
High	Performance	Computing	
8th lecture

Kazuki Osawa :	16M30444
25	Oct.	2016



Selected	paper

• SoCC’14	3-5	Nov.	2014,	Seattle,	Washington,	USA.
• ACM	978-1-4503-3252-1.

http://dl.acm.org/citation.cfm?doid=2670979.2670984

1



The	contributions	of	this	paper

1. Identify iterative-ness	in	ML	applications

2. Specializations	for	exploiting	iterative-ness	

3. Concept	of	“virtual	iteration”

2



Abstract

3



Machine	learning	applications

• Optimization	problem	
• Find	the	“optimal”	parameter	values
• The	chosen	model	match	the	input	data	

• Many	ML	applications	use	iterative	algorithms
• Same	pattern	of	access	to	parameters
• Can	and	should	be	exploited

4



Parameter	server	approach

• Share	model	parameters	among	worker	threads
• Exploiting	the	repeating	pattern

• Reduce dynamic cache	and	server	structures
• Use	static pre-serialized	structures
• Inform	prefetch and	partitioning decisions
• Data	placement	avoiding	contention	and	slow	accesses

5



Experiments

• 3	target	ML	applications
• Collaborative	Filtering	(CF)
• Topic	Model	(TM)
• PageRank	(PR)

• Exploitation	reduce	per-iteration	time	by	33-98%
• Robust	to	variation	in	the	patterns

6



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

7



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

8



ML	approaches

• Determine	model	parameter	best	fit	input	data
• Algorithm	iterates	over	the	input	data
• Refine	current	best	estimate	of	parameter	values

9



Parallelizing	ML	computations

• Partition	input	data	among	worker	threads
• Worker	threads	across	cores	and	machines
• Share	only	parameter	values
• Maintain	distributed	values	by	parameter	server
• Synchronize	each	iteration	with	a	barrier
• BSP	(:	Bulk	Synchronous	Parallel)	style

10



Bulk	Synchronous	Parallel	Model

• A	number	of	components
• A	router	deliver	messages	between	2	components
• Facilities	for	synchronizing	components

11



Knowable	repeating	patterns

• Each	thread	processes
• Its	portion	of	the	input	data
• In	the	same	order	in	each	iteration	

• Same	subset	of	parameters	are	read	&	updated
• Each	iteration	involves	the	same	pattern

12



Exploiting	patterns

• Within	a	machine
• State	can	be	placed	in	memory	NUMA	zone
• Closest	to	the	core	on	which	it	runs
• Reduce	lock	contention
• Synchronize	only	when	required

• Cross-machine	overheads
• Partitioning
• Prefetching

• Static	structure	for	servers’	and	workers’	state

13



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

14



Iterative	fitting	of	model	parameters

• Major	subset	of	ML	approaches
• Process	a	set	of	input	data
• Identify	mathematical	model	that	fits	data
• Minimize	an	objective	function	that	describes	error

15



Parallel	computation	model

• “Big	Data”	required	for	detail	model
• Partition	input	data	among	the	worker	thread
• iterative	ML	based	on	BSP

16



Parameter	server	architecture

• All	state	shared	among	worker	threads
• Kept	in	key-value	store
• Worker	threads	process	assigned	input	data

• READ
• UPDATE
• CLOCK

17



Example	applications

• Collaborative	Filtering
• Used	in	recommender	systems
• Discover	latent	interactions	between	two	entities

• Topic	Model
• Unsupervised	method	
• Discovering	hidden	semantic	structures	

• PageRank
• Assign	weighted	score	to	every	vertex	in	a	graph
• Score	measures	its	importance	in	the	graph

18



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

19



Obtaining	per-iteration	access	sequence

• Two	options	
• Explicit	reporting	of	the	sequence
• Explicit	reporting	of	the	iteration	boundaries

• Report	access	sequence	once
• Report	at	beginning		

20



Virtual	iteration

• Each	application	thread	reports	operations	for	an	
iteration	(READ,	UPDATE,	CLOCK)
• No	real	values	are	involved

• Very	fast
• Require	not	so	much	coding	effort
⇒Virtual	iteration

• Require	too	much	coding	effort
⇒Explicit	identification	of	iteration	boundary

21



Identification	of	iteration	boundaries

• Identify	the	start	&	end	of	an	iteration
• Remove	the	need	for	pattern	recognition
• Allow	the	parameter	server	to	transition	to	more	
efficient	operation	after	1st iteration
• Involve	some	overheads

• Initialization	&	1st iteration	are	not	iterative-ness	
specialized

22



Exploiting	access	information

• Data	placement	across	machines
• Data	placement	inside	a	machine
• Static	per-thread	caches
• Efficient	data	structures
• Prefetching

23



Data	placement	across	machines

• If	parameters	are	co-located	with	computation	that	
use	them
• Communication	demands		&	latency	can	be	reduced

• Accessing	of	each	input	data
• Involve	only	a	subset	of	the	parameters

• Accessing	of	parameters	by	different	workers
• With	different	frequencies

24



Data	placement	inside	a	machine

• Modern	multi-core	machines
• Multiple	sockets
• Multiple	memory	NUMA	zones

• Memory	access	speed	depending	on	“distance”
• Knowledge	of	access	sequences

• Co-locate	worker	threads	&	data	
• They	access	frequently	to	the	same	NUMA	memory	
zone	

25



Static	per-thread	caches

• Per-worker-thread	caching
• Contention	between	worker	threads
• Access	to	remote	NUMA	memory	zone

