The Lovasz extension

 $f^-: [0,1]^V o \mathbb{R}_{\geq 0}$ of a submodular function f is given by: $f^-(\mathbf{x}) = \mathbb{E}_{ heta \in \mathcal{U}(0,1)}[f(\{i: x_i \geq heta\})]$ $f^-(\mathbf{x}) = \int_{ heta \in \mathcal{U}(0,1)} heta f(\{i: x_i \geq heta\})$

Continuous extension of submodular function

• Properties:

1.
$$f^-(\mathbf{1}_S) = f(S)$$
 for all $S \subseteq V$
 $\circ \mathbf{1}_S(x) = 1$ if $x \in A; 0$ if $x \notin A$
2. f^- is convex $\Rightarrow \mathbb{E}[f(A)] \ge f(\mathbb{E}[A])$ (Jensen's inequality)
3. $f^-(c \cdot \mathbf{x}) \ge c \cdot f^-(\mathbf{x})$ for any $c \in [0, 1]$

These properties give the following lemma:

Lemma 1.

When:

- Let S be a random set
- suppose that $\mathbb{E}[\mathbf{1}_S] = c \cdot \mathbf{p}$ (for $c \in [0,1]$).

Then: $\mathbb{E}[f(S)] \geq c \cdot f^-(p).$

Proof.

 $\mathbb{E}[f(S)] =_1 \mathbb{E}[f^-(\mathbf{1}_S)] \geq_2 f^-(\mathbb{E}[\mathbf{1}_S]) = f^-(c \cdot \mathbf{p}) \geq_3 c \cdot f^-(\mathbf{p}).$

Property of Greedy Algorithm

Lemma 2.

When:

- Let $A\subseteq V$ and $B\subseteq V$ be two disjoint subsets of V
- For each element $e \in B$, $extsf{GREEDY}(A \cup \{e\}) = extsf{GREEDY}(A)$

Then: $\operatorname{GREEDY}(A \cup B) = \operatorname{GREEDY}(A)$.

Proof.

Suppose for contradiction that $GREEDY(A \cup B) \neq GREEDY(A)$. This means $GREEDY(A \cup B)$ contains an element of B. Let e be the first element of B which is selected by $GREEDY(A \cup B)$. Then $GREEDY(A \cup B)$ will start from the input $A \cup \{e\}$, which contradicts the fact that $GREEDY(A \cup \{e\}) = GREEDY(A)$.

Preliminaries

Hereditary Constraints

if some set is in \mathcal{I} , all of its subsets are in \mathcal{I} .

α -approximation

- submodular function subjects to hereditary constraint $\mathcal{I}\subseteq 2^V$
- with any subset $V' \subseteq V$ the algorithm produces a solution $S \subseteq V'$ with $S \in \mathcal{I}$
- $f(S) \geq lpha \cdot f(\operatorname{OPT})$, where $\operatorname{OPT} \in \mathcal{I}$ is any feasible subset of V'

Why RandGreeDi is $\frac{\alpha}{2}$ -approximation?

Fix $\langle V, \mathcal{I}, f
angle$

- V is input of RandGreeDi
- $\mathcal{I} \subseteq 2^V$ is hereditary constraint
- $f^-: [0,1]^V o \mathbb{R}_{\geq 0}$ is non-negative, monotone submodular function

Suppose

- Greedy is α -approximation, ALG is β -approximation
- $\operatorname{OPT} = \operatorname{argmax}_{A \in \mathcal{I}} f(A)$: a feasible set maximizing f

Let

- $\mathcal{V}(1/m)$ denote the distribution over random subsets of V, where each element is included independently with probability 1/m.
- $\mathbf{p} \in [0,1]^n$ be the following vector.

For each element $e \in V$, we have

$$p_e = egin{cases} \Pr_{A \sim \mathcal{V}(1/m)}[e \in \texttt{GREEDY}(A \cup \{e\}) & ext{ if } e \in ext{OPT} \ 0 & ext{ otherwise} \end{cases}$$

Lemma 3.

For each machine $i, \mathbb{E}[f(S_i)] \geq lpha \cdot f^-(\mathbf{1}_{\mathrm{OPT}} - \mathbf{p}).$

Proof.

