Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison

Dept. of Mechanical and Environmental Informatics Kimura-Nakao lab. Uehara Daiki

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- 3. Unmixing chain algorithm (Related p1388-1389)
- 4. GPU and multicore implementation (Related p1389-1391)
- 5. Experimental result (Related p1391-1396)
- 6. Conclusion

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- 3. Unmixing chain algorithm (Related p1388-1389)
- 4. GPU and multicore implementation (Related p1389-1391)
- 5. Experimental result (Related p1391-1396)
- 6. Conclusion

How to take a hyperspectral image

Reference 3

A kind of hyperspectral image sensor

Hyperspectral image

Hyperspectral image

False color composition of an AVIRIS WTC scene

Hyperspectral unmixing is needed for accurate analysis

Mixture model

Linear mixture model

12

Full hyperspectral unmixing chain

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- **3.** Unmixing chain algorithm (Related p1388-1389)
- 4. GPU and multicore implementation (Related p1389-1391)
- 5. Experimental result (Related p1391-1396)
- 6. Conclusion

Estimation of the number of endmembers

- Virtual dimensionality algorithm
 - 1. Calculate the covariance matrix. $\mathbf{K}_{L \times L} = \frac{1}{N} (\mathbf{Y} - \overline{\mathbf{Y}})^T (\mathbf{Y} - \overline{\mathbf{Y}})$
 - 2. Calculate the correlation matrix. $\mathbf{R}_{L \times L} = \mathbf{K}_{L \times L} + \overline{\mathbf{Y}}\overline{\mathbf{Y}}^{T}$
 - 3. Calculate covariance eigenvalues $\{\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \cdots \ge \hat{\lambda}_L\}$ and correlation eigenvalues $\{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_L\}$.
 - 4. If $\hat{\lambda}_l \lambda_l > 0$ for l = 1, 2, ..., L then p += 1
 - *p* is the number of endmembers.
 - Neyman-Pearson test is used for estimation of the number of endmembers.

Basic idea of Virtual Dimensionality

- Assuming the hyperspectral signatures are unknown nonrandom and deterministic signal sources.
- Assuming noise is white with zero mean.
- Auto-covariance

•
$$K_{XX}(\tau) = E[(X(t) - \mu)(X(t + \tau) - \mu)]$$

= $E[X(t) \cdot X(t + \tau)] - \mu^2 = R_{XX}(\tau) - \mu^2$

• If $K_{XX}(\tau) = R_{XX}(\tau)$, $\mu^2 = 0$. This means that there is only noise.

Convex cones of hyperspectral image

Reflectance convex cone Reference 5 Reflectance (and radiance) is strictly non-negative.

- Reflectance (or radiance) spectrum vectors lie inside a convex region
 [Ref 6].
- Vertices of the convex can be used as endmember spectra [ref 6].
 - If the mixture model is the linear mixture model.

Endmember extraction

- Orthogonal Subspace Projection
 - The objective of this algorithm is to find vertex of the convex cone. (Ref 7)

Endmember extraction

- Orthogonal Subspace Projection
 - The objective of this algorithm is to find vertex of the convex cone. (Ref 7)

Endmember extraction

- Orthogonal Subspace Projection
 - The objective of this algorithm is to find vertex of the convex cone. (Ref 7)

Unconstrained least squares algorithm for abundance estimation

- Endmembers $\mathbf{M} = {\{\mathbf{e}_i\}}_{i=1}^p$.
- Abundance fractions $\alpha = [\alpha_1, \alpha_2, ..., \alpha_p]$.
- α can be estimated by the following expression in least squares sense.

 $\alpha = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \mathbf{y}$

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- 3. Unmixing chain algorithm (Related p1388-1389)

4. GPU and multicore implementation (Related p1389-1391)

- 5. Experimental result (Related p1391-1396)
- 6. Conclusion

Review the VD algorithm

- Virtual dimensionality algorithm
 - 1. Calculate the covariance matrix. $\mathbf{K}_{L \times L} = \frac{1}{N} (\mathbf{Y} - \overline{\mathbf{Y}})^T (\mathbf{Y} - \overline{\mathbf{Y}})$
 - 2. Calculate the correlation matrix. $\mathbf{R}_{L \times L} = \mathbf{K}_{L \times L} + \overline{\mathbf{Y}}\overline{\mathbf{Y}}^{T}$
 - 3. Calculate covariance eigenvalues $\{\hat{\lambda}_1 \ge \hat{\lambda}_2 \ge \cdots \ge \hat{\lambda}_L\}$ and correlation eigenvalues $\{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_L\}$.
 - 4. If $\hat{\lambda}_l \lambda_l > 0$ for l = 1, 2, ..., L then p += 1
 - *p* is the number of endmembers.
 - Neyman-Pearson test is used for estimation of the number of endmembers.

