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1.Introduction

 The enduring success of Big Data applications
is leading to a change in paradigm for machine
learning research objectives.

* This presentation propose a novel, lock-free
parallelization method for the computation of
SGD for large scale machine learning
algorithms on cluster environments.



2.Gradient Descent Optimization

Algorithm for supervised learning

dataset X = {xg, ..., X;,, }

semantic labels Y = {y,, ..., ¥}

model function w

loss function x;(w) evaluate the quality of w
step size €

Wri1 = W — anxj (We)



Batch Optimization

Algorithm 1 BATCH optimization with samples X =
{xo,...,zm}, iterations T, steps size € and states w

1 forall 2=0...T deo

2 Init Wi41 = 0

3: update wiy1 = we — € Z(Xjex) Owx;(wt)

4: Wt41 = wt+1/|X|

* The numerically easiest way to solve most gradient
descent optimization problems

A MapReduce parallelization for many BATCH
optimized machine learning algorithms introduced by

[5]



Stochastic Gradient Descent(SGD)

Algorithm 2 SGD with samples X = {xo,...,zm}, itera-
tions T', steps size € and states w

Require: ¢ > 0
1: for allt=0...T do
2: draw j € {1...m} uniformly at random

%5 update W41 & Wt — €8wl'j(’UJ’t)

4: return wr

* Online learning



Parallel SGD

Algorithm 3 SimuParallelSGD with samples X =
{xo,...,xm}, iterations T, steps size ¢, number of threads n
and states w
Require: ¢ > 0.n > 1
1: define H = | ™|
2: randomly partition X, giving H samples to each node
3: for alli € {1,...,n} parallel do

4: randomly shuffle samples on node 1

B init wh =0

6: for allt=0...7T do

i get the tth sample on the ith node and compute
8: update w},, + u,t — eA¢fw})

9: aggregate v = - > ., w;

10: return v

Aj(we) = Owzj(wy).



Mini-Batch SGD

Algorithm 4 Mini-Batch SGD with samples X =
{zo,...,xm}, iterations T, steps size €, number of threads n
and mini-batch size b
Require: € > ()

l1: forallt=0...T do

2: draw mini-batch M + b samples from X

3: InitAw, =0

4: for all z € M do

' aggregate update Aw O, x;(w;)

5
6: update w41 — wy — e Awy
7: return wr




3.Asynchronous Communication
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e Typical synchronous model (left)

* Single-sided asynchronous communication
model (right)



Overview of the asynchronous update
communication used in ASGD

node 1 node 2 node R

internal Buffer

°.

* |:Threads finished the computation of its local
mini-batch update.

* |I:Threads receives an update. When its local
mini-batch update.

* |ll: Potential data race



Global Address Space
Programming Interface (GASPI)

* GASPI uses one-sided RDMA driven
communication with remote completion to
provide a scalable, flexible and failure tolerant
parallelization framework.

* GASPI favors an asynchronous communication
model



4.The ASGD Algorithm



Parameters

T defines the size of the data partition for
each threads.

e sets the gradient step size.
b sets the size of the mini-batch aggregation.

| gives the number of SGD iterations for each
thread.



Initialization

 The data is split into working packages of size
T and distributed to the worker threads.

* A control thread generates initial, problem
dependent values for wy and communicates
wy to all workers.



Updating
(1 external buffer per thread)

At(w;H) = w; — 5 (’wé —+- wi,) + At(wém

* The local state w} of thread i at iteration t is

updated by an externally modified step At(wtiﬂ)

. Wt], :unknown iteration t’ at some random thread j



Updating
(N external buffers per thread)

A(wiy) = wi — i (S0 (wh) +wi) + Ac(wis),

r e ,_ 1 if [wgi]l2 >0
where |l’\| - Zn:() )‘(UJ?') )‘(wtr-’) - { §) othcrtwisc



Parzen-Window Optimization

0 otherwise

. '. i 112 27 112
5(i, ) ::{ 1 f [|(wi — eAw]) —w) |1 < [|lwi — w) |

* Parzen-window like function 6(i, j) to avoid
“bad” update conditions.

* The evaluation of §(i,j) comes at some
. 1
computational cost : O(E lw|)

The cost is very low.



. 7 1 2 y - . 7
Bt = [ut = 5 (wf + )] 066.3) + Aututia)

(1 external buffer per thread)

Awin) = wi—1/ (TN (66n) +1)

(T 66, mywp) + w})
+A¢(wig)
(N external buffers per thread)



ASGD updating

Legend

Qv @uwi-uv
: i ; .

