
HPC16	4th Presentation
Yohei Tsuji

Tokyo	institute	of	technology,
Dept.	of	Mathematical	and	Computing	Science,	Matsuoka	Lab.

10/21/16 1

Selected	Papers

• P.	Watcharapichat,	V.	L.	Morales,	R.	C.	Fernandez,	P.	Pietzuch.	
• Ako:	Decentralised Deep	Learning	with	Partial	Gradient	Exchange.
• SoCC '16	Proceedings	of	the	Seventh	ACM	Symposium	on	Cloud	
Computing.

10/21/16 2

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 3

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 4

§1	Introduction
- DNNs	in	distributed	systems

• A	common	architecture	for	DNN	systems	takes	advantage	of	data-
parallelism	which	a	set	of	workers train	model	replicas.
• By	using	parameter	servers,	model	replicas	are	kept	synchronised.

• DNN	systems	employing	parameter	server	must	balance	the	use	of	
compute	and	network	resources	to	achieve	fastest	model.
§ However,	an	optimal	resource	allocation	depends	on	many	factors,	and	users	
must	decide	it	empirically,	by	trial-and-error	approach.

10/21/16 5

§1	Introduction
- Described	system

• Goal	is	to	design	a	DNN	system	that	always	utilises the	full	CPU	
resources	and	network	bandwidth	of	a	cluster.

• Paper	describe	Ako,	a decentralised DNN	system.
§ Homogeneous	workers	train	model	replicas	without	parameter	server.
§ Synchronise directly	with	each	other	in	a	peer-to-peer	fashion.

10/21/16 6

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 7

§2	Resource	Allocation	in	DNN	Systems
- DNN	systems	with	parameter	servers

• A	scalable	approach	for	training	DNNs	is	to	use	parameter	server
1. The	training	data	is	split	across	worker.
2. Each	worker	calculate	the	gradient	over	its	data	partition.
3. Worker	sends	the	local	gradient	𝑔 to	parameter	servers.
4. Parameter	servers	aggregate	the	gradients	and	update	the	global	model	𝑊.
5. And	return	the	new	model	𝑊 to	the	workers.

10/21/16 8

For	more	detail	about	parameter	server	
architecture,	read	[24,	2,	19,	26,	49].

§2	Resource	Allocation	in	DNN	Systems
- DNN	systems	with	parameter	servers

• To	reach	fastest	time-to-convergence,	DNN	systems	must	achieve:
1. High	hardware	efficiency,

• Which	is	time	to	complete	a	single	iteration.
2. High	statistical	efficiency,

• Which	is	the	improvement	in	the	model	per	iteration.

• There	is	a	trade-off	between	these	two	aspects.
§ In	practice,	modern	distributed	DNN	systems	require	such	decision	on	
resource	allocation.

10/21/16 9

§2	Resource	Allocation	in	DNN	Systems
- Resource	allocation	problem

• The	best	allocation	should	result	in	fastest	time-to-convergence.
§ However,	the	best	allocation	depends	on	many	factors	which	make	prediction	
difficult.

• This	difficulty	can	be	checked	through	some	experiments.
§ Deployed	a	DNN	system	with	parameter	servers	on	64-machines,	training	a	
model	for	ImageNet benchmark	(explained	later).

10/21/16 10

§2	Resource	Allocation	in	DNN	Systems
- Resource	allocation	problem

10/21/16 11

§ Accuracy	with	different	(a)	cluster	size,	(b)	hardware,	and	(c)	workloads.
§ In	(b),	comparing	“m4.xlarge”	and	“c4.2xlarge”	VMS	on	a	64-machine	Amazon	
EC2	deployment.

§ In	(c),	low-resolution	is 100x100	pixels,	and high-resolution	is 200x200	pixels.

