
Hyperspectral Unmixing on
GPUs and Multi-Core
Processors: A Comparison
Dept. of Mechanical and Environmental Informatics
Kimura-Nakao lab.
Uehara Daiki

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

2

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

4

How to take a hyperspectral image

Reference 1

Reference 2

5

AVIRIS

Reference 3

6

A kind of hyperspectral image sensor

Reference 1

Target

Lens

Slit

Collimation mirror

Focusing mirror

Actual

data

Data

structure

Spatial

data

Spectral

dataCCD

7

Hyperspectral image

Reference 1

Spectrum of

a pixel

4D data

cube

224 bands

0.4 to 2.5 μm

1band 9.375 nm width

8

Hyperspectral image

False color

composition of an

AVIRIS WTC scene

Vegetation Smoke Fire Reference 4

9

Mixture problem

A pixel

20~30m

20~30m

Several kind of

endmembers in a pixel

[Endmember]

Buildings

Vegetation

Water

Fire

etc.

Low spatial resolution

Hyperspectral unmixing is needed for accurate analysis 10

Mixture model

Reference 4
Linear mixture model Non-linear mixture model

11

Linear mixture model

12

Full hyperspectral unmixing chain

Reference 4

Estimate the

number of p
Identify 𝐞𝒊

Estimate 𝛼𝑖

Validate the

reconstructed image

13

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

15

Estimation of the number of endmembers

▪ Virtual dimensionality algorithm

1. Calculate the covariance matrix.

𝐊𝑳×𝑳 =
1

𝑁
𝐘 − 𝐘 𝑇(𝐘 − 𝐘)

2. Calculate the correlation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

3. Calculate covariance eigenvalues { 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}
and correlation eigenvalues {𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}.

4. If 𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the
number of endmembers.

16

Basic idea of Virtual Dimensionality

▪ Assuming the hyperspectral signatures are unknown
nonrandom and deterministic signal sources.

▪ Assuming noise is white with zero mean.

▪ Auto-covariance

▪ KXX 𝜏 = E 𝑋 𝑡 − 𝜇 𝑋 𝑡 + 𝜏 − 𝜇
= E 𝑋 𝑡 ⋅ 𝑋 𝑡 + 𝜏 − 𝜇2 = RXX 𝜏 − 𝜇2

▪ If KXX 𝜏 = RXX 𝜏 , 𝜇2 = 0. This means that there is only noise.

17

Convex cones of hyperspectral image

▪ Reflectance (and radiance) is
strictly non-negative.

▪ Reflectance (or radiance) spectrum
vectors lie inside a convex region
[Ref 6].

▪ Vertices of the convex can be used
as endmember spectra [ref 6].
▪ If the mixture model is the linear mixture
model.

Reflectance convex cone
Reference 5

18

Endmember extraction

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the
convex cone. (Ref 7)

A vector

Hyperspectral

image pixel

Hyperspectral

image pixel vector

1. Project all

pixel vectors

onto a vector

19

Endmember extraction

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the
convex cone. (Ref 7)

A vector

Hyperspectral

image pixel

Hyperspectral

image pixel vector

2. Find the max

projection and it

is a vertex.

A vertex and this vector is

the endmember 𝐞𝟏

20

Endmember extraction

Orthogonal

vectors

Hyperspectral

image pixel

Hyperspectral

image pixel vector

3. Create a vector

orthogonal to the first

vector and repeat the

same steps.

A vertex and this vector is

the endmember 𝐞𝟏

A vertex and this vector is

the endmember 𝐞𝟐

▪ Orthogonal Subspace Projection

▪The objective of this algorithm is to find vertex of the
convex cone. (Ref 7)

21

Unconstrained least squares algorithm
for abundance estimation

▪ Endmembers 𝐌 = 𝐞𝒊 𝑖=1
𝑝

.

▪ Abundance fractions 𝛼 = [𝛼1, 𝛼2, … 𝛼𝑝].

▪ 𝛼 can be estimated by the following expression in least
squares sense.

