
vDNN: Virtualized Deep Neural Networks for
Scalable, Memory-Efficient Neural Network Design

Minsoo Rhu Natalia Gimelshein Jason Clemons Arslan Zulfiqar Stephen W. Keckler
NVIDIA

Santa Clara, CA 95050
{mrhu, ngimelshein, jclemons, azulfiqar, skeckler}@nvidia.com

Abstract—The most widely used machine learning frame-
works require users to carefully tune their memory usage so that
the deep neural network (DNN) fits into the DRAM capacity of a
GPU. This restriction hampers a researcher’s flexibility to study
different machine learning algorithms, forcing them to either use
a less desirable network architecture or parallelize the processing
across multiple GPUs. We propose a runtime memory manager
that virtualizes the memory usage of DNNs such that both GPU
and CPU memory can simultaneously be utilized for training
larger DNNs. Our virtualized DNN (vDNN) reduces the average
GPU memory usage of AlexNet by up to 89%, OverFeat by
91%, and GoogLeNet by 95%, a significant reduction in memory
requirements of DNNs. Similar experiments on VGG-16, one of
the deepest and memory hungry DNNs to date, demonstrate the
memory-efficiency of our proposal. vDNN enables VGG-16 with
batch size 256 (requiring 28 GB of memory) to be trained on a
single NVIDIA Titan X GPU card containing 12 GB of memory,
with 18% performance loss compared to a hypothetical, oracular
GPU with enough memory to hold the entire DNN.

I. INTRODUCTION

Deep neural networks (DNNs) have recently been success-
fully deployed in various application domains such as com-
puter vision [1], speech recognition [2], and natural language
processing [3] thanks to their superior performance compared
to traditional state-of-the-art approaches. Such proliferation of
deep learning techniques has led several software frameworks
to be developed in recent years to analyze and facilitate the
design of neural networks [4, 5, 6, 7]. The list of available
frameworks continue to expand with developers constantly
adding more features and improving computational efficiency
to foster research in the area of deep learning. Due to the
tremendous compute horsepower offered by graphics process-
ing units (GPUs), these frameworks provide strong backend
support for GPU software libraries such as cuDNN [8]. In
fact, almost every group today involved in training neural
networks is deploying GPUs for accelerated deep learning [9].

While these popular machine learning (ML) frameworks
facilitate the study of DNNs, a major limitation of the use
of these frameworks is that the DRAM capacity limits of the
GPU(s) in the system eventually limit the size the of the DNN
that can be trained (Section II-C). To work around the mem-
ory capacity bottleneck [10, 11], ML practitioners must either
use less desirable DNN architectures (e.g., smaller number of

Published as a conference paper at the 49th IEEE/ACM International
Symposium on Microarchitecture (MICRO-49), 2016.

0%

20%

40%

60%

80%

100%

0

6000

12000

18000

24000

30000

M
ax

 la
ye

r-
w

is
e

 u
sa

ge

M
e

m
o

ry
 a

llo
ca

ti
o

n
 s

iz
e

 (
M

B
)

Baseline

Maximum usage (%)

Fig. 1: GPU memory usage when using the baseline, network-wide
allocation policy (left axis). The right axis shows the maximum
fraction of this baseline allocation actually utilized when traversing
through the network layer-wise. The numbers next to the names of
each network refer to the batch size throughout this paper. Studied
DNNs are detailed in Section IV-C.

layers, smaller batch sizes, less performant but more memory-
efficient convolutional algorithms) or parallelize the DNN
across multiple GPUs [12]. Figure 1 highlights how the
memory consumption trends of the ImageNet [13] winning
DNNs have evolved over time. AlexNet [1], for instance,
only contained 5 convolutional layers with 2 fully-connected
layers and required a “mere” 1.1 GB of memory allocation for
training, which is well below the 12 GB memory capacity of
the state-of-the-art NVIDIA Titan X. The more recent VGG-
16 [14], on the other hand, contains 16 convolutional layers
and 3 fully-connected layers, incurring a total of 28 GB of
memory usage for batch size 256. Because a single GPU can
only accommodate a batch size of 64 for VGG-16, training
with batch 256 requires parallelization across multiple GPUs
or the network must be sequentially executed multiple times
with smaller batches. With the most recent ImageNet win-
ning network adopting more than a hundred convolutional
layers [15], the trend in deep learning is to move towards
larger and deeper network designs [14, 16, 17, 18]. As a
result, alleviating the rigid physical memory limitations of
GPUs is becoming increasingly important.

In this paper, we propose virtualized Deep Neural Network
(vDNN), a runtime memory management solution that virtu-
alizes the memory usage of deep neural networks across both
GPU and CPU memories. Our vDNN allows ML practitioners
to deploy larger and deeper networks beyond the physical

ar
X

iv
:1

60
2.

08
12

4v
3

 [
cs

.D
C

]
 2

8
Ju

l 2
01

6

capacity of available GPUs, enabling them to focus more
on their algorithms while the system architecture and run-
time system transparently manage the allocation, placement,
movement, and release of their data. The motivation behind
vDNN is based on the following three key observations:
1) DNNs trained via stochastic gradient-descent (SGD) are
designed and structured with multiple layers [19]; 2) the
training of these neural networks involves a series of layer-
wise computations, the order of which is statically fixed and
repeated for millions to billions of iterations throughout the
entire training process; and 3) even though the GPU can, at
any given time, only process a single layer’s computation (due
to the layer-wise computational characteristics of SGD-based
DNN training), popular ML frameworks adopt a network-wide
memory allocation policy because DNN training requires the
intermediate feature maps of all the layers in the network
to be backed up in GPU memory for gradient updates
(Section II-C). In other words, existing memory management
schemes overprovision the memory allocations to accommo-
date the usage of the entire network layers, even though the
GPU is only using a subset of this allocation for the layer-wise
requirements. We observe that such memory underutilization
issue becomes more severe for deeper networks, leading
to 53% to 79% of allocated memory not being used at
all at any given time (Figure 1). The goal of vDNN is to
conservatively allocate GPU memory for the immediate usage
of a given layer’s computation so that the maximum and
average memory usage is drastically reduced, allowing re-
searchers to train larger networks. To achieve this goal, vDNN
exploits the data dependencies of allocated data structures,
particularly the intermediate feature maps that account for the
majority of memory usage (Section II-C), and either releases
or moves these intermediate data between GPU and CPU
memory. Specifically, vDNN either 1) aggressively releases
these feature maps from the GPU memory if no further
reuse exists, or 2) offloads (and later prefetches) to (from)
CPU memory if further reuse does exist but is not immedi-
ately required. By exploiting the inter-layer memory access
and reuse patterns of DNNs, our vDNN memory manager
intelligently overlaps the normal DNN computations with
the offload/prefetch/release operations, effectively virtualizing
the memory usage of DNNs with little to no performance
loss. The operations of vDNN are completely transparent to
programmers and enable them to train larger and deeper
neural networks that consume memory well beyond the limits
of physical memory of GPUs today. The key contributions of
our work are:

• This work is the first to present a detailed, quantitative
analysis on GPU-based DNN training, as opposed to re-
cent literature targeting energy-efficient accelerators for
DNN inference [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

• To the best of our knowledge, our work is the first that
provides an in-depth characterization study on the mem-
ory access characteristics of DNNs and their effect on the
GPU memory system from an architectural perspective.

• This work identifies the key limitations of current ML

frameworks’ memory management policies as they re-
quire the network-wide memory usage of the target DNN
to monolithically fit within the physical capacity of the
GPU. We demonstrate this by showing that existing
frameworks fail in training 6 out of the 10 studied DNNs
when their memory allocation size (14 GB to 67 GB)
exceeds the GPU memory budget (12 GB in NVIDIA’s
Titan X).

• We propose, implement, and evaluate a runtime memory
manager called vDNN that virtualizes the memory usage
of neural networks across CPU and GPU memories. Our
vDNN solution reduces the average GPU memory usage
of these 6 memory hungry networks by 73% to 98%,
allowing them to be trained on a single Titan X card.
Compared to a hypothetical, oracular GPU containing
enough memory to hold the entire DNN, vDNN incurs
1% to 18% performance overhead.

II. BACKGROUND AND MOTIVATION

This section provides an overview of modern DNNs, the
memory management policies of current ML frameworks, and
their key limitations that motivate this work.