16 32 640

10

20

30
Va

lid
at

io
n

ac
cu

ra
cy

(%
)

Ratio 8:1
Ratio 4:1
Ratio 3:1

(a) Di↵erent cluster sizes

m4.xlarge c4.2xlarge0

10

20

30

Va
lid
at
io
n
ac
cu
ra
cy

(%
)

PS[56+8]
PS[48+16]
PS[46+18]

(b) Di↵erent hardware

Low resolution High resolution0

10

20

30

Va
lid
at
io
n
ac
cu
ra
cy

(%
)

PS[60+4]
PS[56+8]
PS[48+16]

(c) Di↵erent workloads

Figure 3: E↵ect of system and workload changes on best resource allocation

We deploy a DNN system with parameter servers on a
64-machine cluster, training a model for the ImageNet bench-
mark (see §5.1 for details). Fig. 2 shows the accuracy after
one hour of training for different resource allocations be-
tween workers and parameter servers on the cluster. The
result shows that the best accuracy is achieved for an allo-
cation of 48 workers and 16 parameter servers. Note that
the extreme allocations that emphasise hardware efficiency
(60 workers) or statistical efficiency (20 servers) both ex-
hibit a 38.9% and 14.5% worse accuracy, respectively, than
the best allocation.
Cluster size. The ratio of the optimal allocation between
workers and parameter servers changes with different cluster
sizes. Fig. 3(a) shows the accuracy for three allocation ratios
(3:1, 4:1 and 8:1) as the cluster size changes. While a 8:1
ratio (i.e. 2 parameter servers) yields the best accuracy for a
16-machine deployment, this is not the case when the cluster
size increases: with a 32-machine or 64-machine cluster, a
ratio of 4:1 achieves the best accuracy for this workload.
Hardware. The best allocation also depends on the machine
hardware. In Fig. 3(b), we show the accuracy of the Ima-

geNet DNN model for two different hardware configurations
(“m4.xlarge” and “c4.2xlarge” VMs) on a 64-machine Ama-
zon EC2 deployment. For the slower “m4.xlarge” VMs, an
allocation of 16 parameter servers gives the highest accuracy
of 20%, but, with the faster “c4.2xlarge” VMs, 18 parameter
servers achieve 25%.
Workload. In practice, input data changes, e.g. when new
types of training data become available, which also af-
fects the optimal allocation. Next, we vary the training
data for the ImageNet benchmark between low-resolution
(100✓100 pixel) and high-resolution (200✓200 pixel) im-
ages. Fig. 3(c) shows that the low-resolution images achieve
the highest accuracy with 48 workers and 16 parameter
servers. This, however, turns out to be the worst alloca-
tion for the high-resolution images, which perform best with
60 workers and only 4 servers.
Co-located deployment. A heuristic is to colocate each
worker with a parameter server on the same machine [44].
Such an approach, however, does not solve the problem: as
we show in §5.2, it exhibits worse convergence due to the
large number of global model partitions. In addition, it still

[14+1] [12+3] [10+5] [8+7]0

10

20

30

Memory split [Worker+Server] in GB

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

Figure 4: E↵ect of memory allocation with co-location

requires a decision on how to share the resources on each
machine: besides allocating CPU threads, the memory of the
machine must be shared.

Fig. 4 shows the accuracy achieved on a co-located 32-
machine deployment after one hour of training with different
memory allocations between the workers and the parameter
servers. While each machine has 16 GB of RAM, an alloca-
tion of 3 GB for the parameter server and 12 GB to the work-
ers results in the highest accuracy (31%); an equal memory
split achieves the worst accuracy of 25%.

3. Partial Gradient Exchange
Instead of using parameter servers to synchronise the model
updates produced by workers, we adopt a decentralised syn-
chronisation scheme in which workers communicate directly
with each other, without intermediate nodes. This avoids the
challenge of having to decide on a resource split between
workers and parameter servers.

A strawman solution for decentralised synchronisation is
to use all-to-all communication between the workers, but
this does not scale: n workers would require O(n2) network
bandwidth for the synchronisation, but worker bandwidth
only grows linearly with cluster size, O(n).

To reduce the bandwidth requirement of decentralised
synchronisation, workers could propagate model updates in-
directly, i.e. with some workers relaying updates [41]. Such
an approach, however, degrades statistical efficiency because
it suffers from higher synchronisation latency, and it requires
typically additional all-to-all full model exchanges [23].

We thus want to design a new decentralised synchroni-
sation approach that (i) scales near linearly with the clus-
ter size, and (ii) also exhibits high statistical efficiency that
matches current parameter-server-based approaches.

