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The	contributions	of	this	paper

1. Identify iterative-ness	in	ML	applications

2. Specializations	for	exploiting	iterative-ness	

3. Concept	of	“virtual	iteration”
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Abstract
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Machine	learning	applications

• Optimization	problem	
• Find	the	“optimal”	parameter	values
• The	chosen	model	match	the	input	data	

• Many	ML	applications	use	iterative	algorithms
• Same	pattern	of	access	to	parameters
• Can	and	should	be	exploited
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Parameter	server	approach

• Share	model	parameters	among	worker	threads
• Exploiting	the	repeating	pattern

• Reduce dynamic cache	and	server	structures
• Use	static pre-serialized	structures
• Inform	prefetch and	partitioning decisions
• Data	placement	avoiding	contention	and	slow	accesses
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Experiments

• 3	target	ML	applications
• Collaborative	Filtering	(CF)
• Topic	Model	(TM)
• PageRank	(PR)

• Exploitation	reduce	per-iteration	time	by	33-98%
• Robust	to	variation	in	the	patterns
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ML	approaches

• Determine	model	parameter	best	fit	input	data
• Algorithm	iterates	over	the	input	data
• Refine	current	best	estimate	of	parameter	values
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Parallelizing	ML	computations

• Partition	input	data	among	worker	threads
• Worker	threads	across	cores	and	machines
• Share	only	parameter	values
• Maintain	distributed	values	by	parameter	server
• Synchronize	each	iteration	with	a	barrier
• BSP	(:	Bulk	Synchronous	Parallel)	style
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Bulk	Synchronous	Parallel	Model

• A	number	of	components
• A	router	deliver	messages	between	2	components
• Facilities	for	synchronizing	components

11



Knowable	repeating	patterns

• Each	thread	processes
• Its	portion	of	the	input	data
• In	the	same	order	in	each	iteration	

• Same	subset	of	parameters	are	read	&	updated
• Each	iteration	involves	the	same	pattern
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Exploiting	patterns

• Within	a	machine
• State	can	be	placed	in	memory	NUMA	zone
• Closest	to	the	core	on	which	it	runs
• Reduce	lock	contention
• Synchronize	only	when	required

• Cross-machine	overheads
• Partitioning
• Prefetching

• Static	structure	for	servers’	and	workers’	state
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Iterative	fitting	of	model	parameters

• Major	subset	of	ML	approaches
• Process	a	set	of	input	data
• Identify	mathematical	model	that	fits	data
• Minimize	an	objective	function	that	describes	error
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Parallel	computation	model

• “Big	Data”	required	for	detail	model
• Partition	input	data	among	the	worker	thread
• iterative	ML	based	on	BSP
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Parameter	server	architecture

• All	state	shared	among	worker	threads
• Kept	in	key-value	store
• Worker	threads	process	assigned	input	data

• READ
• UPDATE
• CLOCK
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Example	applications

• Collaborative	Filtering
• Used	in	recommender	systems
• Discover	latent	interactions	between	two	entities

• Topic	Model
• Unsupervised	method	
• Discovering	hidden	semantic	structures	

• PageRank
• Assign	weighted	score	to	every	vertex	in	a	graph
• Score	measures	its	importance	in	the	graph
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Obtaining	per-iteration	access	sequence

• Two	options	
• Explicit	reporting	of	the	sequence
• Explicit	reporting	of	the	iteration	boundaries

• Report	access	sequence	once
• Report	at	beginning		
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Virtual	iteration

• Each	application	thread	reports	operations	for	an	
iteration	(READ,	UPDATE,	CLOCK)
• No	real	values	are	involved

• Very	fast
• Require	not	so	much	coding	effort
⇒Virtual	iteration

• Require	too	much	coding	effort
⇒Explicit	identification	of	iteration	boundary
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Identification	of	iteration	boundaries

• Identify	the	start	&	end	of	an	iteration
• Remove	the	need	for	pattern	recognition
• Allow	the	parameter	server	to	transition	to	more	
efficient	operation	after	1st iteration
• Involve	some	overheads

• Initialization	&	1st iteration	are	not	iterative-ness	
specialized
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Exploiting	access	information

• Data	placement	across	machines
• Data	placement	inside	a	machine
• Static	per-thread	caches
• Efficient	data	structures
• Prefetching
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Data	placement	across	machines

• If	parameters	are	co-located	with	computation	that	
use	them
• Communication	demands		&	latency	can	be	reduced

• Accessing	of	each	input	data
• Involve	only	a	subset	of	the	parameters

• Accessing	of	parameters	by	different	workers
• With	different	frequencies
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Data	placement	inside	a	machine

• Modern	multi-core	machines
• Multiple	sockets
• Multiple	memory	NUMA	zones

• Memory	access	speed	depending	on	“distance”
• Knowledge	of	access	sequences

• Co-locate	worker	threads	&	data	
• They	access	frequently	to	the	same	NUMA	memory	
zone	
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Static	per-thread	caches

• Per-worker-thread	caching
• Contention	between	worker	threads
• Access	to	remote	NUMA	memory	zone