A. DNN Architecture

Convolutional neural networks are one of the most popular
ML algorithms for high accuracy computer vision tasks.
While other types of networks are also gaining tractions
(e.g., recurrent neural networks for natural language pro-
cessing), all of these DNNs are trained using a backward
propagation algorithm [19] via stochastic gradient-descent
(SGD). For clarity of exposition and owing to their state-of-
the-art performance in the ImageNet competition, this paper
mainly focuses on the feedforward style convolutional neural
networks commonly seen in AlexNet [1], OverFeat [30],
GoogLeNet [17], and VGG [14]. However, the key intuitions
of our work are equally applicable to any neural network
that exhibits layer-wise computational characteristics and is
trained via SGD, detailed later in this section.

DNNs are designed using a combination of multiple types
of layers, which are broadly categorized as convolutional
layers (CONV), activation layers (ACTV), pooling layers
(POOL), and fully-connected layers (FC). A neural network is
structured as a sequence of multiple instances of these layers.
DNNs for computer vision tasks in particular are broadly
structured into the following two modules: 1) the feature
extraction layers that detect distinguishable features across
input images, and 2) the classification layers that analyze the
extracted features and classify the image into a given image
category. Feature extraction layers are generally designed
using CONV/ACTV/POOL layers and are positioned as the
initial part of the DNN. The classification layers are built up
using the FC layers and are found at the end of the DNN
computation sequence. The general trend in deep learning
is to design the network with a large number of feature
extraction layers so that a deep hierarchy of features are
trained for robust image classification [14, 15, 17].

6

Layer(1)

Layer Layer Layer Layer Layer Layer

dX dY

X Y

W

WS

Layer(2)

dX dY

X Y

W

WS

…

dX dY

X Y

W

WS

Layer(N)

dX dY

X Y

W

WS

Loss

Function Input

image

batch

Current layer

Fig. 2: Memory allocations required for linear networks using the
baseline memory manager (bold arrows). For inference, the sum of
all green (W) and red (X) arrows are allocated. For training, two
additional data structures for dX and dY are required: both are
sized to the maximum of all blue (dY) arrows and are reused while
traversing back the layers during backward propagation. An optional
temporary buffer, called workspace in cuDNN [8] (yellow arrow,
WS), is needed in certain convolutional algorithms. The workspace
buffer is sized with the maximum workspace requirement among all
layers and is reused during backward propagation.

B. DNN Training vs. Inference

A neural network needs to be trained before it can be
deployed for an inference or classification task. Training
entails learning and updating the weights of the layers of
a neural network by performing the operations of forward
and backward propagation algorithms [19]. The direction of
traversal, as well as the mathematical operations that must be
performed, differ for forward and backward propagation.

Forward Propagation. Forward propagation is performed
from the first (input) layer to the last (output) layer, whereas
backward propagation is performed in the opposite direction
(last to first layer), from right to left in Figure 2. Intuitively,
forward propagation traverses the network layer-wise and per-
forms the aforementioned feature extraction and classification
tasks on a given input, leading to an image classification. Dur-
ing forward propagation, each layer applies a mathematical
operation to its input feature maps (X) and stores the results
as output feature maps (Y). For linear feedforward DNNs,
the resulting Y of layer(n−1) is directly used as the input
X by layer(n) (Figure 2). The computation flow of forward
propagation is therefore a serialized process, as layer(n)
can initiate its layer’s operation only when the preceding
layer(n−1) is finished with its computation and forwarded its
output Y to layer(n)’s input X. Non-linear network topologies
can contain one-to-many (fork) and many-to-one (join) inter-
layer dependencies, but forward propagation still involves a
series of layer-wise computations as detailed in Figure 3. Note
that the GPU can only process a single layer’s computation at
any given time due to such inter-layer data dependencies. As
a result, the minimum, per layer memory allocations required
are determined by the layer’s input-output relationships and its
mathematical function1. For instance, a CONV layer using the

1 Popular activation functions (sigmoid/tanh/ReLU [1]) can be refactored
into an in-place algorithm using element-wise computation. Both Caffe
and Torch leverage this in-place memory optimization and only allocate
memory space for Y and dY for forward (Y) and backward (both Y and
dY) propagation [31]. This paper adopts this in-place optimization for both
baseline and vDNN for a conservative evaluation.

10

Layer(5)
Y

X

Layer(4)
Y

X

Layer(3)
Y

X

Layer(5)
Y

X

Layer(4)
Y

X

Layer(3)
Y

X

Layer(2)
Y

X

Layer(1)
Y

X

Layer(1)
Y

X

Layer(2)
Y

X

(a) (b)

Refcnt = 2

Refcnt = 1

Refcnt = 1

Refcnt = 1

Layer(1)’s output Y

is forked into the

input X of Layer(2)

and Layer(3)

The output Ys of

Layer(2) and Layer(4)

are joined as

Layer(5)’s input X

Fig. 3: (a) The computation graph and its inter-layer dependencies of
a GoogLeNet-style, non-linear feedforward network during forward
propagation. Refcnt refers to the number of consumer layers that
depends on the current, producer layer’s Y. The order in which the
GPU processes each layer’s forward computation is shown in (b),
from layer(1) to layer(5), highlighting the layer-wise computation
of DNN training. The producer-consumer relationship is reversed
during backward propagation.

most memory-efficient convolutional algorithm (e.g., implicit
GEMM in cuDNN [8]2) requires three data structures, the
input/output feature maps (X and Y) and the weights of
the layer (W) for forward propagation. Employing a fast-
fourier-transform (FFT) based convolution algorithm however
requires an additional, temporary workspace (WS) buffer to
manage transformed maps.

Backward Propagation. For DNNs that are not fully
trained, the inferred image category might be incorrect. As a
result, a loss function is used to derive the magnitude of the
inference error at the end of forward propagation. Specifically,
the gradient of the loss function is derived with respect to the
last layer(N)’s output:

∂Loss

∂Y(N)
(1)

The value in Equation 1 is forwarded to the last layer(N)

as its input gradient maps (dY), and the output gradient maps
(dX) are derived based on the chain rule [19]:

∂Loss

∂X(N)
=
∂Loss

∂Y(N)
·
∂Y(N)

∂X(N)
(2)

Because the output dX (∂Loss
∂X(N)

) is the product of the input

dY (∂Loss
∂Y(N)

) with ∂Y(N)

∂X(N)
, deriving the value of dX for layer(N)

generally requires memory for both its input/output gradient
maps (dY and dX) and also the input/output feature maps (X
and Y) for this layer. For linear networks, the calculated dX
of layer(N) is directly passed on to the preceding layer(N−1)

to be used as dY for layer(N−1)’s dX derivation (Figure 2).

2 cuDNN (version 4.0) provides six different convolutional algorithms.
Implicit GEMM requires the least memory allocation as no additional
workspace is needed. FFT-based convolutional algorithms on the other hand
incur larger memory allocations because of the additional data structures
required to store the feature maps transformed into frequency domain. More
details are available in [8, 32].

0%

20%

40%

60%

80%

100%

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

P
e

rc
e

n
ta

ge
 o

f
fe

at
u

re
 m

ap
s

G
P

U
 m

e
m

o
ry

 u
sa

ge
 (

M
B

)
Workspace

Gradient maps

Feature maps

Weights

Feature maps (%)

Fig. 4: Breakdown of GPU memory usage based on its functionality
(left axis). The right axis shows the fraction of allocated memory
consumed by feature maps.

This chain rule is similarly used to derive the gradients of the
weights to update the network model.

Similar to forward propagation, backward propagation is
also performed layer-wise to the respective incoming gradient
maps, dYs. Once backward propagation reaches the first layer,
the weights are adjusted using the weight gradients so that
the prediction error is reduced for the next classification
task. Hence, training a network involves both forward and
backward propagation, which are repeated for millions to
billions of iterations. Because of the stochastic nature of SGD-
based backward propagation, the network input is generally
batched with hundreds of images (e.g., 128 and 256 images
for best performing AlexNet and VGG-16), which increases
memory allocation size but helps the network model better
converge to an optimal solution.

C. Motivation: Scalable and Memory-Efficient DNN Design

To aid the design and deployment of neural networks, a va-
riety of ML frameworks have been developed in recent years,
including Caffe, Torch, Neon, TensorFlow, and Theano [9].
The rich set of features offered by these frameworks coupled
with their ability to accelerate DNN training and inference
using GPUs greatly simplifies the process of implementing
neural networks. Despite their flexibility, popular ML frame-
works suffer from severe limitations in the way they allocate
and manage memory.