𝛼 = 𝐌𝑇𝐌 −1𝐌𝑇𝐲

22

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

23

Review the VD algorithm

▪ Virtual dimensionality algorithm

1. Calculate the covariance matrix.

𝐊𝑳×𝑳 =
1

𝑁
𝐘 − 𝐘 𝑇(𝐘 − 𝐘)

2. Calculate the correlation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

3. Calculate covariance eigenvalues { 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}
and correlation eigenvalues {𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿}.

4. If 𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the
number of endmembers.

24

GPU implementation of VD

1. Load the full hyperspectral image 𝐘 to the main
memory of the GPU.

Reference 4

Reference 1

25

GPU implementation of VD

1. Calculate 𝐘 using L blocks.

▪L is the number of bands.

MP 1 MP LMP 2

Band 1
Band 2

Band L

 𝐘

26

GPU implementation of VD

2. Calculate the covariance matrix.
𝐊𝑳×𝑳 =

1

𝑁
𝐘 − 𝐘 𝑇(𝐘 − 𝐘)

▪cublassSgemm function (a cuBLAS library function) is
used for the parallel matrix multiplication above.

3. Calculate the autocorrelation matrix.
𝐑𝑳×𝑳 = 𝐊𝑳×𝑳 + 𝐘𝐘𝑇

▪ Calculate 𝐿 × 𝐿 components using 𝐿 × 𝐿 threads as follows:
𝐑𝑖𝑗 = 𝐊𝑖𝑗 + 𝐘𝑖

 𝐘𝑗

4. Calculate autocorrelation and covariance
eigenvalues using host CPU.

27

GPU implementation of VD

5. If 𝜆𝑙 − 𝜆𝑙 > 0 for 𝑙 = 1,2, … , 𝐿 then 𝑝 += 1
▪ 𝑝 is the number of endmembers.

▪ Neyman-Pearson test is used for estimation of the
number of endmembers.

▪ This step processed in host CPU.

28

GPU implementation of OSP

▪ Orthogonal Subspace Projection with Gram-Schmidt
orthogonalization (OSP-GS)

▪By using Gram-Schmidt orthogonalization, OSP can be
parallelized.

29

GPU implementation of OSP

1. Store the pixel vector by columns in GPU global
memory.

▪ 𝑦𝑖: 𝑖 is the band number.

▪ Color: a pixel vector.

▪ N is the number of pixels.

𝑦1 𝑦1 𝑦1 𝑦1

𝑦2 𝑦2 𝑦2 𝑦2

𝑦𝐿 𝑦𝐿 𝑦𝐿 𝑦𝐿

Thread 1 2 3 N

Data alignment

for coalesced

memory access

30

GPU implementation of OSP

2. Calculate the brightest pixel 𝐞1 in 𝐘.

▪ Calculate the dot product between each pixel and its
transposed version in parallel.

▪ A pixel vector which has the maximum projection value

will be the 𝐞1.

31

GPU implementation of OSP

3. Calculate the vectors orthogonal to the 𝐞1 by using
Gram-Schmidt orthogonalization.

▪ Note: 𝐞𝑖 vectors in the eq.(2) of today’s paper is not an
endmember.

▪ The number of orthogonal vectors is 𝑝.

▪ 𝑝 is the number of endmembers calculated in VD steps.

▪ This step is processed in the host CPU.

𝐞1

𝐞1
𝐞2

𝐞𝑝
GS

orthogonalization

MP 1

MP 𝑝

Store the 𝐞𝑖 into

the 𝑖-th MP’s shared

memory.

Shared

memory

32

GPU implementation of OSP

4. Project all pixel vectors onto the orthogonal vectors.

▪ The orthogonal vector is stored in the shared memory for
fast access.

5. Find the vector which has the maximum projection value.

6. Store the vector found in the previous step in the shared
memory. This vector is an endmember vector 𝐞𝑖.

7. Pass the endmember vector to the endmember matrix 𝐌.

Those steps below are processed using 𝑝 blocks.

