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Quantum mechanics-based ab initio molecular dynamics (MD)

simulation schemes offer an accurate and direct means to

monitor the time evolution of materials. Nevertheless, the

expensive and repetitive energy and force computations

required in such simulations lead to significant bottlenecks.

Here, we lay the foundations for an accelerated ab initio MD

approach integrated with a machine learning framework. The

proposed algorithm learns from previously visited configura-

tions in a continuous and adaptive manner on-the-fly, and pre-

dicts (with chemical accuracy) the energies and atomic forces

of a new configuration at a minuscule fraction of the time

taken by conventional ab initio methods. Key elements of this

new accelerated ab initio MD paradigm include representa-

tions of atomic configurations by numerical fingerprints, a

learning algorithm to map the fingerprints to the properties, a

decision engine that guides the choice of the prediction

scheme, and requisite amount of ab initio data. The perform-

ance of each aspect of the proposed scheme is critically eval-

uated for Al in several different chemical environments. This

work has enormous implications beyond ab initio MD accelera-

tion. It can also lead to accelerated structure and property pre-

diction schemes, and accurate force fields. VC 2014 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24836

Introduction

Computation-driven rational materials design efforts are rising

in popularity and importance.[1,2] This trend is being fueled by

systematic improvements in capabilities to compute materials

properties accurately and practically. Parameter-free (or ab ini-

tio) quantum mechanics (QM)-based schemes such as density

functional theory (DFT) are central to this unfolding develop-

ment.[3–5] Although powerful, versatile, and efficient, ab initio

methods are still too time intensive to adequately handle sev-

eral important classes of problems. For instance, the explicit

dynamical evolution of materials and processes with timescales

larger than a nanosecond are still beyond the reaches of DFT

computations.

The most direct way to handle and monitor the time evolu-

tion of matter is by the molecular dynamics (MD) method.[6] In

ab initio MD, the ingredients necessary to perform MD, namely,

the total potential energies and atomic forces are obtained

using QM, but the evolution of the atoms (i.e., determination

of the next new configuration, based on the current configura-

tion, velocities, and forces) is performed classically. The repeti-

tive and expensive QM energy and force computations, and

the necessity for small time steps (of the order of femtosec-

onds), lead to the primary bottlenecks of ab initio MD. Creative

schemes to accelerate MD simulations so that longer time-

scales can be accessed have indeed been developed in the

past.[7–18] These include the use of parameterized force-fields

(rather than QM) to evaluate the energies and forces rapidly,[7]

and/or speeding the clock using Monte Carlo methods,[8,9]

metadynamics,[10,11] temperature accelerated dynamics,[12–15]

and hyperdynamics.[13–16] These attempts although are not

entirely satisfactory. Force-fields are not transferrable to situa-

tions that were not originally used in the parameterization,

and altering the clock requires some prior knowledge of the

critical features encountered during the evolution process (and

involve artificial constraints and some loss of vital dynamical

information).

The present contribution provides a pathway for a new solu-

tion to the ab initio MD acceleration problem that preserves

the fidelity of both QM and the clock. First, we make three

observations.

1. During a typical MD trajectory, a system is largely explor-

ing similar configurations, and new features or events are

encountered rarely, as schematically portrayed in Figure

1a. This observation is quite universal, and applies to

many important processes such as defect diffusion in sol-

ids or surface chemical reactions. Taking point defect dif-

fusion as an example, the actual site-to-site hopping of

the defect is a rare event, while the vibrational motion of

the defect (and its surroundings) in its local minimum

occupies most of the time and leads to a plethora of sim-

ilar configurations.

2. It is fair to assume that similar configurations will have

similar properties (such as energies, atomic forces, etc.). If

a robust numerical representation of the configurations
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can be developed, a quantitative measure of (dis)similar-

ity of configurations can be defined, which can then be

mapped to (dis)similarities between properties via a

learning algorithm. Within the context of accelerated MD,

a machine learning (ML) procedure can be used to pre-

dict the energies and forces of similar configurations

along the MD trajectory rapidly, provided QM training

data pertaining to the initial part of the trajectory is avail-

able. This is also shown in Figure 1a.

3. When a completely new configuration or event is

encountered, a decision has to be made to switch back

from ML to QM. Most importantly, the new configura-

tions and properties should be included in the learning

framework on-the-fly as illustrated in Figure 1b, making

the learning process adaptive, and continuously evolving

with progressive improvement in predictive quality. If this

can be accomplished, then, the next time a similar rare

event is encountered, QM is unnecessary. This aspect is

also captured in Figure 1a.

Thus, the basic premise of the proposed strategy is that the

significant redundancies implicit in conventional ab initio MD

schemes can be systematically eliminated. The flowchart

shown in Figure 1c summarizes the proposed on-the-fly adapt-

ive ML strategy to accelerate ab initio MD. This concept is rem-

iniscent of the adaptive force-field scheme utilized earlier for

simulations involving Si,[19] although the present strategy is

more general, flexible, and universal in terms of its applicabil-

ity, learning capability, and representation of atomic

interactions.