To illustrate the shortcomings of ML frameworks in man-
aging memory, consider the example shown in Figure 2.
When training a DNN using existing ML frameworks, the
memory required across all of the layers of the network
must fit within the physical GPU memory capacity. The key
reason for this GPU-side, network-wide memory allocation
strategy is to reap performance benefits. More specifically,
page-migration based virtualization solutions that expose both
CPU and GPU memory for page allocations (regardless of
whether the virtualization feature is provided by future CUDA
runtime extensions or programming models such as OpenMP
(4.0) [33]) must transfer pages via PCIe, which involves
several latency-intensive processes such as CPU interrupts for
system calls, page-table updates, TLB updates/shootdowns,
and the actual page transfer. Prior work [34] reported that

0

50

100

150

200

250

300

350

400

0

1000

2000

3000

4000

5000

6000

7000

C
O

N
V

_0
1

C
O

N
V

_0
2

C
O

N
V

_0
3

C
O

N
V

_0
4

C
O

N
V

_0
5

C
O

N
V

_0
6

C
O

N
V

_0
7

C
O

N
V

_0
8

C
O

N
V

_0
9

C
O

N
V

_1
0

C
O

N
V

_1
1

C
O

N
V

_1
2

C
O

N
V

_1
3

C
O

N
V

_1
4

C
O

N
V

_1
5

C
O

N
V

_1
6

FC
_0

1

FC
_0

2

FC
_0

3

Feature extraction Classifier

W
e

ig
h

ts
 (

M
B

)

Fe
at

u
re

 m
ap

s
an

d
 w

o
rk

sp
ac

e
 (

M
B

)

Workspace

Feature maps

Weights

Fig. 5: Per layer memory usage of VGG-16 (256). For brevity, we
only show the memory usage during forward propagation and for
layers that contain weights (CONV and FC). Left axis corresponds
to the sum of workspace and per layer input/output feature maps.
The right axis corresponds to the memory consumption for storing
weights. The memory usage during backward propagation follows
similar trends to this figure.

the latency to page-in a single 4 KB page to the GPU is
20 to 50 µs, meaning the PCIe bandwidth utilization using
page-migration is 80 to 200 MB/sec, as opposed to the DMA
initiated cudaMemcpy that achieves an average 12.8 GB/sec
out of the 16 GB/sec maximum PCIe bandwidth. As the
amount of data to be paged in/out via PCIe can be 10s of
GBs for very deep networks (Figure 15), ML frameworks
will suffer from huge performance penalties when relying on
page-migration for training DNNs.

Note that because of the layer-wise gradient update rule
of the backward propagation algorithm (property of the chain
rule, Section II-B), each layer’s feature maps (X) are later
reused during its own backward propagation pass. This means
that all Xs must still be available in GPU memory until
backward computation is completed. Figure 4 shows the
amount of memory usage based on its functionality and the
growing significance of feature maps as networks become
deeper. Because deeper networks need to keep track of a
larger number of Xs, the fraction of memory allocated for
feature maps grows monotonically as the number of layers
increases. Training the network itself is still done layer-wise,
however, regardless of the depth of the neural network. The
baseline network-wide memory allocation policy is therefore
both extremely wasteful and not scalable because it does
not take into account the layer-wise DNN training. Figure 5
shows the per layer memory usage of VGG-16 during forward
propagation, which provides the following key observations.
First, the intermediate feature maps and workspace (left axis)
incur an order of magnitude higher memory usage compared
to the weights (right axis) of each layer. Second, most of
these intermediate data structures are concentrated on the
feature extraction layers and are less significant in the later
classifier layers. Third, the weights, while smaller in size
compared to these intermediate data, are mostly concentrated
on the classifier layers due to their full connectivity. Lastly,
the per layer memory usage is much smaller than the 28

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

140

C
O

N
V

_0
1

C
O

N
V

_0
2

C
O

N
V

_0
3

C
O

N
V

_0
4

C
O

N
V

_0
5

C
O

N
V

_0
6

C
O

N
V

_0
7

C
O

N
V

_0
8

C
O

N
V

_0
9

C
O

N
V

_1
0

C
O

N
V

_1
1

C
O

N
V

_1
2

C
O

N
V

_1
3

C
O

N
V

_1
4

C
O

N
V

_1
5

C
O

N
V

_1
6

FC
_0

1

FC
_0

2

FC
_0

3

Feature extraction Classifier

R
e

u
se

 d
is

ta
n

ce
 (

m
s)

P
e

r
la

ye
r

co
m

p
u

ta
ti

o
n

 la
te

n
cy

 (
m

s)

Forward

Backward

Reuse distance

Fig. 6: VGG-16’s per layer computation latency for forward and
backward propagation (left axis). Right axis shows the reuse distance
of each layer’s input feature maps, X. We define the reuse distance
of a layer(n)’s X as the latency between the completion of layer(n)’s
forward propagation and the start of the same layer(n)’s backward
propagation.

GB of memory required by the baseline policy (Figure 1),
showing significant opportunities for memory savings with a
fine-grained, layer-wise memory management policy.

III. VIRTUALIZED DNN

The design objective of our virtualized DNN (vDNN)
memory manager is to virtualize the memory usage of DNNs,
using both GPU and CPU memory, while minimizing its
impact on performance. vDNN is completely transparent to
the programmer as the allocation, placement, movement, and
release of data is seamlessly orchestrated by the system
architecture and the runtime system. Such abstraction enables
ML practitioners to focus more on their ML algorithm and
not have to worry about the low level details of GPU memory
management. vDNN primarily optimizes the memory usage
of the feature extraction layers as the majority of memory
usage is concentrated on these layers, accounting for 81%
of memory usage on AlexNet and 96% on VGG-16 (256).
More specifically, we target the feature maps of these feature
extraction layers as these intermediate data structures account
for the majority of GPU memory usage (Figure 4 and Fig-
ure 5). The intuitions of vDNN can also be applied to weights
and to the classification layers, but with less of a memory
saving benefit.

A. Design Principle

Previous sections highlighted the fact that the memory
requirement per individual layer is substantially smaller than
what is actually provisioned with the baseline, network-wide
memory allocation policy. vDNN adopts a sliding-window
based, layer-wise memory management strategy in which the
runtime memory manager conservatively allocates memory
from its memory pool for the immediate usage of the layer
that is currently being processed by the GPU. Intermediate
data structures that are not needed by the current layer are
targeted for memory release to reduce memory usage.

Forward Propagation. As discussed in Section II-C, deep
networks have to keep track of a large number of the inter-

7

Layer(1)

Layer Layer Layer Layer Layer Layer

dX dY

X Y

W

WS

Layer(2)

dX dY

X Y

W

WS

…

dX dY

X Y

W

WS

Layer(N)

dX dY

X Y

W

WS

Loss

Function Input

image

batch

Current layer

Fig. 7: Execution flow of a linear network during forward propaga-
tion. The figure assumes that layer(N) is currently being processed
by the GPU. During this layer’s forward computation, the data
associated with the arrows marked with black Xs (all preceding
layer’s input feature maps) are not used and can safely be released
from the memory pool.

8

Layer(1)

Layer Layer Layer Layer Layer Layer

dX dY

X Y

W

WS

Layer(2)

dX dY

X Y

W

WS

…

dX dY

X Y

W

WS

Layer(N)

dX dY

X Y

W

WS

Loss

Function Input

image

batch

Current layer

Fig. 8: Execution flow of a linear network during backward propa-
gation. The figure assumes that layer(2) is currently being processed
by the GPU. Data associated with the arrows marked with black Xs
can safely be released because they will not be reused during the
training of this input image batch.

mediate feature maps (Xs) that are extracted during forward
propagation. Once a given layer(n)’s forward computation is
complete, however, layer(n)’s X is not reused until the GPU
comes back to the same layer(n)’s corresponding backward
computation. Because the reuse distance of layer(n)’s X is on
the order of milliseconds to seconds (e.g., more than 60 ms
and 1200 ms for the first layer of AlexNet and VGG-16 (64),
respectively), deep networks end up allocating a significant
number of Xs that effectively camp inside the GPU memory
without immediate usage (Figure 6). As a result, tackling
these Xs for memory optimization is crucial for efficient
utilization of GPU memory as these intermediate data account
for a significant fraction of memory allocations (Figure 4).
vDNN therefore conditionally offloads these intermediate Xs
to CPU memory via the system interconnect (e.g., PCIe,
NVLINK [35]) if they are targeted for memory release.
Section III-C details the vDNN memory transfer policy that
decides which layers are chosen for offloading its X. Once the
offload operation is complete, vDNN releases the offloaded X
from the memory pool to reduce GPU memory usage.

