
The Lovasz extension
f : [0, 1] →R  of a submodular function f  is given by:

f (x) =E [f({i : x ≥ θ})]

f (x) = θf({i : x ≥ θ})

Continuous extension of submodular function
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Properties:

1. f (1 ) = f(S) for all S ⊆ V

1 (x) = 1 if x ∈ A; 0 if x ∉ A

2. f  is convex ⇒ E[f(A)] ≥ f(E[A]) (Jensen's inequality)

3. f (c ⋅ x) ≥ c ⋅ f (x) for any c ∈ [0, 1]

These properties give the following lemma:

Lemma 1.

When:

Let S be a random set

suppose that E[1 ] = c ⋅ p (for c ∈ [0, 1]).

Then: E[f(S)] ≥ c ⋅ f (p).

Proof.

E[f(S)] = E[f (1 )] ≥ f (E[1 ]) = f (c ⋅ p) ≥ c ⋅ f (p).

−
S

S

−

− −

S

−

1
−

S 2
−

S
−

3
−



Property of Greedy Algorithm
Lemma 2.

When:

Let A ⊆ V  and B ⊆ V  be two disjoint subsets of V

For each element e ∈ B, GREEDY(A ∪ {e}) = GREEDY(A)

Then: GREEDY(A ∪B) = GREEDY(A).

Proof.

Suppose for contradiction that GREEDY(A ∪B) ≠ GREEDY(A).
This means GREEDY(A ∪B) contains an element of B.

Let e be the first element of B which is selected by 
GREEDY(A ∪B).
Then GREEDY(A ∪B) will start from the input A ∪ {e}, which
contradicts the fact that GREEDY(A ∪ {e}) = GREEDY(A).



Preliminaries

Hereditary Constraints

if some set is in I , all of its subsets are in I .

α‑approximation

submodular function subjects to hereditary constraint I ⊆ 2
with any subset V ⊆ V  the algorithm produces a solution 
S ⊆ V  with S ∈ I

f(S) ≥ α ⋅ f(OPT), where OPT ∈ I  is any feasible subset
of V
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Why RandGreeDi is ‑approximation?

Fix ⟨V , I, f⟩

V  is input of RandGreeDi

I ⊆ 2  is hereditary constraint

f : [0, 1] →R  is non‑negative, monotone submodular
function

Suppose

Greedy is α‑approximation, ALG is β‑approximation

OPT =  argmax f(A): a feasible set maximizing f
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Let

V(1/m) denote the distribution over random subsets of V ,

where each element is included independently with probability 
1/m.

p ∈ [0, 1]  be the following vector.

For each element e ∈ V , we have

p =

n

e {Pr [e ∈ GREEDY(A ∪ {e})A∼V(1/m)

0
if e ∈ OPT
otherwise



Lemma 3.
For each machine i, E[f(S )] ≥ α ⋅ f (1 − p).

Proof.

Let V  denote the set of elements assigned to machine i.
Let O = {e ∈ OPT : e ∉ GREEDY(V ∪ {e})}.

Apply Lemma 2 with A = V  and B = Oi \V i, then

GREEDY(V ) = GREEDY(V ∪O ) = S

Since OPT ∈ I  and I  is hereditary, O ∈ I . GREEDY is α‑
approximation, then

f(S ) ≥ α ⋅ f(O )
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Since the distribution of V  is the same as V(1/m), for each
element e ∈ OPT:

Pr[e ∈ O ] = 1 − Pr[e ∉ O ] = 1 − p

E[1 ] =1 − p

With Lemma 1, we obtain

E[f(S )] ≥ α ⋅ E[f(O )] ≥ α ⋅ f (1 − p)
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Lemma 4.
E[f(ALG(S))] ≥ β ⋅ f (p).

Proof.

S = GREEDY(V )

OPT ∈ I  and I  is hereditary, S ∩ OPT ∈ I .

ALG is β‑approximation

We have:

f(ALG(S)) ≥ β ⋅ f(S ∩ OPT)
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Consider an element e ∈ OPT. For each machine i, we have

Therefore,

Pr[e ∈ S ∩ OPT] = p

E[1 ] = p

With Lemma 1,

E[f(ALG(S))] ≥ β ⋅ E[f(S ∩ OPT)] ≥ β ⋅ f (p)

Pr[e ∈ S∣e is assigned to machine i]
= Pr[e ∈ GREEDY(V )∣e ∈ V ]i i

=Pr [e ∈ GREEDY(A)∣e ∈ A]A∼V(1/m)

=Pr [e ∈ GREEDY(B ∪ {e})]B∼V(1/m)

= pe
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Theorem. RandGreeDi is an ‑approximation alogrithm.

Proof.

S = GREEDY(V )

S = S

T = ALG(S)

The output D produced by RandGreeDi satisfies:

f(D) ≥ max (f(S ))

f(D) ≥ f(T )
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From Lemma 3, 4:

E[f(D)] ≥ α ⋅ f (1 − p)
E[f(D)] ≥ β ⋅ f (p)

Then, with the fact that f  is convex and f (c ⋅ x) ≥ cf (x) for
any c ∈ [0, 1]:
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(β + α)E[f(D)] ≥ αβ(f (p) + f (1 − p))− −
OPT

≥ αβ ⋅ f (1 )−
OPT

= αβ ⋅ f(OPT)