It is worth noting that ML strategies are making significant

inroads into various aspects of materials science,[20] including

accelerated and accurate predictions (using past historical

data) of phase diagrams,[21,22] crystal structures,[23–26] and

material properties,[27–29] mapping complex materials behavior

to a set of process variables,[30–32] data analysis of high-

throughput experiments,[22,33,34] so forth. Of particular rele-

vance to the present contribution are recent successful efforts

that exploit ML methods (neural networks[35] and Gaussian

approximation potentials[36]) to develop accurate force-fields

(or interatomic potentials) that can allow for significant exten-

sion of the time- and length-scales of MD simulations. Never-

theless, the present contribution is one of the first attempts in

which the implementation of an adaptive on-the-fly learning

scheme to accelerate ab initio MD is discussed.

The proposed strategy, as captured in Figure 1c, involves a

number of vital ingredients. These include: (1) a rigorous and

generalizable scheme to represent atomic configurations by

continuous numerical fingerprints that are invariant to transla-

tions, rotations, and permutations of like atom types (as such

transformations lead to equivalent configurations); (2) a robust

learning algorithm that can map the fingerprints to properties;

(3) a decision engine that queries whether the properties of a

new configuration are predictable using the current learning

model; and (4) needless to say, ab initio (re)training data from

the initial part of the MD trajectory and at points when the

decision engine makes ab initio calculations mandatory.

A firm understanding of the requirements and the limits of

the four ingredients listed above is necessary for the practical

realization of a high-fidelity, accelerated MD simulation

scheme. To directly address this, in this manuscript, we con-

sider fcc Al, a model elemental metallic system in several

chemically distinct environments, including (i) defect-free bulk

Al, (ii) bulk Al containing a vacancy, (iii) clean (111) Al surface,

and (iv) the (111) surface with an Al adatom. For each of the

four cases above, robust numerical configurational fingerprints

are created that allow for high-fidelity predictions of energies

and forces at chemical accuracy via a similarity-based learning

Figure 1. a) A typical MD energy trajectory, with the green and orange regions identifying the quantum mechanical (QM) and machine learning (ML)

phases, respectively, of the adaptive learning framework. b) Expansion of the domain of applicability on-the-fly, if and when new configurations are visited.

c) A flowchart of the adaptive learning framework. The green and orange arrows indicate the use of QM or ML models.
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algorithm. Also, a simple decision engine is presented that

detects the occurrence of a new configuration not already in

the initial training dataset, thus signaling when a fresh QM cal-

culation is required. The combination of the individual working

entities should lead us to the ultimate goal of an adaptive

learning framework to significantly accelerate ab initio MD sim-

ulations on-the-fly.

Methods and Models

Fingerprints: Numerical representations of atomic, molecular,

and crystal environments

The first critical step in the proposed learning approach is to

represent the chemistry and geometry of our system numeri-

cally (hopefully, uniquely), such that a mapping can be estab-

lished between this numerical representation and the property

of interest (namely, the energy or forces). Such a representation

is referred to here as a fingerprint (also commonly referred to

as the feature vector by the ML community). In what follows,

we distinguish between atomic fingerprints and crystal (or

molecular) fingerprints. The former captures the coordination

environment of a particular atom, while the latter describes the

entire ensemble of atoms that are contained within a repeating

unit cell (or a molecule). The atomic fingerprint is necessary to

predict atomic properties (e.g., forces), while the crystal finger-

print is appropriate to capture global properties (e.g., energy

within quantum mechanical schemes, band gap, etc.).

The atomic or crystal fingerprint is required to satisfy certain

requirements.[37,38] To adequately capture variations in energy

and forces with geometry differences, the fingerprint has to

be continuous with respect to slight changes in configuration.

Moreover, transformations such as translations, rotations, and

permutations of atoms of the same type that lead to equiva-

lent systems should not alter the fingerprint.

We first consider atomic fingerprints with the expectation

that crystal fingerprints can be built from the constituent

atomic fingerprints. A natural first choice for the atomic finger-

print of an elemental system could be the radial distribution

function (RDF) defined as follows for a particular atom i

RiðrÞ5
X

j 6¼i

dðr2rijÞ (1)

where dðrÞ is the Dirac delta function and rij5jri2rjj, with ri

being the vectorial position of atom i. The sum runs over all

the neighboring atoms within an arbitrarily large cutoff dis-

tance from atom i. Clearly, the RDF, RiðrÞ, satisfies both the fin-

gerprint requirements mentioned above, and has recently

been used to establish structure-property mappings in materi-

als.[39] The values of Ri in a radial grid can thus be viewed as a

numerical fingerprint (or feature vector) describing the coordi-

nation environment. Moreover, RiðrÞ also captures the geome-

try in a visually appealing manner. This is demonstrated in

Figure 2. Panel A contains three homonuclear diatomic mole-

cules (labeled a, b, and c) used here to illustrate our finger-

print choices, and Panel B shows the corresponding Gaussian

smoothened RDFs. Clearly, the similarity between the bond

distances of molecules a and b, and their dissimilarity with

that of molecule c is reflected by the corresponding RDFs.