Care must be taken however when evaluating the feasibility
of offloading a layer’s input X. This is because, for non-linear
network topologies, multiple layers can be the consumers
of a previously computed layer’s output feature maps (Y).
For instance, layer(2) and layer(3) in Figure 3 are both
using the output Y of layer(1) as its input X. Offloading and
consequently releasing the input X of layer(2), before reaching

10

streamcompute FWD(1)

Execution timeline

(Baseline)

streamcompute

Execution timeline
(vDNN)

streammemory OFF(1)

Time

OFF(2)

Wasted

time
FWD(1) FWD(2)

FWD(2) FWD(3)

x

…

…

BWD(3) BWD(2) BWD(1)

PRE(2)

BWD(3) BWD(2)

PRE(1)

x

Time

…

Fig. 9: Performance effect of offload and prefetch. FWD(n) and
BWD(n) are the forward and backward computations for layer(n),
respectively. OFF(n) is the offloading of layer(n)’s X and PRE(n) is
the corresponding prefetch operation for layer(n).

layer(3)’s forward computation, is problematic as these two
layers share the same data structure for the input X. vDNN
therefore keeps track of the inter-layer dependencies in the
form of a dataflow graph (e.g., Refcnt in Figure 3) and
allows the offload/release operation to be initiated only when
the currently processing layer is the last consumer of its input
feature maps. Figure 7 is an example execution flow of a
linear DNN during forward propagation, highlighting when it
becomes safe to release a layer’s X.

Backward Propagation. Similar to forward propagation,
vDNN aggressively releases data structures that are not needed
for training the remaining layers’ backward computation.
During layer(n)’s backward propagation, layer(n+1)’s Y and
dY are no longer required because the GPU has already com-
pleted the gradient updates for this layer (Figure 8). Again, by
leveraging the layer-wise DNN backward propagation, vDNN
immediately frees up a layer’s Y and dY once this layer’s
backward computation is complete. X and dX are not released
as the preceding layer’s backward propagation will be needing
these values for gradient derivation. Note that if a layer has
offloaded its X to host memory, vDNN should guarantee that
the offloaded data is copied back to GPU memory before the
gradient update is initiated. Naively copying back the data on-
demand will serialize the backward computation behind the
memory copying operation of X. vDNN therefore launches
a prefetch operation for layer(n)’s offloaded feature maps,
which is overlapped with layer(m)’s backward computation,
with n < m, so that prefetching is launched before its actual
usage, hiding prefetching latency.

B. Core Operations And Its Design

vDNN is prototyped as a layer on top of cuDNN [8].
Each layer keeps track of the cross-layer data dependencies
of input/output feature maps so that the vDNN offload and
release operations are properly scheduled. vDNN employs two
separate CUDA streams [36] to overlap normal DNN com-
putations with the memory allocation, movement, and release
operations of vDNN. streamcompute is the CUDA stream
that interfaces to the cuDNN handle and sequences all the

11

00 // currLayerId: layer ID of the calling layer to this class method
01 // layers[n]->offloaded: set true when a layer offloads its input feature map
02 // layers[n]->prefetched: initially set false for all layers
03
04 int Network::findPrefetchLayer(int currLayerId) {
05 // search all preceding layers
06 for(int id=(currLayerId-1); id>=0; id--) {
07 // Found the next closest layer, to current layer, that need prefetching
08 if((layers[id]->offloaded==true)&&(layers[id]->prefetched==false)) {
09 // Flag the layer as being prefetched by current layer
10 layers[id]->prefetched = true;
11 return id;
12 }
13 // Could not find a prefetch layer until reaching the end of search window
14 else if(layers[id]->layerType==CONV) {
15 return -1; // could not find layer ID to prefetch
16 }
17 }
18 }

Fig. 10: Pseudo code explaining how vDNN finds layers to prefetch.
Notice how the search operation is only up to the next closest CONV
layer (line 14), guaranteeing that the prefetched X will not end up
being used too far away in the future as it restricts the prefetch layer
to be within the search window of layers.

layer’s forward and backward computations. streammemory

manages the three key components of vDNN; the memory
allocation/release, offload, and prefetch.

Memory Allocation/Release. The CUDA library only sup-
ports synchronous memory (de)allocations, meaning that any
calls to cudaMalloc() or cudaFree() will enforce an
additional synchronization across all the GPUs within a node.
To safely enable vDNN memory operations while not fall into
the pitfalls of synchronous CUDA APIs, we employ the open-
source asynchronous memory allocation/release API library
distributed by NVIDIA [37]. When the program launches,
the vDNN memory manager is allocated with a memory
pool that is sized to the physical GPU memory capacity.
Whenever vDNN allocates (and releases) data structures, the
underlying memory manager will reserve (and free) mem-
ory regions from this memory pool without having to call
cudaMalloc() or cudaFree().

Memory Offload. Offloading input feature maps is one
of the key enablers of vDNN’s memory savings. When a
layer is chosen for offloading, vDNN first allocates a pinned
host-side memory region using cudaMallocHost().
streammemory then launches a non-blocking memory trans-
fer of this layer’s X to the pinned memory via PCIe us-
ing cudaMemcpyAsync(), overlapping it with the same
layer’s forward computation of cuDNN. The current im-
plementation of vDNN synchronizes streamcompute and
streammemory at the end of each layer’s forward com-
putation if streammemory has offloaded its feature maps.
This approach guarantees that the offloaded data is safely
released from the memory pool before the next layer begins
forward computation, maximizing the memory saving benefits
of offloading. Because the Xs of CONV and POOL layers
are read-only data structures, overlapping layer(n)’s offload
operation with the same layer’s forward propagation does
not create any correctness issues. ACTV layers are already
refactored into an in-place algorithm and only use Y and
dY for gradient updates, obviating the need for memory
offloading (Section II-B). Figure 9 provides an overview of
vDNN’s offload operation. Here, the baseline system is able

to immediately launch layer(2)’s forward computation once
layer(1) is complete. The execution of layer(2) is stalled
for vDNN, because streamcompute must wait until the of-
floading operation of streammemory is complete, blocking
layer(2)’s computation. The computation of layer(3) is not
delayed however because the offload latency for layer(2) is
completely hidden inside the latency to compute the same
layer’s forward propagation.

Memory Prefetch. Similar to offloading, prefetching
the offloaded Xs back to GPU memory is implemented
using cudaMemcpyAsync() to overlap data transfers
with the computations of backward propagation. However
streammemory launches prefetch operations in the reverse
order relative to the offload operations from forward propa-
gation (Figure 9). As mentioned in Section III-A, the general
rule of prefetching is to overlap the memory copy operation of
layer(n)’s offloaded data with layer(m)’s backward computa-
tion, with layer ID m always being higher than n to maximize
the benefit of both prefetching and latency hiding. In other
words, when the GPU starts the backward propagation of
layer(m), vDNN determines the best layer to prefetch among
the preceding layers (as n < m).

If the distance between the prefetched layer(n) and over-
lapping layer(m) is too far away, the memory saving benefit
of vDNN offloading will be reduced because the reuse time
of this prefetched data will be distant in the future. In
other words, prefetching data too early in time will again
suboptimally utilize GPU memory as the prefetched data will
once again camp inside the GPU memory without immediate
usage. We carefully designed the vDNN prefetch algorithm
to avoid this pitfall and balance the memory saving benefits
of offloading with the timeliness of prefetching. Figure 10
is a pseudo-code of the vDNN prefetch algorithm that de-
termines the best candidate layer for prefetching. Before
streamcompute starts a layer’s backward computation, vDNN
first searches for a potential layer that requires prefetching of
its X. If the search operation is successful (line 11), the layer
ID to be prefetched is returned by findPrefetchLayer
routine and is used to launch its prefetch operation via
streammemory . Similar to offloading, vDNN synchronizes
streamcompute and streammemory so that the next layer’s
backward computation is stalled until the prefetch operation
is finalized. Consequently, any prefetch operation launched
during layer(n)’s backward computation is guaranteed to be
ready before layer(n−1)’s computation. This benefit of course
comes at the cost of a potential performance loss when the
prefetch latency is longer than the overlapped computation,
which we detail in Section V-C.