GPU implementation of VD

1. Load the full hyperspectral image Y to the main memory of the GPU.

GPU implementation of VD

- 2. Calculate the covariance matrix. $\mathbf{K}_{L \times L} = \frac{1}{N} (\mathbf{Y} - \overline{\mathbf{Y}})^T (\mathbf{Y} - \overline{\mathbf{Y}})$
 - cublassSgemm function (a cuBLAS library function) is used for the parallel matrix multiplication above.
- 3. Calculate the autocorrelation matrix. $\mathbf{R}_{L \times L} = \mathbf{K}_{L \times L} + \mathbf{Y}\mathbf{Y}^{T}$

- Calculate $L \times L$ components using $\underline{L} \times L$ threads as follows: $\mathbf{R}_{ij} = \mathbf{K}_{ij} + \mathbf{Y}_i \mathbf{Y}_j$

4. Calculate autocorrelation and covariance eigenvalues using host CPU.

GPU implementation of VD

5. If $\hat{\lambda}_l - \lambda_l > 0$ for l = 1, 2, ..., L then p += 1

- *p* is the number of endmembers.
- Neyman-Pearson test is used for estimation of the number of endmembers.
- This step processed in host CPU.

- Orthogonal Subspace Projection with Gram-Schmidt orthogonalization (OSP-GS)
 - By using Gram-Schmidt orthogonalization, OSP can be parallelized.

- 1. Store the pixel vector by columns in GPU global memory.
 - $y_i: i$ is the band number.
 - Color: a pixel vector.
 - *N* is the number of pixels.

Data alignment for coalesced memory access

- 2. Calculate the brightest pixel e_1 in Y.
 - Calculate the dot product between each pixel and its transposed version in parallel.
 - A pixel vector which has the maximum projection value will be the e_1 .

- 3. Calculate the vectors orthogonal to the e_1 by using Gram-Schmidt orthogonalization.
 - Note: e_i vectors in the eq.(2) of today's paper is **not** an endmember.
 - The number of orthogonal vectors is *p*.
 - p is the number of endmembers calculated in VD steps.
 - This step is processed in the host CPU.

Those steps below are processed using p blocks.

- 4. Project all pixel vectors onto the orthogonal vectors.
 - The orthogonal vector is stored in the shared memory for fast access.
- 5. Find the vector which has the maximum projection value.
- 6. Store the vector found in the previous step in the shared memory. This vector is an endmember vector e_i .
- 7. Pass the endmember vector to the endmember matrix M.

- 1. Calculate $\mathbf{M}^T \mathbf{M}$ in the GPU.
- 2. Calculate $(\mathbf{M}^T \mathbf{M})^{-1}$ in the host CPU.
- 3. Multiply the inverse by M in the GPU.
- 4. Multiply the result by each pixel y.

Multicore implementation of the unmixing chain

- 1. Matrix multiplication
 - OpenMP+BLAS
 - Divide the matrix into some OpenMP threads.
 - In each thread, invoke dgemm function.
 - dgemm is a BLAS function. This function is optimized for matrix multiplication.
- 2. Use parallel for directive.

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- 3. Unmixing chain algorithm (Related p1388-1389)
- 4. GPU and multicore implementation (Related p1389-1391)
- 5. Experimental result (Related p1391-1396)
- 6. Conclusion

Fig. 6. False color composition of an AVIRIS hyperspectral image collected by NASAs Jet Propulsion Laboratory over lower Manhattan on Sept. 16, 2001 (left). Location of thermal hot spots in the fires observed in World Trade Center area, available online: http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key. tgif.gif (right).

Reference 4

614x512 pixels and 224 bands Size: 140MB

TABLE II Spectral Angle Values (in Degrees) Between the Target Pixels Extracted by OSP-GS Algorithm and the Known Ground Targets in the AVIRIS World Trade Center Scene

А	в	с	D	Е	F	G	н	
0.00°	27.16°	0.00°	15.62°	27.81°	3.98°	2.72°	24.26°	

Fig. 9. Abundance maps extracted from the WTC scene for different targets: (a) Vegetation. (b) Smoke. (c) Fire. (d) Per-pixel RMSE obtained in the reconstruction process of the AVIRIS WTC scene using p = 31 endmembers (the overall RMSE in this case was 0.0216).

Reference 4

Fig. 7. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada and (b) U.S. Geological Survey mineral spectral signatures used for validation purposes.

TABLE I Spectral Angle Values (in Degrees) Between the Target Pixels Extracted by the OSP-GS Algorithm and the Reference USGS Mineral Signatures for the AVIRIS Cuprite Scene

Alunite	Buddingtonite	Calcite	Kaolinite	Muscovite	Average	
5.48°	4.08°	5.87°	11.14°	5.68°	6.45°	

Fig. 8. Abundance maps extracted from the Cuprite scene for different minerals: (a) Alunite. (b) Budinggtonite. (c) Calcite. (d) Kaolinite. (e) Muscovite. (f) Per-pixel RMSE obtained in the reconstruction process of the AVIRIS Cuprite scene using p = 19 endmembers (the overall RMSE in this case was 0.0361).