• Employing	a	static	cache	policy
• The	best	set	of	entries	to	be	cached
• Never	evicts	them
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Efficient	data	structures

• Knowledge	of	access	pattern
• Knowledge	of	full	set	of	entries

• More	efficient,	less	general	data	structure
• Reducing	marshaling	overhead	by	eliminating	the	
need	to	extract	and	marshal	each	value	one-by-one	
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Prefetching

• Each	worker	thread	must	use	updated	value	after	
each	CLOCK	(BSP)
• Prefetching	can	help	mask	the	high	latency
• Knowing	access	pattern	maximize	the	potential	
value	of	prefetching
• Constructing	large	batch	prefetch requests	once	
and	using	them	each	iteration	is	more	efficient
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Collaborative	Filtering	

30

user1 user2 user3 user4 user5
item1 5 3 2

item2 4 4 2 1

item3 3 5 3 4 3

item4 3 1

item5 1 2 3 ? 3

• Commonly	used	in	recommender	systems
• e.g.	recommending	movies	to	users	on	Netflix	



Collaborative	Filtering	
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(partly	filled	matrix)



Collaborative	Filtering	
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×

item	i

user		u

:	Estimate:		User	u’s	rating	of	item	i



SGD	for	CF

33

Optimize	parameters

Update	parameters

Objective	function



SGD	for	CF
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Optimize	parameters

Update	parameters

Objective	function

Select	next	input	data	randomly



SGD	for	CF
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Optimize	parameters

Update	parameters

Objective	function

Select	next	input	data	randomly	



Parameter	server	for	CF
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×

Input	data Parameter	data
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IterStore (parameter	server)

• Shard	of	the	master	version	of	data	in	its	master	store	(not	duplicated)

• App.	threads	access	the	process	cache	
• IterStore follows	BSP	model	
• Master	stores	are	devided into	M	partitions
• N	IterStore machines	manage	the	parameter	data 37



Parameter	data	in	IterStore (CF)
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key row	(user-defined	data	type)
1
・
・

・
・

k
・
・

・
・

K

Manage	data	as	a	collection	of	rows	indexed	by	keys.

• Fixed	size
• Serializable
• Defined	with	

an	associative	aggregation	operation

Input	data
Parameter	data

rows	in	Machine-0



Data	placement	across	machine
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key row
1
・
・

・
・

k
・
・

・
・

ALL

hash

ALL	rows

partition	id
(ex.	3)

machine	id
(ex.	2)

machine-0 machine-1 machine-2 machine-N

・・・

Find	machine	which	access	the	row	“k”

How	to	assign	master	data(row)	
to	each	machine

partition-3



Data	placement	inside	a	machine
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machine

core core core core core core core core core core core core

NUMA	zone NUMA	zone NUMA	zone

process
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cache

process
cache

process
cache

process
cache

master
shard

master
shard

master
shard

master
shard

master
shard

master
shard

process • C	CPU	cores
• Z		NUMA	zones
• 1	process	per	machine
• C	app	threads	per	process
• C/2	partitions



Contention	and	locality-aware	thread	caches
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key row	(user-defined	data	type)
1
・
・

・
・

j
・
・

・
・

K
rows	in	a	Machine

access	probability
access	frequency

contention	probability
CP	bound

AF	threshold

thread-i
accesses	row-j

To	reduce	all	CP	to	below	CPB,
set	

and	if

make	thread-i cache	row-j	in	its	thread	cache	
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Experimental	setup

• Hardware	Information
• 8-node	cluster	of	64-core	machines
• Each	node	has	four	2-die	2.1	GHz	16	core	AMD	Opteron	
6272	packages,	with	a	total	of	128GB	of	RAM	and	eight	
memory	NUMA	zones	

• The	nodes	run	Ubuntu	12.04	and	are	connected	via	an	
Infiniband network	interface
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Application	benchmarks

• CF	
• Netflix	dataset
• 480k-by-18k	sparse	matrix	with	100m	known	elements

• TM
• Nytimes dataset
• 100m	tokens	in	300k	documents
• Vocabulary	size	of	100k
• Generate	1000	topics

• PR
• Twitter-graph	dataset
• 40m	nodes	and	1.5b	edges
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IterStore setup

• One	application	process	on	each	machine
• Each	machine	creates	64	computation	threads
• Each	machine	is	linked	to	one	instance	of	IterStore
library	with	32	partitions
• Assume	each	machine	has	enough	memory	to	not	
need	replacement	in	its	process	cache

45



Overall	performance
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Optimization	effectiveness	break	down
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Contention	and	locality-aware	caching
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IterStore’s static	thread-caching	policy	vs	LRU(Least	Recently	Used)	policy



Pipelined	prefetching
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Inaccurate	information
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Comparison	w/	single	thread	baselines
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Conclusion

• Many	ML	applications	make	the	same	pattern	of	
read	and	update	accesses	each	iteration.
• The	pattern	can	be	exploited	in	parallel	ML	
computations.
• Parameter	server	can	specialize

• Data	structures
• Data	placement
• Caching
• Prefetching	policies

• Experiments	show	the	exploitation	of	iterative-ness	
reduce	per-iteration	execution	times	by	33-98%
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