C. vDNN Memory Transfer Policy

Determining the best layers to offload their feature maps is
a multi-dimensional optimization problem that must consider:
1) GPU memory capacity, 2) the convolutional algorithms
used and the overall layer-wise memory usage, and 3) the
network-wide performance. The first two factors determine
whether we are able to train the network at all (which we

refer to as trainability of a network), while the last factor
decides overall training productivity. If vDNN were to use
the most memory-efficient algorithm for all layers (e.g.,
implicit GEMM in cuDNN [8] which does not require any
WS allocations) while also having all layers offload/prefetch,
the GPU memory usage will be the lowest. Performance will
likely suffer, however, compared to a baseline with the fastest
convolutional algorithms adopted for each layers; the perfor-
mance loss primarily comes from 1) the additional latency
possibly incurred due to offload/prefetch, and 2) the perfor-
mance difference between memory-optimal implicit GEMM
and the performance-optimal convolutional algorithm. Going
with the fastest algorithm, without any offload/prefetch, will
result in the highest possible performance, but the potential
memory overheads for the faster algorithm’s workspace and
the cumulative Xs that camp inside the GPU memory will
likely overflow GPU memory. Given that optimizing the
layer-wise memory usage and its performance is in itself a
multi-dimensional optimization problem, selecting the most
optimal hyperparameters across the entire network is non-
trivial. We therefore adopt the following heuristic-based mem-
ory transfer policies that narrow the parameter choices and
simplify the optimization problem, while still performing
robustly in practice.

Static vDNN. Feature extraction layers are mostly com-
posed of CONV and ACTV layers with intermittent POOL
layers that downsize the dimensionality of the feature maps.
More than 70% to 80% of the (forward/backward) com-
putation time however is spent on the CONV layers for
deep neural networks. We therefore evaluate two static vDNN
memory transfer options that exploit this computational char-
acteristic. The first option we explore is to have the vDNN
memory manager offload all of the Xs of all of the layers.
This policy, vDNNall, is our most memory-efficient solution
as all Xs are offloaded and released from the GPU, dras-
tically reducing device memory usage. The second vDNN
policy is to only offload Xs for the CONV layers and
leave the remaining layers’ Xs resident inside GPU memory
(vDNNconv). The vDNNconv policy is based on the observation
that CONV layers have a much longer computation latency
than ACTV/POOL layers, being more likely to effectively
hide the latency of offload/prefetch. Not surprisingly the
performance of vDNNconv is generally higher than vDNNall.
But vDNNall has the advantage of consuming the least GPU
memory, significantly enhancing the trainability of a DNN.
We later evaluate the memory usage and performance of
these two static policies with both the memory-optimal and
performance-optimal convolutional algorithms employed.

Dynamic vDNN. While static vDNN is simple and easy to
implement, it does not account for the system architectural
components that determine the trainability and performance
of a DNN (e.g., maximum compute FLOPs and memory
bandwidth, memory size, effective PCIe bandwidth, etc).
For DNNs that comfortably fit within GPU memory, neither
vDNNall nor vDNNconv is optimal as the best approach is
to have all the memory allocations resident in GPU without

any offloading and employ the fastest possible convolutional
algorithm. Large and deep networks, on the other hand,
might not have the luxury of using faster convolutional
algorithm. So being able to fit such network on the GPU is the
best optimization vDNN could make. We therefore develop
a dynamic vDNN policy that automatically determines the
offloading layers and the convolutional algorithms employed,
at runtime, to balance the trainability and performance of a
DNN. Dynamic vDNN leverages several properties of DNN
training. First, we exploit the millions to billions of iterations
of the same forward/backward propagation pass that are re-
quired for training. NVIDIA’s cuDNN provides a runtime API
that experiments with all available convolution algorithms
for a given layer, evaluating each algorithm’s performance
and its memory usage. Current ML frameworks leverage this
API to undergo an initial profiling stage to determine the
best algorithms to deploy for each CONV layer for best
performance. The overhead of such profiling is on the order
of a few tens of seconds, which is negligible relative to the
days to weeks required for DNN training. Our dynamic vDNN
augments this profiling stage with a number of additional
profiling passes to select the best layers to offload and the
best per layer algorithm. Once the baseline profile stage is
completed and the fastest possible convolutional algorithms
are derived for all CONV layers, dynamic vDNN employs the
following additional profiling passes:

1) First, the static vDNNall is tested for a single training
pass with all CONV layers using the memory-optimal,
no-WS incurred algorithm. This initial pass determines
if the target DNN can be trained at all as it requires the
least GPU memory.

2) If vDNNall passed, another training phase is launched
with all CONV layers employing the fastest algorithms
but without any offloading. Such a configuration, if
it passes successfully, will be adopted for the rest of
the full training procedure as it provides the high-
est performance while guaranteeing trainability. If this
profiling phase fails due to memory oversubscription,
two additional training passes are tested with the same
fastest algorithms, but with vDNN offloading enabled
for both vDNNconv and vDNNall respectively. If suc-
cessful, vDNN employs the succeeded configuration for
the rest of training. If both vDNNconv and vDNNall fails,
we move on to the next profiling pass below to further
reduce memory usage.

3) The last phase is based on a greedy algorithm that tries
to locally reduce a layer’s memory usage, seeking a
global optimum state in terms of trainability and per-
formance. When traversing through each layer, vDNN
first calculates whether using the fastest algorithm will
overflow the GPU memory budget. If so, then the
given layer’s convolutional algorithm will be locally
downgraded into a less performant but more memory-
efficient one, until it reaches the memory-optimal im-
plicit GEMM. This greedy-based approach first tries
vDNNconv with each CONV layer initially using its

own performance-optimal algorithm. If vDNNconv fails,
then another training pass is launched with the more
memory-efficient vDNNall. If vDNNall also fails with
this greedy algorithm, then vDNN resorts back to the
very first vDNNall solution, with the memory-optimal,
no-WS algorithms applied across the entire network.

While other possible settings might better balance per-
formance and trainability, we find that our dynamic vDNN
performs competitively without having to exhaustively search
for globally optimal parameter selections.

IV. METHODOLOGY

A. vDNN Memory Manager

We implemented a host-side memory manager that interacts
with the latest and fastest version of cuDNN 4.0 [8], serving
as the GPU back-end. All the layers that constitute a DNN’s
feature extraction layer have been implemented using cuDNN,
and the execution of each layer is orchestrated using two
CUDA streams, streamcompute and streammemory as
discussed in Section III-B. The classification layers remain
unchanged and use the same cuBLAS routines used in Torch.
The vDNN API closely resembles that of Torch and Caffe,
providing the high level abstractions of the target DNN and
each of its layer compositions.

While there are subtle differences between Torch, Caffe,
and Theano’s memory allocation scheme, prior work [9]
quantitatively demonstrated that all three frameworks exhibit
comparable performance and memory requirements3. We
therefore choose Torch’s memory management policy as base-
line to compare against vDNN given its widespread deploy-
ment across both academia and industry (e.g., Facebook and
Google DeepMind). This baseline policy adopts the network-
wide allocation policy discussed in Section II-C. However,
we further improve this baseline policy using the following
strategy to reduce memory consumption during the backward
propagation phase [38, 39]: rather than allocating separate
dY and dX for all individual layers, we only allocate the
minimally required number of each of these data structures
and reuse them after each layer’s backward computation is
complete (Figure 2).

B. GPU Node Topology

We conducted experiments on NVIDIA’s Titan X [40],
which provides the highest math throughput (single precision
throughput of 7 TFLOPS), memory bandwidth (max 336
GB/sec), and memory capacity (12 GB) in the family of
Maxwell GPUs. The GPU communicates with an Intel i7-
5930K (containing 64 GB of DDR4 memory) via a PCIe
switch (gen3), which provides a maximum 16 GB/sec data
transfer bandwidth.

3 Because TensorFlow is the least performant in terms of GPU memory
usage and training speed [9], we do not discuss its memory management
policy further in this paper.