Nevertheless, while these (dis)similarities are apparent to a

human, it may not be so for a machine. Typical measures of

(dis)similarity utilize the Euclidean norm of the difference

between the fingerprint vectors or the dot product between

the fingerprint vectors. Clearly, such measures will fail to cap-

ture the similarity between molecules a and b, and their dis-

similarity with respect to molecule c (as the Euclidean norms

of the difference between any pair of the three fingerprint

vectors is the same constant value, and the dot products

between any pair is zero).

Figure 2. Panel A: A homonuclear diatomic molecule displaying three different bond lengths. Panel B: The corresponding Gaussian smoothened radial dis-

tribution function (RDF) for each of the bonding environments. Panel C: Transformation of the RDF using Gaussian functions on an eta-grid as indicated by

the colored lines, into an atomic fingerprint. Panel D: The y-component of the direction resolved atomic fingerprint of an atom in the three bonding envi-

ronments. The fingerprints generated are for the atom indicated by * in Panel A.
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Extending the RDF in a particular way can circumvent the

above problem. Rather than using the RDF itself, a trans-

formed quantity defined as the integral of the product of RiðrÞ
and a Gaussian window function

GiðgÞ5
ð

RiðrÞe2 r
gð Þ

2

dr5
X

j 6¼i

e2
rij
gð Þ

2

(2)

can be used, where g is a parameter that describes the extent

of the window function. GiðgÞ is essentially a “cumulative” ver-

sion of RiðrÞ. This is visually demonstrated in Panel C of Figure

2, for three g values. Although RiðrÞ is defined in a radial grid,

GiðgÞ is defined in a g-grid. To account for the diminishing

importance of atoms far away from the reference atom i, we

multiply the summand of GiðgÞ by a cutoff function f ðrijÞ that

smoothly vanishes for large rij values, resulting in our choice of

the atomic fingerprint (AF) function, AiðgÞ, given by

AiðgÞ5
X

j 6¼i

e2
rij
gð Þ

2

f ðrijÞ: (3)

We note that AiðgÞ is essentially the radial symmetry func-

tion proposed earlier by Behler et al.[40] Following that previ-

ous work we define f ðrijÞ as

f ðrijÞ5
0:5 cos

prij

Rc

� �
11

� �
if rij � Rc

0 if rij > Rc

8><
>: (4)

where Rc is the cutoff radius, chosen here to be 8 Å. Interest-

ingly, the g-grid does not have to be as fine as the radial grid.

More importantly, AiðgÞ does not have the issues that RiðrÞ
has, with respect to capturing the (dis)similarity between

actual physical situations as defined by Euclidean norms. This

can be ascertained by inspecting Panel C of Figure 2.

For the molecular or crystal fingerprint (i.e., the fingerprint

of the entire molecule or unit cell, CðgÞ, also defined on a

g-grid) to be used for mapping the total potential energy of a

configuration, we use the average of the atomic fingerprint

AiðgÞ over the constituent atoms, as given by

CðgÞ5 1

N

XN

i

AiðgÞ (5)

where N is the total number of atoms in the molecule or unit cell.

Finally, we consider the extension of the AiðgÞ definition so

that it becomes applicable to represent vectorial atomic quan-

tities such as forces. This can be simply done by resolving

each term in the summation of AiðgÞ into its Cartesian compo-

nents, leading to the direction-resolved atomic fingerprints, V i

ðgÞ5fVx
i ðgÞ; V

y
i ðgÞ; V z

i ðgÞg as follows

V k
i ðgÞ5

X
j 6¼i

rk
ij

rij
e2

rij
gð Þ

2

f ðrijÞ; k 2 x; y; zf g (6)

where rk
ij is the k-th component of ðri2rjÞ. Panel D of Figure 2

visually demonstrates the V
y
i ðgÞ function for the homonuclear

diatomic molecular systems of Panel A.

To extend the atomic fingerprint (be it AiðgÞ or V iðgÞ), to

nonelemental systems, one could follow a similar approach as

above, whereby the atomic fingerprint contains components,

one for each atom type. For example, given a binary system

with elements m and n, the possible atomic neighbor pair dis-

tribution types are: mm, mn, nm, and nn. Thus, by considering

each interaction separately, we propose a new multielement

atomic fingerprint generated by concatenating the independ-

ent atomic pair fingerprints, that is, AiðgÞ5 Amm
i ;Amn

i ;Anm
i ;Ann

i

� �
.

The crystal fingerprint may be generated by averaging over

the individual AiðgÞ within a given supercell. Similarly, the

direction resolved atomic fingerprint could be generated by

concatenation of the individual pair components.

Learning method: Kernel ridge regression

The second critical step is the choice of the learning method.

In this work, we have chosen the kernel ridge regression (KRR)

technique, which has been used successfully in the recent past

within the materials and chemical sciences.[27,28,34] KRR trans-

forms the input fingerprint into a higher dimensional space

whereby a linear relation between the transformed fingerprint

and the property of interest can be established.[41–43] To be

precise, the mapping process between the fingerprint and

property involves the “distances” between fingerprints rather

than the fingerprints themselves. KRR may thus be viewed as

a similarity-based learning method, that is, similar fingerprints

will lead to similar properties.

