥ ASGD /=10"" @§—§ BATCH I=10"

3

10”1 » ——

107 }

54 128 256 512 1024

Error rates and their variance of the
strong scaling experiment on synthetic

data

35

— runtime ASGD updates

— — N N w
o U o w o
T 1 1 T T

change in runtime in % (compared to SGD)

w
T

10 10" 10° 107
b

Communication cost of ASGD.

. - .1,
The cost of higher communication frequencies ~ in

ASGD updates compared to communication free
SGD updates.

- Communication during strong scaling
< - 3 O o— @
% 108 A Z
#
®-® Msgsent A-A Msgreceived V¥ good Msg
102 'S A s s e
32 64 128 256 512 1024 2048

CPUs

Asynchronous communication rates during
strong scaling experiment

)5 Message Impact: error rate for # iterations

2.0¢

Mean Error
5
w

=
(=}

0.5}

@@ ASGD silent V¥ ASGD

10°

0.05
10 10

i 10% 10’ 10° 10° 10

|terations

Convergence speed of ASGD optimization
(synthetic dataset, k = 10, d = 10) with and
without asynchronous communication (silent)

Message Impact: time needed to reach error rate

10*
o
10° }
———a

10°
1)
=

10°

D »
10°
B ASGD silent V=¥ ASGD @-@ SGD
-1 - ~ -
. 0.0 0.5 1.0 1.5 2.0 2.5

Error

Early convergence properties of ASGD without
communication (silent) compared to ASGD and
SGD

Conclusions

* The asynchronous communication scheme can
be applied successfully to SGD optimizations
of machine learning algorithms.

* ASGD provide superior scalability and
convergence compared to previous methods.

e Especially the early convergence property is

high practical value in large scale machine
learning.