GPU and multicore CPU specs

1. GPU1

- NVidia Tesla C1060, 240 cores, 1.296GHz, 4GB total dedicated memory, 800MHz memory, 102GB/s
- 2. GPU2
 - NVidia GeForce GTX 580, 512 cores, 1.544GHz, 1,536MB total dedicated memory, 2,004MHz memory, 192.4GB/s
- 3. MC1
 - Intel i7 920, 2.67GHz, 4 cores, 6GB DDR3 RAM, host of GPU1 and GPU2

4. MC2

Intel Xeon, 2.53GHz, 12 cores, 24GB DDR3 RAM

Processing times and speedups

TABLE IV

PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UNMIXING CHAIN IN TWO DIFFERENT PLATFORMS: MULTI-CORE AND GPU, TESTED WITH THE AVIRIS CUPRITE SCENE

	Initialization	VD	OSP-GS	UCLS	Writing of final results	Total	-	
Serial time	0.121	5.541	1.331	1.051	0.009	8.053		
Parallel time GPU1	0.269	0.246	0.049	0.067	0.009	0.640		
Parallel time GPU2	0.281	0.241	0.024	0.034	0.011	0.590	Not real	L
Parallel time MC1	0.126	0.924	0.516	0.277	0.010	1.853	time	
Parallel time MC2	0.098	1.066	1.055	0.197	0.053	2.468		
Speedup (GPU1)	-	22.48	27.26	15.74	-	12.58	-	
Speedup (GPU2)	-	23.00	55.28	30.62	_	13.64		
Speedup (MC1)	-	6.00	2.58	3.79	-	4.35		
Speedup (MC2)	-	5.20	1.26	5.35	-	3.26	_	

This cuprite scene was took in 1.985 sec. Processing time must be less than 1.985 sec for real time processing.

Processing times and speedups

TABLE V

PROCESSING TIMES (IN SECONDS) AND SPEEDUPS ACHIEVED FOR THE PARALLEL UNMIXING CHAIN IN TWO DIFFERENT PLATFORMS: MULTI-CORE AND GPU, TESTED WITH THE AVIRIS WTC SCENE

	Initialization	VD	OSP-GS	UCLS	Writing of final results	Total	_	
Serial time	0.364	20.149	9.979	10.314	0.036	40.842		
Parallel time GPU1	0.522	0.711	0.202	0.280	0.039	1.755		Not rool
Parallel time GPU2	0.535	0.499	0.109	0.133	0.037	1.313		NULTEAL
Parallel time MC1	0.370	3.258	3.549	2.759	0.037	9.973	4	time
Parallel time MC2	0.281	3.782	4.612	1.620	0.206	10.501		
Speedup (GPU1)	-	28.34	49.28	36.79	_	23.28	-	
Speedup (GPU2)	-	40.37	91.49	77.66	-	31.12		
Speedup (MC1)	-	6.18	2.81	3.74	-	4.10		
Speedup (MC2)	-	5.33	2.16	6.37	-	3.89		

This WTC scene was took in 5.096 sec. Processing time must be less than 5.096 sec for real time processing.

Today's outline

- 1. Self-introduction
- 2. Basics of hyperspectral imaging (Related p1386-1388)
- 3. Unmixing chain algorithm (Related p1388-1389)
- 4. GPU and multicore implementation (Related p1389-1391)
- 5. Experimental result (Related p1391-1396)
- 6. <u>Conclusion</u>

Conclusion

- 1. Hyperspectral imaging can benefit from GPU and multicore processors.
- 2. GPUs and multicore processors are still rarely exploited in real missions due to power consumption and radiation tolerance issue.

References

- HyperSpec ハイパースペクトルセンサー・イメージ分光カメラ 原理/ハイパースペクトルイメージングとは、ARGO、2009、 <u>http://www.argocorp.com/cam/special/HeadWall/how_it_works.html</u>
- 2. 陸域観測技術衛星「だいち」(ALOS), JAXA, 2015, http://www.jaxa.jp/projects/sat/alos/index_j.html
- 3. AVIRIS, NASA JPL, http://aviris.jpl.nasa.gov/
- 4. Sergio Bernabe, et al., "Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison", *IEEE Journal of selected topics in applied earth observations and remote sensing*, vol.6, No.3, pp. 1386-1398, 2013
- 5. Jose M.P. Nasciment, Jose M. Bioucas Dias, "Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data", *IEEE Transactions on geoscience and remote sensing,* vol. 43, No.4, pp.898-910, 2005

References

- 6. Agustin Ifarranguerri, Chein-I Chang, "Multispectral and Hyperspectral Image Analysis with Convex Cones", *IEEE Transactions on geoscience and remote sensing,* vol. 37, No. 2, pp.756-770, 1999
- 7. Sebastian Lopez, et al., "A Low-Computational-Complexity Algorithm for Hyperspectral Endmember Extraction: Modified Vertex Component Analysis", *IEEE geoscience and remote sensing letters*, vol.9, No. 3, pp.502-506, 2012

Acknowledgements

1. Icon made by <u>Freepik</u> from <u>www.flaticon.com</u> is licensed under <u>CC BY 3.0</u>