The Lovasz extension

$f^{-}:[0,1]^{V} \rightarrow \mathbb{R}_{\geq 0}$ of a submodular function f is given by:

$$
\begin{aligned}
f^{-}(\mathbf{x}) & =\mathbb{E}_{\theta \in \mathcal{U}(0,1)}\left[f\left(\left\{i: x_{i} \geq \theta\right\}\right)\right] \\
f^{-}(\mathbf{x}) & =\int_{\theta \in \mathcal{U}(0,1)} \theta f\left(\left\{i: x_{i} \geq \theta\right\}\right)
\end{aligned}
$$

- Continuous extension of submodular function
- Properties:

1. $f^{-}\left(\mathbf{1}_{S}\right)=f(S)$ for all $S \subseteq V$

$$
\circ \mathbf{1}_{S}(x)=1 \text { if } x \in A ; 0 \text { if } x \notin A
$$

2. f^{-}is convex $\Rightarrow \mathbb{E}[f(A)] \geq f(\mathbb{E}[A])$ (Jensen's inequality)
3. $f^{-}(c \cdot \mathbf{x}) \geq c \cdot f^{-}(\mathbf{x})$ for any $c \in[0,1]$

These properties give the following lemma:

Lemma 1.

When:

- Let S be a random set
- suppose that $\mathbb{E}\left[\mathbf{1}_{S}\right]=c \cdot \mathbf{p}$ (for $c \in[0,1]$).

Then: $\mathbb{E}[f(S)] \geq c \cdot f^{-}(p)$.
Proof.

$$
\mathbb{E}[f(S)]={ }_{1} \mathbb{E}\left[f^{-}\left(\mathbf{1}_{S}\right)\right] \geq_{2} f^{-}\left(\mathbb{E}\left[\mathbf{1}_{S}\right]\right)=f^{-}(c \cdot \mathbf{p}) \geq_{3} c \cdot f^{-}(\mathbf{p})
$$

Property of Greedy Algorithm

Lemma 2.

When:

- Let $A \subseteq V$ and $B \subseteq V$ be two disjoint subsets of V
- For each element $e \in B, \operatorname{GREEDY}(A \cup\{e\})=\operatorname{GREEDY}(A)$

Then: $\operatorname{GREEDY}(A \cup B)=\operatorname{GREEDY}(A)$.
Proof.
Suppose for contradiction that $\operatorname{GREEDY}(A \cup B) \neq \operatorname{GREEDY}(A)$. This means GREEDY $(A \cup B)$ contains an element of B.
Let e be the first element of B which is selected by $\operatorname{GREEDY}(A \cup B)$.
Then $\operatorname{GREEDY}(A \cup B)$ will start from the input $A \cup\{e\}$, which contradicts the fact that $\operatorname{GREEDY}(A \cup\{e\})=\operatorname{GREEDY}(A)$.

Preliminaries

Hereditary Constraints

if some set is in \mathcal{I}, all of its subsets are in \mathcal{I}.
α-approximation

- submodular function subjects to hereditary constraint $\mathcal{I} \subseteq 2^{V}$
- with any subset $V^{\prime} \subseteq V$ the algorithm produces a solution $S \subseteq V^{\prime}$ with $S \in \mathcal{I}$
- $f(S) \geq \alpha \cdot f(\mathrm{OPT})$, where $\mathrm{OPT} \in \mathcal{I}$ is any feasible subset of V^{\prime}

Why RandGreeDi is $\frac{\alpha}{2}$-approximation?

$\operatorname{Fix}\langle V, \mathcal{I}, f\rangle$

- V is input of RandGreeDi
- $\mathcal{I} \subseteq 2^{V}$ is hereditary constraint
- $f^{-}:[0,1]^{V} \rightarrow \mathbb{R}_{\geq 0}$ is non-negative, monotone submodular function

Suppose

- Greedy is α-approximation, ALG is β-approximation
- $\mathrm{OPT}=\operatorname{argmax}_{A \in \mathcal{I}} f(A)$: a feasible set maximizing f
- $\mathcal{V}(1 / m)$ denote the distribution over random subsets of V, where each element is included independently with probability $1 / m$.
- $\mathbf{p} \in[0,1]^{n}$ be the following vector.