Let V_i denote the set of elements assigned to machine i. Let $O_i = \{e \in \operatorname{OPT} : e \notin \texttt{GREEDY}(V_i \cup \{e\})\}.$

Apply Lemma 2 with $A = V_i$ and $B = Oi \setminus Vi$, then

$$\mathtt{GREEDY}(V_i) = \mathtt{GREEDY}(V_i \cup O_i) = S_i$$

Since $\mathrm{OPT}\in\mathcal{I}$ and \mathcal{I} is hereditary, $O_i\in\mathcal{I}$. GREEDY is α -approximation, then

$$f(S_i) \geq lpha \cdot f(O_i)$$

Since the distribution of V_i is the same as $\mathcal{V}(1/m)$, for each element $e \in \mathrm{OPT}$:

$$\Pr[e \in O_i] = 1 - \Pr[e
ot \in O_i] = 1 - p_e$$
 $\mathbb{E}[\mathbf{1}_{O_i}] = \mathbf{1}_{\mathrm{OPT}} - \mathbf{p}$

With Lemma 1, we obtain

$$\mathbb{E}[f(S_i)] \geq lpha \cdot \mathbb{E}[f(O_i)] \geq lpha \cdot f^-(\mathbf{1}_{ ext{OPT}} - \mathbf{p})$$

Lemma 4. $\mathbb{E}[f(\operatorname{ALG}(S))] \geq eta \cdot f^-(\mathbf{p}).$

Proof.

- $S = igcup_i \mathtt{GREEDY}(V_i)$
- $\operatorname{OPT} \in \mathcal{I}$ and \mathcal{I} is hereditary, $S \cap \operatorname{OPT} \in \mathcal{I}$.
- ALG is β -approximation

We have:

$$f(\operatorname{ALG}(S)) \geq eta \cdot f(S \cap \operatorname{OPT})$$

Consider an element $e \in \operatorname{OPT}$. For each machine i, we have

$$egin{aligned} &\Pr[e \in S | e ext{ is assigned to machine } i] \ &= \Pr[e \in \texttt{GREEDY}(V_i) | e \in V_i] \ &= \Pr_{A \sim \mathcal{V}(1/m)}[e \in \texttt{GREEDY}(A) | e \in A] \ &= \Pr_{B \sim \mathcal{V}(1/m)}[e \in \texttt{GREEDY}(B \cup \{e\})] \ &= p_e \end{aligned}$$

Therefore,

$$\Pr[e \in S \cap \operatorname{OPT}] = p_e$$
 $\mathbb{E}[\mathbf{1}_{S \cap \operatorname{OPT}}] = \mathbf{p}$

With Lemma 1,

 $\mathbb{E}[f(\operatorname{ALG}(S))] \geq eta \cdot \mathbb{E}[f(S \cap \operatorname{OPT})] \geq eta \cdot f^-(\mathbf{p})$

Theorem. RandGreeDi is an $\frac{\alpha\beta}{\alpha+\beta}$ -approximation alogrithm.

Proof.

- $S_i = \texttt{GREEDY}(V_i)$
- $S = \bigcup_i S_i$
- $T = \operatorname{ALG}(S)$

The output D produced by RandGreeDi satisfies:

- $\bullet \,\, f(D) \geq \max_i(f(S_i))$
- $f(D) \ge f(T)$

From Lemma 3, 4:

- $\mathbb{E}[f(D)] \geq lpha \cdot f^{-}(\mathbf{1}_{\mathrm{OPT}} \mathbf{p})$
- $\mathbb{E}[f(D)] \geq eta \cdot f^-(\mathbf{p})$

Then, with the fact that f^- is convex and $f^-(c \cdot \mathbf{x}) \geq cf^-(\mathbf{x})$ for any $c \in [0,1]$:

$$egin{aligned} &(eta+lpha)\mathbb{E}[f(D)]\geqlphaeta(f^-(p)+f^-(\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}))\ &\geqlphaeta\cdot f^-(\mathbf{1}_{\mathrm{OPT}})\ &=lphaeta\cdot f(\mathrm{OPT}) \end{aligned}$$