Within KRR, the property of a system u is given by a sum of

weighted Gaussians,

Pu5
X

v

ave21
2
jduv j

rð Þ
2

(7)

where v runs over all the cases in the training dataset. duv is

the Euclidean distance between the fingerprint vectors of sys-

tems u and v. The coefficients avs and the parameter r are

determined during the training phase, whence an objective

function that includes a regularization term is mini-

mized.[27,28] The r and regularization parameters are deter-

mined by k-fold cross-validation (in this work k 5 5) on the

training dataset. In this method, the training dataset is split

into k bins. Each bin acts as a new test dataset, whilst the

remaining k21 bins are combined into a new training data-

set. The process is repeated for every bin in the k bins, and

for every r and regularization parameters on a preselected

logarithmically scaled fine grid. The optimal parameters (i.e.,

ones that lead to the lowest k-fold cross validation error) are

then used in the final model development stage to deter-

mine the av values for the entire training dataset. In this

work, model error is measured by the mean absolute error

(MAE). At this point, the machinery is in place to predict the

property value using Eq. (7).

Decision engine: Fingerprint range

The third critical step is the decision engine that guides pre-

diction machinery choice (either QM or ML) for energy and
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force evaluations. If a simulation spends a majority of the time

using the ab initio engine, it nullifies any speedup. This raises

an important question, namely, how do we judge whether the

property of a new configuration can be predicted with the ML

approach? One way to classify a new structure is to compare

its fingerprint with those in the training dataset (once suffi-

cient initial training data has been accumulated). If every com-

ponent of a new fingerprint lies within the range of

components of fingerprints already in the training dataset,

then we decide that we are in the predictable domain. If not,

a fresh QM calculation is mandatory. The new results should

then be included in the training set and retraining must be

performed to improve the predictive capability. Certainly, a

more complex decision engine can be developed by taking

inspiration from the field of domain applicability as used

within drug prediction,[44–46] but this is not attempted here.

Data generation: Quantum Mechanics

Data for the four cases (i) defect-free bulk Al, (ii) bulk Al con-

taining a vacancy, (iii) a clean (111) Al surface, and (iv) the

(111) surface with an Al adatom was generated from ab initio

(DFT) MD runs in a microcanonical ensemble using a timestep

of 0.5 fs, with the Vienna ab initio Simulation Package.[47,48]

The bulk cases (i and ii) consisted of a 32 (or 31 with the

vacancy) atom model. The surface cases (iii and iv) consisted

of a 16 (or 17 with adatom) atom surface model. The general-

ized gradient approximation functional parameterized by Per-

dew, Burke, and Ernzerhof to treat the electronic exchange-

correlation interaction, the projector augmented wave poten-

tials, and plane-wave basis functions up to a kinetic energy

cutoff of 520 eV were used.[47–50] A C-centered k-point mesh

of 7 3 7 3 7 and 7 3 7 3 1 were used for the bulk and sur-

face calculations, respectively.

Training and test datasets

As a reminder, we note that two types of fingerprints are used

in this work: CðgÞ to map to total potential energies and V iðgÞ
to map to atomic forces. Using ab initio MD, a total of 2000

configurations was generated for each of the four material sys-

tems considered. For the energy prediction assessment, vari-

ous amounts of training data was randomly selected from the

above sampled configurations, while the remaining was con-

sidered as the test dataset, used to gauge model performance.

Similarly for the force prediction assessment, various amounts

of training data was randomly selected from all the atomic

environments sampled (i.e., 64,000 for case i and ii, and 32,000

for case iii and iv), with the remaining considered as the test

dataset.

Desired Parameter Choices

The specific choice of model parameters is critical to perform-

ance.[51] To establish fidelity in predictions, we extensively

tested two key quantities: (1) the length of the fingerprint vec-

tor (i.e., number of points in the g grid), and (2) the training

dataset size.

Fingerprint vector size

A natural question that arises is, how dense should the g-grid

defined in Eqs. (3) and (6) be, to adequately describe the vary-

ing atomic and crystal environments encountered. To critically

address this question, we systematically increased the number

of g values from 1 to 12 (thus increasing fingerprint complex-

ity). Starting with small g values, as this captures the dominant

nearest neighbor shell contributions, we added more compo-

nents to the fingerprint based on a logarithmic g grid between

1021 and 102 Å. For each case, we used a training dataset size

of 100 and 500 for the energy and force models, respectively

(these sizes are shown in the next subsection to be sufficient

to ensure convergence of the predictions). The model error as

shown in Figure 3, decreases with increasing fingerprint com-

plexity for all four cases, suggesting that convergence has

been achieved.