33

GPU implementation of UCLS

1. Calculate 𝐌𝑇𝐌 in the GPU.

2. Calculate (𝐌𝑇𝐌)−𝟏 in the host CPU.

3. Multiply the inverse by 𝐌 in the GPU.

4. Multiply the result by each pixel 𝐲.

34

Multicore implementation of the unmixing
chain

1. Matrix multiplication

▪ OpenMP+BLAS

▪ Divide the matrix into some OpenMP threads.

▪ In each thread, invoke dgemm function.

▪ dgemm is a BLAS function. This function is optimized for
matrix multiplication.

2. Use parallel for directive.

35

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

36

Hyperspectral image data

Reference 4

614x512 pixels and 224 bands

Size: 140MB

37

Hyperspectral image data

Reference 4

38

Hyperspectral image data

Reference 4 39

Hyperspectral image data

Reference 4 40

GPU and multicore CPU specs

1. GPU1

▪ NVidia Tesla C1060, 240 cores, 1.296GHz, 4GB total dedicated
memory, 800MHz memory, 102GB/s

2. GPU2

▪ NVidia GeForce GTX 580, 512 cores, 1.544GHz, 1,536MB total
dedicated memory, 2,004MHz memory, 192.4GB/s

3. MC1

▪ Intel i7 920, 2.67GHz, 4 cores, 6GB DDR3 RAM, host of GPU1
and GPU2

4. MC2

▪ Intel Xeon, 2.53GHz, 12 cores, 24GB DDR3 RAM

41

Processing times and speedups

This cuprite scene was took in 1.985 sec.

Processing time must be less than 1.985 sec for real time processing.

Not real

time

Not real

time

42

Processing times and speedups

This WTC scene was took in 5.096 sec.

Processing time must be less than 5.096 sec for real time processing.

Not real

time

Not real

time

43

Today’s outline

1. Self-introduction

2. Basics of hyperspectral imaging (Related p1386-1388)

3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

5. Experimental result (Related p1391-1396)

6. Conclusion

44

Conclusion

1. Hyperspectral imaging can benefit from GPU and
multicore processors.

2. GPUs and multicore processors are still rarely exploited
in real missions due to power consumption and radiation
tolerance issue.

45

References

1. HyperSpec ハイパースペクトルセンサー・イメージ分光カメラ
原理/ハイパースペクトルイメージングとは，ARGO，2009，
http://www.argocorp.com/cam/special/HeadWall/how_it_works.html

2. 陸域観測技術衛星「だいち」（ALOS），JAXA，2015，
http://www.jaxa.jp/projects/sat/alos/index_j.html

3. AVIRIS, NASA JPL, http://aviris.jpl.nasa.gov/

4. Sergio Bernabe, et al., “Hyperspectral Unmixing on GPUs and
Multi-Core Processors: A Comparison”, IEEE Journal of selected
topics in applied earth observations and remote sensing, vol.6,
No.3, pp. 1386-1398, 2013

5. Jose M.P. Nasciment, Jose M. Bioucas Dias, “Vertex Component
Analysis: A Fast Algorithm to Unmix Hyperspectral Data”, IEEE
Transactions on geoscience and remote sensing, vol. 43, No.4,
pp.898-910, 2005

46

http://www.argocorp.com/cam/special/HeadWall/how_it_works.html
http://www.jaxa.jp/projects/sat/alos/index_j.html
http://aviris.jpl.nasa.gov/

References

6. Agustin Ifarranguerri, Chein-I Chang, “Multispectral and
Hyperspectral Image Analysis with Convex Cones”, IEEE
Transactions on geoscience and remote sensing, vol. 37, No. 2,
pp.756-770, 1999

7. Sebastian Lopez, et al., “A Low-Computational-Complexity
Algorithm for Hyperspectral Endmember Extraction: Modified
Vertex Component Analysis”, IEEE geoscience and remote sensing
letters, vol.9, No. 3, pp.502-506, 2012

47

Acknowledgements

1. Icon made by Freepik from www.flaticon.com is licensed under
CC BY 3.0

48

http://www.freepik.com/
http://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/