• Employing	a	static	cache	policy
• The	best	set	of	entries	to	be	cached
• Never	evicts	them

26



Efficient	data	structures

• Knowledge	of	access	pattern
• Knowledge	of	full	set	of	entries

• More	efficient,	less	general	data	structure
• Reducing	marshaling	overhead	by	eliminating	the	
need	to	extract	and	marshal	each	value	one-by-one	

27



Prefetching

• Each	worker	thread	must	use	updated	value	after	
each	CLOCK	(BSP)
• Prefetching	can	help	mask	the	high	latency
• Knowing	access	pattern	maximize	the	potential	
value	of	prefetching
• Constructing	large	batch	prefetch requests	once	
and	using	them	each	iteration	is	more	efficient

28



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

29



Collaborative	Filtering	

30

user1 user2 user3 user4 user5
item1 5 3 2

item2 4 4 2 1

item3 3 5 3 4 3

item4 3 1

item5 1 2 3 ? 3

• Commonly	used	in	recommender	systems
• e.g.	recommending	movies	to	users	on	Netflix	



Collaborative	Filtering	

31

×items

users

Factorize	X	to	Q	&	P

(partly	filled	matrix)



Collaborative	Filtering	

32

×

item	i

user		u

:	Estimate:		User	u’s	rating	of	item	i



SGD	for	CF

33

Optimize	parameters

Update	parameters

Objective	function



SGD	for	CF

34

Optimize	parameters

Update	parameters

Objective	function

Select	next	input	data	randomly



SGD	for	CF

35

Optimize	parameters

Update	parameters

Objective	function

Select	next	input	data	randomly	



Parameter	server	for	CF

36

×

Input	data Parameter	data

・・・

・・・



IterStore (parameter	server)

• Shard	of	the	master	version	of	data	in	its	master	store	(not	duplicated)

• App.	threads	access	the	process	cache	
• IterStore follows	BSP	model	
• Master	stores	are	devided into	M	partitions
• N	IterStore machines	manage	the	parameter	data 37



Parameter	data	in	IterStore (CF)

38

key row	(user-defined	data	type)
1
・
・

・
・

k
・
・

・
・

K

Manage	data	as	a	collection	of	rows	indexed	by	keys.

• Fixed	size
• Serializable
• Defined	with	

an	associative	aggregation	operation

Input	data
Parameter	data

rows	in	Machine-0



Data	placement	across	machine

39

key row
1
・
・

・
・

k
・
・

・
・

ALL

hash

ALL	rows

partition	id
(ex.	3)

machine	id
(ex.	2)

machine-0 machine-1 machine-2 machine-N

・・・

Find	machine	which	access	the	row	“k”

How	to	assign	master	data(row)	
to	each	machine

partition-3



Data	placement	inside	a	machine

40

machine

core core core core core core core core core core core core

NUMA	zone NUMA	zone NUMA	zone

process
cache

process
cache

process
cache

process
cache

process
cache

process
cache

master
shard

master
shard

master
shard

master
shard

master
shard

master
shard

process • C	CPU	cores
• Z		NUMA	zones
• 1	process	per	machine
• C	app	threads	per	process
• C/2	partitions



Contention	and	locality-aware	thread	caches

41

key row	(user-defined	data	type)
1
・
・

・
・

j
・
・

・
・

K
rows	in	a	Machine

access	probability
access	frequency

contention	probability
CP	bound

AF	threshold

thread-i
accesses	row-j

To	reduce	all	CP	to	below	CPB,
set	

and	if

make	thread-i cache	row-j	in	its	thread	cache	



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

42



Experimental	setup

• Hardware	Information
• 8-node	cluster	of	64-core	machines
• Each	node	has	four	2-die	2.1	GHz	16	core	AMD	Opteron	
6272	packages,	with	a	total	of	128GB	of	RAM	and	eight	
memory	NUMA	zones	

• The	nodes	run	Ubuntu	12.04	and	are	connected	via	an	
Infiniband network	interface

43



Application	benchmarks

• CF	
• Netflix	dataset
• 480k-by-18k	sparse	matrix	with	100m	known	elements

• TM
• Nytimes dataset
• 100m	tokens	in	300k	documents
• Vocabulary	size	of	100k
• Generate	1000	topics

• PR
• Twitter-graph	dataset
• 40m	nodes	and	1.5b	edges

44



IterStore setup

• One	application	process	on	each	machine
• Each	machine	creates	64	computation	threads
• Each	machine	is	linked	to	one	instance	of	IterStore
library	with	32	partitions
• Assume	each	machine	has	enough	memory	to	not	
need	replacement	in	its	process	cache

45



Overall	performance

46



Optimization	effectiveness	break	down

47



Contention	and	locality-aware	caching

48

IterStore’s static	thread-caching	policy	vs	LRU(Least	Recently	Used)	policy



Pipelined	prefetching

49



Inaccurate	information

50



Comparison	w/	single	thread	baselines

51



Outline

1. Introduction
2. Iterative	ML	and	systems
3. Exploiting	iterative-ness	for	performance
4. Implementation
5. Evaluation
6. Conclusion

52



Conclusion

• Many	ML	applications	make	the	same	pattern	of	
read	and	update	accesses	each	iteration.
• The	pattern	can	be	exploited	in	parallel	ML	
computations.
• Parameter	server	can	specialize

• Data	structures
• Data	placement
• Caching
• Prefetching	policies

• Experiments	show	the	exploitation	of	iterative-ness	
reduce	per-iteration	execution	times	by	33-98%

53