Interestingly, with the energy model the fingerprint com-

plexity is also dependent on the type of structure being stud-

ied. As seen in Figure 3a, to achieve chemical accuracy in

Figure 3. Energy a) and force b) error versus length of fingerprint size for

(i) defect-free bulk Al, (ii) bulk Al containing a vacancy, (iii) a clean (111) Al

surface, and (iv) the (111) surface with an Al adatom.
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energy (MAE< 1 meV
atom

), the bulk cases (i and ii) required a 3-

component fingerprint, whereas the surface cases (iii and iv)

required an 8-component fingerprint. The above observation is

not entirely surprising. A surface model, unlike the bulk, is

nonperiodic along the surface normal whereby atoms of vary-

ing coordination exist, depending on the atom position (sur-

face or below). The learning algorithm maps the energy to a

crystal fingerprint (which is averaged across all atoms), and

hence the resolution of each individual atom is smeared out.

Only on increasing fingerprint complexity can we achieve an

accurate model. Such a concern does not exist for the force

model, since a one-to-one mapping between the atomic envi-

ronment and the force is undertaken. It is for this reason that

the force error, as seen in Figure 3b, for all four cases starts

high (MAE> 0.05 eV

Å
) and decreases systematically, with error

levels converging well below numerical DFT noise.

Training dataset size

Another factor affecting the performance of the learning algo-

rithm is the size and choice of the training data used. With

KRR, increasing the training dataset size generally improves

model performance, so long as accurate data and cross-

validation methods are used during model training. The size of

the dataset, n, has to be carefully chosen as computational

overhead scales as Oðn3Þ.[52] To determine the optimal training

size that balances computational expense with accuracy,

model error versus training dataset size was studied as shown

in Figure 4, using an 8-component crystal and direction-

resolved atomic fingerprint. Clearly, a systematic decrease in

error with increased training once again signifies convergence.

Models with small training dataset sizes (<25 for energy

and <50 for force) leads to poor learning, resulting in high

errors. For the energy model, bulk cases (i and ii) require 25

configurations or more, while the surface cases (iii and iv)

require 50 configurations or more to achieve error conver-

gence. Conversely for the force model, the bulk cases con-

verge to the desired accuracy with <50 training

configurations, while the surface cases require >200 configura-

tions. Similar to the observations with fingerprint complexity,

as the configurational expanse increases from the bulk to sur-

face owing to the nonperiodicity, the training size required

increases accordingly.

Prediction of Energy and Forces

Based on the convergence studies of model parameters in

Desired Parameter Choices section, we chose eight compo-

nents for both the crystal fingerprint [CðgÞ] and direction-

resolved atomic fingerprint [V iðgÞ]. Second, 100 training con-

figurations for energy and 100 [for (i) and (ii)] or 750 [for (iii)

and (iv)] training configurations for the force model, were ran-

domly selected. Using the above parameters as input to the

learning algorithm, we predict energy and forces for the four

test cases of elemental Al, as shown in Figure 5. Each predic-

tion takes roughly a millisecond (for comparison, the 32 atom

bulk Al case with DFT takes � 45 min on a 16 core machine, a

speed up on the order of 106). Our ML predictions agree well

with the QM data, with the observed errors (< 1 meV
atom

and< 0.05 eV

Å
) reported in Table 1. This suggests well learned

models in all the cases. Errors of this magnitude are compara-

ble to errors arising within the approximations made within

DFT itself. It is accuracy at this level that allows us to bypass

expensive QM methods and rely on the proposed learning

approach for quick energy and force predictions. However, to

build a self evolving learning method (as we propose in Fig. 1c),

Figure 4. Energy a) and force b) error versus training size for (i) defect-free

bulk Al, (ii) bulk Al containing a vacancy, (iii) a clean (111) Al surface, and

(iv) the (111) surface with an Al adatom.

Table 1. Mean absolute error in energy and force predictions of the four

cases.

Case Energy ( meV
atom) Force (eV

Å
)

(i) Defect-free bulk Al 0.04 (0.03) 0.02 (0.02)

(ii) Bulk Al w. vacancy 0.06 (0.02) 0.02 (0.02)

(iii) Clean (111) Al surface 0.16 (0.08) 0.03 (0.02)

(iv) (111) Surface w. adatom 0.22 (0.07) 0.03 (0.03)

Test error in bold and training error in brackets.
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that adapts during the course of a simulation requires a scheme

able to recognize situations that are outside the original train-

ing domain.

Decisions on Predictability

ML methods are, in general, interpolative and are unable to

handle situations outside the training domain. To demonstrate

such a situation within the context of this work, a series of

configurations that mimic the migration trajectory of a

vacancy in bulk Al were generated as shown in Figure 6. The

energy and forces for each configuration along the migration

trajectory were predicted using QM and our ML model. Given

the short time span explored while generating the training

data (case ii), no such migration event was actually observed.

Thus, configurations close the transitions state (TS) should be

inaccurately predicted by ML.

Figure 7a plots the true (QM) and predicted (ML) energy of

each configuration along the migration trajectory, with the TS

at the apex. Clearly, the starting and ending configurations are

predicted well (as they resemble those in the training dataset).