0

0.2

0.4

0.6

0.8

1

0

6000

12000

18000

24000

30000

(m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p)* (m) (p)* (m) (p)* (m)*(p)*

all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base

AlexNet (128) OverFeat (128) GoogLeNet (128) VGG-16 (64) VGG-16 (128) VGG-16 (256)

M
e

m
o

ry
 s

av
in

gs
 (

av
g)

G
P

U
 m

e
m

o
ry

 u
sa

ge
 (

M
B

)
avg max memory savings (avg)

Fig. 11: Average and maximum memory usage (left axis). Right axis corresponds to the savings in average memory usage.

C. DNN Benchmarks

Conventional DNNs. First, we evaluate existing, state-of-
the-art ImageNet winning DNNs: AlexNet [1], OverFeat [30],
GoogLeNet [17], and three different batch sizes for VGG-16
(the deepest network with 16 CONV and 3 FC layers) [14].
The network configurations of these DNNs (e.g., layer type,
batch size, etc.) are identical to the reference models main-
tained by the researchers at Facebook [41]. While the memory
usage of AlexNet, OverFeat, and GoogLeNet is already below
the 12 GB memory capacity of Titan X (Figure 4), we use
it to evaluate the performance regression on these networks
with vDNN. VGG-16 is one of the largest and deepest DNN
architecture to date, requiring substantial memory capacity
for trainability (using up to 28 GB of memory when trained
with the best performing batch size of 256). Accordingly,
Simonyan and Zisserman [14] parallelized VGG-16 (256)
across four GPUs, with each GPU training VGG-16 (64) that
fits within a single GPU memory budget. We therefore study
VGG-16 with three batch sizes (64/128/256) and use it as a
representative, future-looking DNN architecture that stresses
the memory capacity limits of today’s GPUs.

Very Deep Networks. To highlight vDNN’s scalability in
training very deep networks, we collected a second set of
benchmarks by extending the number of CONV layers of
VGG, from 16 CONV layers to 416 CONV layers. The
original VGG network features a homogeneous architecture
that only uses 3 × 3 convolutions (with stride 1 and pad
1) and 2 × 2 pooling operations (with stride 2), from the
first to the last feature extraction layer. The feature extraction
layers are conceptually divided into five groups of CONV
layers, separated by the intermediate POOL layers. The only
difference among these CONV layer groups is that the number
of output feature maps grows from 64 to 512, from the
first to the last layer group. Simonyan and Zisserman [14]
studied the effect of layer depth on classification accuracy
by incrementally adding more CONV layers to each of these
layer groups, going from 8 CONV layers to 16 CONV layers.
We follow similar measures to deepen the layer depth of
VGG by gradually adding 100 more CONV layers to VGG-
16, resulting in VGG-116/216/316/416 configurations. Each
addition of 100 CONV layers is done by adding 20 more
CONV layers to each of the five CONV layer groups. The
added CONV layers have the same number of output feature
maps that are employed for that layer group. We use these

four VGG-style networks to perform a case study on vDNN’s
scalability on training very deep networks that require much
more memory. Compared to conventional DNNs whose input
batch size is in the order of hundreds of images, we study
these very deep networks with a relatively small batch size
of 32 in order to highlight the memory scaling effect of layer
depth on DNNs.

V. RESULTS

This section evaluates the effect of vDNN on GPU memory
usage, off-chip memory bandwidth utilization, GPU power
consumption, and overall performance. The static vDNNall

and vDNNconv policies are denoted as all and conv in
all the figures discussed in this section and are each eval-
uated with both memory-optimal and performance-optimal
(denoted as (m) and (p)) convolutional algorithms across
the network. The baseline memory manager (base) is simi-
larly evaluated with both memory-optimal and performance-
optimal algorithms. The algorithms are dynamically chosen
for vDNNdyn (denoted as dyn) as discussed in Section III-C.
Memory management policies that fail in training the net-
work, due to memory oversubscription, are marked with (∗).

A. GPU Memory Usage

Because vDNN adopts a layer-wise memory allocation
policy, the GPU memory usage during forward/backward
propagation will fluctuate depending on the memory offload-
ing policy chosen and the convolutional algorithm employed
for a given layer (Figure 5). We therefore discuss both the
maximum and average memory usage as shown in Figure 11.
The maximum memory usage corresponds to the largest mem-
ory allocated across the entire run, which decides whether
the target DNN application can be trained at all. The average
memory on the other hand reflects how much memory has
been used on average, and conversely, freed up during for-
ward/backward propagation. The smaller the average memory
usage becomes, the more likely vDNN will have headroom to
improve performance by: 1) employing performance-efficient
convolutional algorithms that require larger workspace, and
2) reducing the total number of offload layers and prevent
potential performance drops due to offloading (Figure 9).

Because the baseline policy provisions the memory alloca-
tions to accommodate the entire network usage, the maximum
and average memory usage are identical. The baseline policy

0

3000

6000

9000

12000

15000

18000

all conv - all conv - all conv - all conv - all conv - all conv -

AlexNet
(128)

OverFeat
(128)

GoogLeNet
(128)

VGG-16
(64)

VGG-16
(128)

VGG-16
(256)

O
ff

lo
ad

 s
iz

e
 (

M
B

)

Fig. 12: The size of GPU memory allocations offloaded to host-side
pinned memory using cudaMallocHost().

therefore is not able to train networks like VGG-16 with batch
128 and 256 , which require more than the physically avail-
able 12 GB of memory. Our vDNN enhances the trainability of
a network by significantly reducing its memory requirements.
Overall, the memory-optimal vDNNall(m) shows both the
smallest average and maximum memory usage as it always
offloads a layer’s input feature maps while using the most
memory-efficient algorithms. As a result, vDNNall exhibits
the highest offload traffic being sent to host memory, reaching
up to 16 GB of GPU memory savings for VGG-16 (256)
(Figure 12). Such aggressive offloading significantly improves
memory efficiency and achieves an average 73% and 93%
reduction on the maximum and average memory usage of the
six networks shown in Figure 11. When employed with the
performance-optimal algorithm, the average memory savings
of vDNNall are slightly reduced to 64% and 90% for the
maximum and average memory usage. Because vDNNconv

only offloads the feature maps for the CONV layers, its mem-
ory savings is not as high as vDNNall. However, vDNNconv

still reduces the maximum and average memory usage by
52% and 76% on average, even with the performance-optimal
algorithms employed across the network.
vDNNdyn allocates the largest memory among the three

vDNN policies, reducing the maximum and average memory
consumption by 49% and 69% on average compared to
baseline. This is because vDNNdyn tries to balance its memory
usage and performance, seeking to fit the network within GPU
memory while still optimizing performance by minimizing the
number of offload layers and employing the fastest possible
convolutional algorithms. The static vDNNall and vDNNconv ,
on the other hand, do not consider the overall performance
when the offloaded layers are chosen. For instance, VGG-
16 (128) trained with memory-optimal vDNNall only uses
up to 4.8 GB out of the 12 GB of available memory. This
configuration leads to a 61% performance loss (Section V-C)
as vDNNall fails to exploit the remaining 7.2 GB of the
memory for performance optimizations. vDNNdyn tries to
bridge this gap by dynamically deriving the offload layers as
well as the best convolutional algorithms to employ for each
layer. We further discusses vDNN’s impact on performance in
detail at Section V-C.

B. Impact on Memory System

While vDNN helps virtualize DNN’s memory usage, it does
come at the cost of adding more read (offload) and write

0

40

80

120

160

200

C
O

N
V

_0
1

C
O

N
V

_0
2

C
O

N
V

_0
3

C
O

N
V

_0
4

C
O

N
V

_0
5

C
O

N
V

_0
6

C
O

N
V

_0
7

C
O

N
V

_0
8

C
O

N
V

_0
9

C
O

N
V

_1
0

C
O

N
V

_1
1

C
O

N
V

_1
2

C
O

N
V

_1
3

C
O

N
V

_1
4

C
O

N
V

_1
5

C
O

N
V

_1
6

FC
_0

1

FC
_0

2

FC
_0

3

Feature extraction Classifier

D
R

A
M

 b
an

d
w

id
th

 u
ti

liz
at

io
n

(G

B
/s

e
c)

Forward
Backward

Fig. 13: Maximum DRAM bandwidth utilization for each CONV
layer’s forward and backward propagation.