Qv @;(ui+u)

| : Initial setting

Il : Parzen-window masking of w/

lll : Computing AM(Wti+1)
IV : Updating w§+1 — w — GAM(wf.H)




Mini-Batch Extension

g & : ; _— ;
Ay (u t+1) e [wt ~ 5 (wt T wf)] 0(z,7) + A:\I('wt+1)

(1 external buffer per thread)



The final ASGD Update Algorithm

Algorithm 5 ASGD (X = {xo,...,Zm}, T, €, wo,b)
Require: ¢ > 0,n > 1
1: define H = | = |
2: randomly partition X, giving H samples to each node
3: for alli € {1,...,n} parallel do

4: randomly shuffle samples on node 1

5% init wy =0

6: for allt=0...7 do

i draw mini-batch M < b samples from X
8: update wiy; + wi — eAnr(wi, ;)

9: send w;_., to random node # i

10: return w;

 mini-batch size b, number of iterations T,
learning rate €, global result W,l



Data races and sparsity

* Potential data races during the asynchronous
external update come in two forms:

— (First case) update state w/ is completely
overwritten by a second state w"

— (Second case) w' reads an update from w/ while
this is overwritten by the update from w"



data race effect

* Alost message might slow down the
convergence by a margin, but is completely
harmless otherwise.

* Related work[16] showed that for sparse
problems, data race errors are negligible.

* The asynchronous communication model
causes further sparsity, and decreases the
probability of data races.

[16] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems, pages 693—-701, 2011



Communication load balancing

L. 1 N
Communication frequency - has a significant
impact on the convergence speed.

Trade-off between convergence speed and
runtime.

The choice of an optimal b strongly depends
on the data and the computing environment.

b needs to be determined experimentally.
500 £ b £2000 to be quite stable.



5.Experiment

K-Means Clustering
Cluster Setup

Data

Evaluation
Experimental Results



K-Means Clustering

* unsupervised learning algorithm which tries to
find the underlying cluster structure

* n-dimentional points X = {x;},i =1,..,m
* kclusters, w ={w,},k=1,...,k



Gradient Descent Optimization
(K-Means)

e K-Means is formalized as minimization
problem of the quantization error E(w)

1
E(w) = Z 5(%‘ - wsi(w))2

0

 w = {w;}is the target set of k prototypes

 5;(w) returns the index of closest prototype
to the sample x;



Gradient Descent Optimization

(K-Means)
Aw) — OE (W)
ow

 BATCH and ASGD algorithm
A(wy) = LZ{ zi —uwe  if b= silw)

m’ & 0 otherwise
(/]

* SGD (online update)

Awg) = { r; —wr if k= s;(w)

0 otherwise



Cluster Setup

Linux cluster with a BeeGFS* parallel file
system

CPU : Intel Xeon E5-2670
16 CPUs per node

32 GB RAM and interconnected with FDR
Infiniband

64 nodes (1024 CPUs)



Data

* Synthetic Data Sets
— ground-truth

* |Image Classification (real data)

— Bag of Features



Evaluation

* compare 3 algorithms
— SimuParallelSGD by SGD
— MapReduce baseline method by BATCH
— ASGD

* |teration I : global sum over all samples
—Igarch =T = |X]
_ISGD =T - |CPUS|
_IASGD =T = b . |CPUS|



Experimental Results
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Mean execution time
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Convergence speed
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35

— runtime ASGD updates
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Communication cost of ASGD.

. - .1,
The cost of higher communication frequencies ~ in

ASGD updates compared to communication free
SGD updates.



- Communication during strong scaling
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)5 Message Impact: error rate for # iterations

2.0¢

Mean Error
5
w

=
(=}

0.5}

@@ ASGD silent V¥ ASGD

10°

0.05
10 10

i 10% 10’ 10° 10° 10

# |terations

Convergence speed of ASGD optimization
(synthetic dataset, k = 10, d = 10) with and
without asynchronous communication (silent)



Message Impact: time needed to reach error rate
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Conclusions

* The asynchronous communication scheme can
be applied successfully to SGD optimizations
of machine learning algorithms.

* ASGD provide superior scalability and
convergence compared to previous methods.

e Especially the early convergence property is

high practical value in large scale machine
learning.