However, the error increases significantly as we move toward

the TS, as these configurations were never sampled during

training. On adding just the TS configuration to the training

database and retraining, the error along the entire trajectory

drops within acceptable accuracy (Fig. 7b). Adding more con-

figurations along the migration pathway to the training data-

set and retraining further refines the energy predictions even

more (Fig. 7c). The configurations added for retraining are indi-

cated by ? in Figures 7b and 7c. Interestingly, as can be seen

in Figure 8a, the atomic forces of all configurations along the

trajectory are accurately predicted with error <0.05 eV

Å
, without

any retraining.

To illustrate how one can detect whether the properties of

a structure are predictable or not, we used the method dis-

cussed in Decision Engine: Fingerprint range section. A plot

of the relative location of each crystal fingerprint component

compared with the training dataset bounds (maximum and

minimum value given by the red and blue dotted lines is

shown in Fig. 7d). In the retrained models (only including

the TS configuration, Fig. 7e, and including the TS with other

configurations, Fig. 7f ) the crystal fingerprint components

approach the training dataset bounds, and the error drops

as a result. With the forces however, all the atomic

Figure 5. Parity plot for (i) defect-free bulk Al, (ii) bulk Al containing a vacancy, (iii) a clean (111) Al surface, and (iv) the (111) surface with an Al adatom,

with energy a) and force b) predictions in the top and bottom rows, respectively. An eight component fingerprint, with 100 training configurations for the

energy models and 100 [for (i) and (ii)] and 750 [for (iii) and (iv)] training configurations for the force models were used.

Figure 6. Vacancy migration within bulk Al. The structures shown correspond to steps 1, 5, 10, 15, and 20 along the 20-step trajectory.
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fingerprint components in the migration trajectory fall within

training dataset bounds even before training, as shown in

Figure 8b. Therefore, the predicted force errors are negligible

as seen in the parity plot of Figure 8a. The proposed deci-

sion engine is a rudimentary but an effective approach to

recognize structures which may fall outside the original

training domain.

Implications of this Work

Thus far, we have demonstrated that energies and atomic

forces may be predicted with chemical accuracy using a ML

algorithm trained on QM data. Critical to this capability is the

representation of atomic configurations and environments

using continuous numerical fingerprints. Here, we have pre-

sented a class of simple, intuitive, efficient, and elegant finger-

prints that can capture scalar (e.g., energy) and vector (e.g.,

force) quantities. We also presented a scheme that can recog-

nize new cases not already in the training domain, which can

subsequently be included in the training process thus making

the prediction scheme adaptive and the predictive power

monotonically increasing in quality.

All the ingredients required to eliminate (expensive) redun-

dancies that plague ab initio MD simulations and hence accel-

erate them significantly are thus in place. The scheme

proposed here, shown in Figure 1c, closely integrates with an

existing DFT code; this will allow the learning scheme to

become adaptive on-the-fly, and significantly mitigate the

time-scale challenge that ab initio MD schemes currently face

(although care must be taken to insure that the scheme pre-

serves ergodicity and that ensemble averages are properly rep-

resented). As several such simulations are performed for a

particular system, the accumulated information (i.e., finger-

prints, forces and energies), if diverse, can lead to the creation

of a force-field, using which subsequent simulations can be

performed without the need for an explicit DFT engine (this is

in the spirit of recent ML-based force-field development

efforts[35,37]). Indeed, this is particularly true with the forces

and the force fingerprints, V iðgÞ, which are purely functions of

the atomic environment, unlike the total potential energy and

the crystal fingerprint, which are functions of the supercell as

a whole. Thus, a scheme purely based on the forces (which is

conceivable as energies can be obtained from the forces

through integration) does not have to be linked to a particular

supercell. Such a development can mitigate the length-scale

challenge faced by ab initio MD.

The present work may also impact non-MD simulations. For

instance, structure prediction schemes require either total

potential energies or total potential energies and

forces.[26,53,54] A scheme analogous to the flowchart of Figure

1c can be conceived for an adaptive on-the-fly ML scheme to

accelerate structure prediction calculations (or even stand-

alone schemes once sufficient history is accumulated, as dis-

cussed above). Going further, the same paradigm can be

applied to map the fingerprints to other local and global prop-

erties of interest, such as effective charges, dipoles, polariza-

tion, band gap, dielectric constant, so forth. Finally, we note

that, although the QM training data discussed here came from

one flavor of DFT calculations, the present scheme is applica-

ble to any class of data, including beyond-DFT and other more

Figure 7. QM and ML energy, a)–c), and the range of crystal fingerprint components with respect to the training dataset, d)–f ), of each image along the

vacancy migration trajectory. a) and d) with no retraining, b) and e) with the TS added to training and c) and f) with TS and image 1 and 5 added to the

training. ? indicates the configurations added during retraining.
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sophisticated QM methods, thus improving of the predictive

power further at no extra cost (other than that incurred at the

training phase). The implications of the present development

are expected to be far reaching.

Summary

A detailed understanding of the dynamical evolution of mate-

rials and processes involves timescales that are beyond the

reaches of present day quantum mechanical or ab initio MD

methods. The primary causes of the bottlenecks in such

approaches are the expensive and repetitive energy and force

computations required, and the small timesteps involved.