(prefetch) traffic to the GPU memory subsystem, potentially
interfering with the normal cuDNN operations. Because the
additional vDNN memory traffic can be up to the bandwidth
of the PCIe (maximum of 16 GB/sec for gen3), its effect
on performance will be determined by the normal cuDNN
operation’s memory bandwidth intensity. Figure 13 shows the
baseline’s maximum DRAM bandwidth utilization for VGG-
16, which is measured separately for each CONV layer’s
forward and backward propagation. The feature extraction
layers rarely saturate the 336 GB/sec of peak memory band-
width, providing more than enough headroom for vDNN’s
offload/prefetch traffic. Even if a hypothetical, future convo-
lutional algorithm were to completely saturate the off-chip
DRAM bandwidth, vDNN’s additional traffic will approxi-
mately incur up to a worst-case (16/336) = 4.7% performance
overheads, which we believe is reasonable given the benefit
of virtualized memory.

C. Performance

Figure 14 summarizes the performance of vDNN compared
to baseline. For a conservative evaluation, we only compare
the latencies incurred in the feature extraction layers because
the classifier layers are executed identically for baseline
and vDNN. Because the baseline policy requires more than
12 GB of memory for VGG-16 (128) and VGG-16 (256)
with performance-optimal algorithms (15 GB and 28 GB
respectively), it is impossible to train these two networks on
a Titan X. We therefore establish an oracular baseline that
removes the memory capacity bottlenecks of these two net-
works for a conservative evaluation. The performance of this
oracular baseline is estimated by configuring all CONV layers
with the fastest algorithms and evaluating the latencies of
each layers individually. The latencies are later accumulated
altogether to estimate overall performance. Overall, vDNNall

and vDNNconv with memory-optimal algorithms exhibit an
average 58% and 55% performance loss (maximum 65% and
63% degradation) compared to baseline, an expected result as
the memory manager puts no effort into balancing memory
usage and overall performance. The dynamic vDNNdyn does
much better in terms of balancing memory efficiency and
overall throughput, closing the performance gap between
the static vDNN and baseline and reaching an average 97%
of baseline’s throughput (worst case 82% of the oracular
baseline, for VGG-16 (256)).

0

0.2

0.4

0.6

0.8

1

1.2

(m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p) (m) (p)* (m) (p)* (m) (p)* (m)*(p)*

all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base - all conv dyn base

AlexNet (128) OverFeat (128) GoogLeNet (128) VGG-16 (64) VGG-16 (128) VGG-16 (256)

P
e

rf
o

rm
aa

n
ce

 (
n

o
rm

al
iz

e
d

)

Fig. 14: Overall performance (normalized to baseline).

0

12000

24000

36000

48000

60000

72000

dyn base* - dyn base* - dyn base* - dyn base* -

VGG-116 VGG-216 VGG-316 VGG-416

M
e

m
o

ry
 a

llo
ca

ti
o

n
 (

M
B

) CPU-side
GPU-side

Fig. 15: CPU/GPU memory allocations for VGG-style, very deep
networks (batch 32) with vDNNdyn and baseline.

D. Power

This section discusses the effect of vDNNdyn on overall
GPU power consumption. We use the system profiling utility
of nvprof [42] to measure the average and maximum
GPU power consumption. Each network is executed for 50
iterations of forward and backward propagation and the re-
ported average and maximum power consumption is averaged
altogether. All but VGG-16 (128) have been executed with
the performance-optimal convolutional algorithms because
VGG-16 (128) can only be trained with the memory-optimal
algorithms under baseline (Figure 11). Note that the results
for VGG-16 (256) are not discussed as this configuration
can only be trained with vDNN, making it impossible to
compare against baseline. Overall, vDNNdyn incurs 1% to 7%
maximum power overheads. As discussed in Section V-B,
the offload/prefetch memory traffic of vDNN is one of the
biggest contributors to the instantaneous rise in peak power
consumption. Nonetheless, the average power consumption
(energy/time) is rarely affected because of the following two
factors: 1) vDNNdyn does not incur any noticeable perfor-
mance overhead for these five networks, and 2) the studied
DNNs rarely saturate the peak DRAM bandwidth (Figure 13),
so the additional energy overheads of vDNN memory traffic
is expected to be negligible on average (Section V-B).

E. Case Study: Training Very Deep Networks

To highlight vDNN’s scalability in training very deep net-
works, we perform a case study on four VGG-style networks
that contain hundreds of CONV layers and scale up the net-
work memory requirements. As mentioned in Section IV-C,
the batch size is set to be much smaller than those studied in
previous subsections (which ranges from batch 128 to 256) as
means to highlight the memory scaling effect of layer depth
despite its small batch size. Figure 15 shows the memory

allocation requirements of baseline and vDNNdyn for these
very deep neural networks. As the number of CONV layers
increases from 16 to 416, the baseline memory requirements
monotonically increase by 14 times (from 4.9 GB to 67.1
GB), even with a small batch size of 32. Thanks to its
layer-wise memory allocation policy, vDNNdyn significantly
reduces the memory usage of all four networks, only using up
to 4.2 GB of GPU memory and having all remaining 81% to
92% of overall memory allocations to reside in CPU memory.
Compared to the oracular baseline, vDNNdyn also did not
incur any noticeable performance degradations because the
offload and prefetch latency is completely hidden inside the
layer’s DNN computations while still being able to employ
the performance-optimal algorithms across the network.

VI. RELATED WORK

There have been a variety of proposals aiming to reduce
the memory usage of neural networks. Network pruning
techniques [43, 44, 45, 46, 47] remove small valued weight
connections from the network as means to reduce network
redundancy, leading to a reduction in memory consump-
tion. Another redundancy mitigating approach uses quanti-
zation [48] or reduced precision [49] to reduce the number
of bits required to model the network. A variety of network
compression techniques have also been explored by Gong et
al. [50] to reduce the memory usage of DNNs.

Although these prior studies reduce DNN memory re-
quirements, they fall short in several respects. First, weights
only account for a small fraction of the memory usage in
state-of-the-art DNNs, as shown in Figure 4. Thus, proposals
that optimize memory usage of weights, while beneficial in
terms of memory bandwidth utilization and energy-efficiency,
provide only limited opportunity for memory capacity sav-
ings. Second, using reduced precision occasionally results in
loss of classification accuracy unless carefully tuned for the
given network and task. Our proposal optimizes the memory
consumptions of the intermediate feature maps which are the
most dominant data structures in DNNs.

Several prior works discussed mechanisms to support vir-
tualized memory on GPUs. Pichai et al. [51] and Power
et al. [52] proposed TLB implementations that consider the
unique memory access patterns of GPUs, improving the
throughput of address translations as well as overall system
throughput. Zheng et al. [34] discuss features needed in the
GPU hardware and software stack to close the performance
gap of GPU paged memory versus legacy programmer-

directed memory management techniques. As discussed in
Section II-C, page-migration based virtualization solutions
are likely to underutilize PCIe bandwidth significantly and
incur performance overheads when training networks that
oversubscribe GPU memory.

While less directly related to vDNN, a variety of accelerator
architectures have also been proposed for DNNs [20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 53]. While these custom ASIC
designs drastically improve the energy-efficiency of DNNs,
none of these address the memory capacity bottlenecks of
DNN training, a unique contribution of our work.

VII. CONCLUSION

Existing machine learning frameworks require users to
carefully manage their GPU memory usage so that the
network-wide memory requirements fit within the physical
GPU memory size. We propose vDNN, a scalable, memory-
efficient runtime memory manager that virtualizes the mem-
ory usage of a network across CPU and GPU memories. Our
vDNN solution reduces the average GPU memory usage of
AlexNet by up to 89%, OverFeat by 91%, and GoogLeNet
by 95%, substantially improving the memory-efficiency of
DNNs. Similar experiments to VGG-16 (256) result in an
average 90% reduction in memory usage at a cost of 18%
performance penalty compared to an oracular baseline. We
also study the scalability of vDNN to extremely deep neural
networks, showing that vDNN can train networks with hun-
dreds of layers without any performance loss.

ACKNOWLEDGMENT

We thank our colleagues at NVIDIA for their feedback
on this work, and in particular John Tran, Sharan Chetlur,
Simon Layton, and Cliff Woolley for their contributions to
vDNN concepts and infrastructure.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Ima-
geNet Classification with Deep Convolutional Neural
Networks,” in Proceedings of the Advances in Neural
Information Processing Systems, 2012.