For each element $e \in V$, we have

$$
p_{e}=\left\{\begin{array}{lc}
\operatorname{Pr}_{A \sim \mathcal{V}(1 / m)}[e \in \operatorname{GREEDY}(A \cup\{e\}) & \text { if } e \in \mathrm{OPT} \\
0 & \text { otherwise }
\end{array}\right.
$$

Lemma 3.
For each machine $i, \mathbb{E}\left[f\left(S_{i}\right)\right] \geq \alpha \cdot f^{-}\left(\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}\right)$.
Proof.
Let V_{i} denote the set of elements assigned to machine i.
Let $O_{i}=\left\{e \in \mathrm{OPT}: e \notin \operatorname{GREEDY}\left(V_{i} \cup\{e\}\right)\right\}$.
Apply Lemma 2 with $A=V_{i}$ and $B=O i \backslash V i$, then

$$
\operatorname{GREEDY}\left(V_{i}\right)=\operatorname{GREEDY}\left(V_{i} \cup O_{i}\right)=S_{i}
$$

Since $\mathrm{OPT} \in \mathcal{I}$ and \mathcal{I} is hereditary, $O_{i} \in \mathcal{I}$. GREEDY is $\alpha-$ approximation, then

$$
f\left(S_{i}\right) \geq \alpha \cdot f\left(O_{i}\right)
$$

Since the distribution of V_{i} is the same as $\mathcal{V}(1 / m)$, for each element $e \in$ OPT:

$$
\begin{gathered}
\operatorname{Pr}\left[e \in O_{i}\right]=1-\operatorname{Pr}\left[e \notin O_{i}\right]=1-p_{e} \\
\mathbb{E}\left[\mathbf{1}_{O_{i}}\right]=\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}
\end{gathered}
$$

With Lemma 1, we obtain

$$
\mathbb{E}\left[f\left(S_{i}\right)\right] \geq \alpha \cdot \mathbb{E}\left[f\left(O_{i}\right)\right] \geq \alpha \cdot f^{-}\left(\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}\right)
$$

Lemma 4.
$\mathbb{E}[f(\operatorname{ALG}(S))] \geq \beta \cdot f^{-}(\mathbf{p})$.
Proof.

- $S=\bigcup_{i} \operatorname{GREEDY}\left(V_{i}\right)$
- $\mathrm{OPT} \in \mathcal{I}$ and \mathcal{I} is hereditary, $S \cap \mathrm{OPT} \in \mathcal{I}$.
- ALG is β-approximation

We have:

$$
f(\operatorname{ALG}(S)) \geq \beta \cdot f(S \cap \mathrm{OPT})
$$

Consider an element $e \in \mathrm{OPT}$. For each machine i, we have

$$
\begin{aligned}
& \operatorname{Pr}[e \in S \mid e \text { is assigned to machine } i] \\
& =\operatorname{Pr}\left[e \in \operatorname{GREEDY}\left(V_{i}\right) \mid e \in V_{i}\right] \\
& =\operatorname{Pr}_{A \sim \mathcal{V}(1 / m)}[e \in \operatorname{GREEDY}(A) \mid e \in A] \\
& =\operatorname{Pr}_{B \sim \mathcal{V}(1 / m)}[e \in \operatorname{GREEDY}(B \cup\{e\})] \\
& =p_{e}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\operatorname{Pr}[e \in S \cap \mathrm{OPT}]=p_{e} \\
\mathbb{E}\left[\mathbf{1}_{S \cap \mathrm{OPT}}\right]=\mathbf{p}
\end{gathered}
$$

With Lemma 1,

$$
\mathbb{E}[f(\operatorname{ALG}(S))] \geq \beta \cdot \mathbb{E}[f(S \cap \mathrm{OPT})] \geq \beta \cdot f^{-}(\mathbf{p})
$$

Theorem. RandGreeDi is an $\frac{\alpha \beta}{\alpha+\beta}$-approximation alogrithm.

Proof.

- $S_{i}=\operatorname{GREEDY}\left(V_{i}\right)$
- $S=\bigcup_{i} S_{i}$
- $T=\operatorname{ALG}(S)$

The output D produced by RandGreeDi satisfies:

- $f(D) \geq \max _{i}\left(f\left(S_{i}\right)\right)$
- $f(D) \geq f(T)$

From Lemma 3, 4:

- $\mathbb{E}[f(D)] \geq \alpha \cdot f^{-}\left(\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}\right)$
- $\mathbb{E}[f(D)] \geq \beta \cdot f^{-}(\mathbf{p})$

Then, with the fact that f^{-}is convex and $f^{-}(c \cdot \mathbf{x}) \geq c f^{-}(\mathbf{x})$ for any $c \in[0,1]$:

$$
\begin{aligned}
(\beta+\alpha) \mathbb{E}[f(D)] & \geq \alpha \beta\left(f^{-}(p)+f^{-}\left(\mathbf{1}_{\mathrm{OPT}}-\mathbf{p}\right)\right) \\
& \geq \alpha \beta \cdot f^{-}\left(\mathbf{1}_{\mathrm{OPT}}\right) \\
& =\alpha \beta \cdot f(\mathrm{OPT})
\end{aligned}
$$