Acceleration schemes proffered thus far either do not preserve

the fidelity of the time evolution, or have very limited domains

of applicability.

In this contribution, we presented a scheme that can enor-

mously accelerate MD simulations while still preserving the

fidelity of the time-evolution, and allow us to span timescales

previously inaccessible at the ab initio level of accuracy. The

basic premise of this work is that similar configurations are

constantly visited during the course of an MD simulation, and

that the redundancies implicit in conventional ab initio MD

schemes can be systematically eliminated. The foundations for

such an accelerated ab initio MD scheme is laid out here. A ML

scheme is proposed which learns from previously visited config-

urations in a continuous and adaptive manner on-the-fly, and

predicts the energies and forces of a new configuration at a

minuscule fraction of the time taken by conventional ab initio

methods. Key elements of this new accelerated ab initio MD

paradigm include representations of atomic configurations by

numerical fingerprints, the learning algorithm, a decision engine

that guides the choice of the prediction scheme, and, of course,

the requisite amount of ab initio (re)training data.

The performance of each aspect of the proposed ab initio

MD acceleration scheme is critically evaluated for Al, a model

elemental system, in several different chemical environments,

including defect-free bulk, bulk with a vacancy, clean (111) sur-

face, and the (111) surface with an adatom. The robust configu-

rational fingerprints utilized, and the learning algorithm

adopted lead to energy and force predictions at chemical accu-

racy, provided sufficient fingerprint components and ab initio

training data are used. The simple and intuitive decision engine

that guides whether ML or QM needs to be used to predict the

energies and forces of a new configuration is also shown to be

robust. When QM is mandated, the new results are to be used

in a ML retraining step; this makes the scheme adaptive on-the-

fly. With the above critical pieces in place, we have a complete

prescription for a new accelerated ab initio MD paradigm.

The ideas contained within this manuscript, although dem-

onstrated for just an elemental metallic system, is readily

extendable and applicable to nonmetallic as well as nonele-

mental systems. Even though the focus of the present work is

to accelerate ab initio MD simulations, the same adaptive strat-

egy can be applied for the learning and prediction of other

properties as well.

Acknowledgments

The authors would like to acknowledge useful discussions with

Kenny Lipkowitz and Avinash M. Dongare, and a critical reading of

the manuscript by Ghanshyam Pilania, Tran D. Huan, and Arun

Mannodi-Kanakkithodi. Partial computational support through a

Extreme Science and Engineering Discovery Environment (XSEDE)

allocation is also gratefully acknowledged.

Keywords: ab initio molecular dynamics � accelerate � machine

learning � fingerprint � adaptive

How to cite this article: V. Botu, R. Ramprasad. Int. J. Quantum

Chem. 2015, 115, 1075–18083. DOI: 10.1002/qua.24836

[1] G. Ceder, K. Persson, Sci. Am. 2013, 309, 36.

[2] V. Sharma, C. Wang, R. G. Lorenzini, R. Ma, Q. Zhu, D. W. Sinkovits, G.

Pilania, A. R. Oganov, S. Kumar, G. A. Sotzing, S. A. Boggs, R.

Ramprasad, Nat. Commun. 2014, 5, 4845.

[3] J. Neugebauer, T. Hickel, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013,

3, 438.

Figure 8. a) Parity plot showing accurate force prediction without any

retraining, and b) Direction resolved atomic fingerprint range compared to

the training dataset of the force model.

FULL PAPER WWW.Q-CHEM.ORG

1082 International Journal of Quantum Chemistry 2015, 115, 1074–1083 WWW.CHEMISTRYVIEWS.ORG

info:doi/10.1002/qua.24836
http://q-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/


[4] G. Hautier, A. Jain, S. P. Ong, J. Mater. Sci. 2012, 47, 7317.

[5] A. D. Becke, J. Chem. Phys. 2014, 140, 18A301.

[6] R. Petrenko, J. Meller, Encyclopedia of Life Sciences, Chap. Molecular

Dynamics; Wiley, 2010.

[7] I. M. Torrens, Interatomic Potentials; Academic Press, 1972.

[8] G. Henkelman, H. Jonsson, J. Chem. Phys. 2001, 115, 9657.

[9] A. Chatterjee, D. G. Vlachos, J. Comput?Aided Mater. 2007, 14, 253.

[10] A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 2002, 99, 12562.

[11] A. Laio, F. L. Gervasio, Rep. Prog. Phys. 2008, 71, 126601.

[12] M. R. Sorensen, A. F. Voter, J. Chem. Phys. 2000, 112, 9599.

[13] F. Voter, J. Chem. Phys. 1997, 106, 4665.

[14] F. Voter, F. Montalenti, T. C. Germann, Annu. Rev. Mater. Res. 2002, 32,

321.

[15] F. Voter, M. R. Sorensen, Mater. Res. Soc. Symp. Proc. 1999, 538, 427.

[16] F. Voter, Phys. Rev. Lett. 1997, 78, 3908.