[2] A. Graves and J. Schmidhuber, “Framewise Phoneme
Classification With Bidirectional LSTM and Other Neu-
ral Network Architectures,” in Neural Networks, 2005.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural Language
Processing (Almost) From Scratch,” in arxiv.org, 2011.

[4] Tensorflow, “https://www.tensorflow.org,” 2016.
[5] Torch, “http://torch.ch,” 2016.
[6] Theano, “http://deeplearning.net/tutorial,” 2016.
[7] Caffe, “http://caffe.berkeleyvision.org,” 2016.
[8] NVIDIA, “cuDNN: GPU Accelerated Deep Learning,”

2016.
[9] S. Bahrampour, N. Ramakrishnan, L. Schott, and

M. Shah, “Comparative Study of Caffe, Neon, Theano,
and Torch for Deep Learning,” in arxiv.org, 2016.

[10] The Next Platform (www.nextplatform.com), “Baidu
Eyes Deep Learning Strategy in Wake of New GPU
Options,” 2016.

[11] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski,
A. Coates, E. Elsen, J. Engel, A. Hannun, and
S. Satheesh, “Persistent RNNs: Stashing Recurrent
Weights On-Chip,” in Proceedings of the International
Conference on Machine Learning, 2016.

[12] A. Krizhevsky, “One Weird Trick For Parallelizing Con-
volutional Neural Networks,” in arxiv.org, 2014.

[13] ImageNet, “http://image-net.org,” 2016.
[14] K. Simonyan and A. Zisserman, “Very Deep Convolu-

tional Networks for Large-Scale Image Recognition,” in
Proceedings of the International Conference on Learn-
ing Representations, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in arxiv.org, 2015.

[16] Wired (www.wired.com), “Microsoft Neural Net Shows
Deep Learning Can Get Way Deeper,” 2016.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going Deeper with Convolutions,” in arxiv.org,
2014.

[18] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger,
“Deep Networks with Stochastic Depth,” in arxiv.org,
2016.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-Based Learning Applied to Document Recog-
nition,” in Proceedings of the IEEE, 1998.

[20] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Pro-
ceedings of International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2014.

[21] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao:
A Machine-Learning Supercomputer,” in Proceedings of
ACM/IEEE International Symposium on Microarchitec-
ture, 2014.

[22] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks,” in IEEE International
Conference on Solid-State Circuits, 2016.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz,
and W. Dally, “EIE: Efficient Inference Engine on
Compressed Deep Neural Network,” in Proceedings
of ACM/IEEE International Symposium on Computer
Architecture, 2016.

[24] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional
Neural Networks,” in Proceedings of ACM/IEEE Inter-
national Symposium on Computer Architecture, 2016.

[25] R. LiKamWa, Y. Hou, M. Polansky, Y. Gao, and
L. Zhong, “RedEye: Analog ConvNet Image Sensor
Architecture for Continuous Mobile Vision,” in Pro-

ceedings of ACM/IEEE International Symposium on
Computer Architecture, 2016.

[26] B. Reagen, P. Whatmough, R. Adolf, S. Rama,
H. Lee, S. Lee, J. Miguel, H. Lobato, G. Wei, and
D. Brooks, “Minerva: Enabling Low-Power, High-
Accuracy Deep Neural Network Accelerators,” in Pro-
ceedings of ACM/IEEE International Symposium on
Computer Architecture, 2016.

[27] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “A Novel Processing-in-memory Architec-
ture for Neural Network Computation in ReRAM-based
Main Memory,” in Proceedings of ACM/IEEE Interna-
tional Symposium on Computer Architecture, 2016.

[28] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubra-
monian, J. P. Strachan, M. Hu, R. S. Williams, and
V. Srikumar, “ISAAC: A Convolutional Neural Net-
work Accelerator with In-Situ Analog Arithmetic in
Crossbars,” in Proceedings of ACM/IEEE International
Symposium on Computer Architecture, 2016.

[29] J. Albericio, P. Judd, T. Hetherington, T. Aamodt,
N. E. Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-
Neuron-Free Deep Convolutional Neural Network Com-
puting,” in Proceedings of ACM/IEEE International
Symposium on Computer Architecture, 2016.

[30] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun, “OverFeat: Integrated Recognition, Lo-
calization and Detection using Convolutional Networks,”
in arxiv.org, 2013.

[31] S. Chintala, “https://github.com/torch/nn/pull/235,”
2015.

[32] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer, “cuDNN: Ef-
ficient Primitives for Deep Learning,” in Proceedings of
the Advances in Neural Information Processing Systems,
2014.

[33] OpenMP Architecture Review Board, “OpenMP Appli-
cation Program Interface (version 4.0),” 2013.

[34] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson,
and S. W. Keckler, “Toward High-Performance Paged-
Memory for GPUs,” in Proceedings of IEEE Inter-
national Symposium on High-Performance Computer
Architecture, 2016.

[35] NVIDIA, “NVIDIA NVLINK High-Speed Intercon-
nect,” 2016.

[36] NVIDIA, “NVIDIA CUDA Programming Guide,” 2016.
[37] NVIDIA, “https://github.com/NVIDIA/cnmem,” 2016.
[38] S. Gross and M. Wilber, “Training and Investigating

Residual Nets,” 2016.
[39] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,

T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet:
A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems,” in Proceedings of
the 2015 Workshop on Machine Learning Systems, 2015.

[40] NVIDIA, “GeForce GTX Titan X (Maxwell),” 2015.
[41] S. Chintala, “https://github.com/soumith/convnet-

benchmarks,” 2016.

[42] NVIDIA, “CUDA Toolkit 7.5 Documentation: Profiler,”
2016.

[43] S. Hanson and L. Pratt, “Comparing Biases for Mini-
mal Network Construction with Back-propagation,” in
Proceedings of the Advances in Neural Information
Processing Systems, 1989.

[44] Y. LeCun, S. Denker, and S. Solla, “Optimal Brain
Damage,” in Proceedings of the Advances in Neural
Information Processing Systems, 1990.

[45] B. Hassibi and D. Stork, “Second Order Derivatives for
Network Pruning: Optimal Brain Surgeon,” in Proceed-
ings of the Advances in Neural Information Processing
Systems, 1993.

[46] S. Han, J. Pool, J. Tran, and W. Dally, “Learning
Both Weights and Connections for Efficient Neural
Networks,” in Proceedings of the Advances in Neural
Information Processing Systems, 2015.

[47] S. Han, H. Mao, and W. Dally, “Deep Compres-
sion: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding,” in Pro-
ceedings of the International Conference on Learning
Representations, 2016.

[48] V. Vanhoucke, A. Senior, and M. Mao, “Improving the
Speed of Neural Networks on CPUs,” in Proceedings
of Deep Learning and Unsupervised Feature Learning,
2011.

[49] P. Judd, J. Albericio, T. Hetherington, T. Aamodt,
N. E. Jerger, R. Urtasun, and A. Moshovos, “Reduced-
Precision Strategies for Bounded Memory in Deep Neu-
ral Nets,” in arxiv.org, 2016.

[50] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Com-
pressing Deep Convolutional Networks Using Vector
Quantization,” in arxiv.org, 2014.

[51] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural
Support for Address Translation on GPUs: Designing
Memory Management Units for CPU/GPUs with Uni-
fied Address Spaces,” in Proceedings of ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2014.

[52] J. Power, M. Hill, and D. Wood, “Supporting x86-
64 Address Translation for 100s of GPU Lanes,” in
Proceedings of IEEE International Symposium on High-
Performance Computer Architecture, 2014.

[53] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “ShiDianNao: Shift-
ing Vision Processing Closer to the Sensor,” in Pro-
ceedings of ACM/IEEE International Symposium on
Computer Architecture, 2015.

	I Introduction
	II Background and Motivation
	II-A DNN Architecture
	II-B DNN Training vs. Inference
	II-C Motivation: Scalable and Memory-Efficient DNN Design

	III Virtualized DNN
	III-A Design Principle
	III-B Core Operations And Its Design
	III-C vDNN Memory Transfer Policy

	IV Methodology
	IV-A vDNN Memory Manager
	IV-B GPU Node Topology
	IV-C DNN Benchmarks

	V Results
	V-A GPU Memory Usage
	V-B Impact on Memory System
	V-C Performance
	V-D Power
	V-E Case Study: Training Very Deep Networks

	VI Related Work
	VII Conclusion