[17] D. Hamelberg, J. Mongan, J. A. McCammon, J. Chem. Phys. 2004, 120,

11919.

[18] J. A. Elliott, Int. Mat. Rev. 2011, 56, 207.

[19] G. Csanyi, T. Albaret, M. C. Payne, A. D. Vita, New J. Phys. 2013, 15,

095003.

[20] T. Mueller, A. G. Kusne, R. Ramprasad, Machine Learning in Materials

Science: Recent Progress and Emerging Applications, in Reviews in

Computational Chemistry; K. B. Lipkowitz, A. L. Parrill-Baker, Eds., Wiley,

2015.

[21] S. Srinivas, K. Rajan, Materials 2013, 6, 279.

[22] C. J. Long, J. Hattrick?Simpers, M. Murakami, R. C. Srivastava, I.

Takeuchi, V. L. Karen, X. Li, Rev. Sci. Instrum. 2007, 78, 072217.

[23] G. Hautier, C. C. Fisher, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 2010,

22, 3762.

[24] C. C. Fischer, K. J. Tibbetts, D. Morgan, G. Ceder, Nat. Mater. 2006, 5,

641.

[25] X. Zhang, L. Yu, A. Zakutayev, A. Zunger, Adv. Funct. Mater. 2012, 22,

1425.

[26] A. R. Oganov, Y. Ma, A. O. Lyakhov, M. Valle, C. Gatti, Rev. Mineral. Geo-

chem. 2010, 71, 271.

[27] M. Rupp, A. Tkatchenko, K. R. Muller, O. A. von Lilienfeld, Phys. Rev.

Lett. 2012, 108, 058301.

[28] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Sci. Rep.

2013, 3, 2810.

[29] G. Montavon, M. Rupp, V. Gobre, A. Vazquez?Mayagoitia, K. Hansen, A.

Tkatchenko, K. R. Muller, O. A. von Lilienfeld, New J. Phys. 2013, 15,

095003.

[30] P. V. Balachandran, S. R. Broderick, K. Rajan, Proc. R. Soc. A 2011, 467,

2271.

[31] E. W. Bucholtz, C. S. Kong, K. R. Marchman, W. G. Sawyer, S. R. Phillpot,

S. B. Sinnot, K. Rajan, Tribol. Lett. 2012, 47, 211.

[32] I. E. Castelli, K. W. Jacobsen, Model. Simul. Mater. Sci. Eng. 2014, 22,

055007.

[33] D. Morgan, G. Ceder, S. Curtarolo, Meas. Sci. Technol. 2005, 16, 296.

[34] A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K. M. Ho, V.

Antropov, C. Z. Wang, M. J. Kramer, C. Long, I. Takeuchi, Sci. Rep. 2014,

4, 6367.

[35] J. Behler, Phys. Chem. Chem. Phys. 2011, 13, 17930.

[36] A. P. Bartok, M. C. Payne, R. Kondor, G. Csanyi, Phys. Rev. Lett. 2010,

104, 136403.

[37] A. P. Bartok, R. Kondor, G. Csanyi, Phys. Rev. B 2013, 87, 184115.

[38] L. Yang, S. Dacek, G. Ceder, Phys. Rev. B 2014, 90, 054102.

[39] K. T. Schutt, H. Glawe, F. Brockherde, A. Sanna, K. R. Muller, E. K. U.

Gross, Phys. Rev. B. 2014, 89, 205118.

[40] J. Behler, J. Chem. Phys. 2011, 134, 074106.

[41] T. Hofmann, B. Scholkopf, A. J. Smola, Ann. Statist. 2008, 36, 1171.

[42] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, IEEE Trans Neural

Netw 2001, 12, 181.

[43] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction, 2nd ed.; Springer:

New York, 2009.

[44] H. Kaneko, K. Funatsu, J. Chem. Inf. Model. 2014, 54, 2469.

[45] P. Carrio, M. Pinto, G. Ecker, F. Sanz, M. Pastor, J. Chem. Inf. Model.

2014, 54, 1500.

[46] R. P. Sheridan, J. Chem. Inf. Model. 2013, 53, 2837.

[47] G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

[48] G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[49] P. E. Blochl, Phys. Rev. B 1994, 50, 17953.

[50] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533.

[51] K. Hansen, G. Montavon, F. Biegler, S. Fazil, M. Rupp, M. Scheffler, O. A.

von Lilienfeld, A. Tkatchenko, K. Muller, J. Chem. Theory Comput. 2013,

9, 3404.

[52] I. H. Witten, E. Frank, M. A. Hall, Data Mining: Practical Machine Learn-

ing Tools and Techniques; Elsevier, 2011.

[53] S. Goedecker, J. Chem. Phys. 2004, 120, 9911.

[54] D. J. Wales, J. P. K. Doye, J. Phys. Chem. A 1997, 191, 5111.

Received: 10 October 2014
Revised: 13 November 2014
Accepted: 17 November 2014
Published online 23 December 2014

FULL PAPERWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2015, 115, 1074–1083 1083

http://q-chem.org/
http://onlinelibrary.wiley.com/

	l
	l