87

§2	Resource	Allocation	in	DNN	Systems
- Resource	allocation	problem

10/21/16 12

§ Accuracy	with	different	worker	and	parameter	server	allocation (left),	and	
memory	allocation in	co-located	parameter	server	(right).
• Both	are	accuracy	after	one	hour	training.

§ In	co-located	[44],	worker	and	parameter	server	are	located	on	same	node.

16 32 640

10

20

30

Va
lid

at
io

n
ac

cu
ra

cy
(%

)

Ratio 8:1
Ratio 4:1
Ratio 3:1

(a) Di↵erent cluster sizes

m4.xlarge c4.2xlarge0

10

20

30

Va
lid
at
io
n
ac
cu
ra
cy

(%
)

PS[56+8]
PS[48+16]
PS[46+18]

(b) Di↵erent hardware

Low resolution High resolution0

10

20

30

Va
lid
at
io
n
ac
cu
ra
cy

(%
)

PS[60+4]
PS[56+8]
PS[48+16]

(c) Di↵erent workloads

Figure 3: E↵ect of system and workload changes on best resource allocation

We deploy a DNN system with parameter servers on a
64-machine cluster, training a model for the ImageNet bench-
mark (see §5.1 for details). Fig. 2 shows the accuracy after
one hour of training for different resource allocations be-
tween workers and parameter servers on the cluster. The
result shows that the best accuracy is achieved for an allo-
cation of 48 workers and 16 parameter servers. Note that
the extreme allocations that emphasise hardware efficiency
(60 workers) or statistical efficiency (20 servers) both ex-
hibit a 38.9% and 14.5% worse accuracy, respectively, than
the best allocation.
Cluster size. The ratio of the optimal allocation between
workers and parameter servers changes with different cluster
sizes. Fig. 3(a) shows the accuracy for three allocation ratios
(3:1, 4:1 and 8:1) as the cluster size changes. While a 8:1
ratio (i.e. 2 parameter servers) yields the best accuracy for a
16-machine deployment, this is not the case when the cluster
size increases: with a 32-machine or 64-machine cluster, a
ratio of 4:1 achieves the best accuracy for this workload.
Hardware. The best allocation also depends on the machine
hardware. In Fig. 3(b), we show the accuracy of the Ima-

geNet DNN model for two different hardware configurations
(“m4.xlarge” and “c4.2xlarge” VMs) on a 64-machine Ama-
zon EC2 deployment. For the slower “m4.xlarge” VMs, an
allocation of 16 parameter servers gives the highest accuracy
of 20%, but, with the faster “c4.2xlarge” VMs, 18 parameter
servers achieve 25%.
Workload. In practice, input data changes, e.g. when new
types of training data become available, which also af-
fects the optimal allocation. Next, we vary the training
data for the ImageNet benchmark between low-resolution
(100✓100 pixel) and high-resolution (200✓200 pixel) im-
ages. Fig. 3(c) shows that the low-resolution images achieve
the highest accuracy with 48 workers and 16 parameter
servers. This, however, turns out to be the worst alloca-
tion for the high-resolution images, which perform best with
60 workers and only 4 servers.
Co-located deployment. A heuristic is to colocate each
worker with a parameter server on the same machine [44].
Such an approach, however, does not solve the problem: as
we show in §5.2, it exhibits worse convergence due to the
large number of global model partitions. In addition, it still

[14+1] [12+3] [10+5] [8+7]0

10

20

30

Memory split [Worker+Server] in GB

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

Figure 4: E↵ect of memory allocation with co-location

requires a decision on how to share the resources on each
machine: besides allocating CPU threads, the memory of the
machine must be shared.

Fig. 4 shows the accuracy achieved on a co-located 32-
machine deployment after one hour of training with different
memory allocations between the workers and the parameter
servers. While each machine has 16 GB of RAM, an alloca-
tion of 3 GB for the parameter server and 12 GB to the work-
ers results in the highest accuracy (31%); an equal memory
split achieves the worst accuracy of 25%.

3. Partial Gradient Exchange
Instead of using parameter servers to synchronise the model
updates produced by workers, we adopt a decentralised syn-
chronisation scheme in which workers communicate directly
with each other, without intermediate nodes. This avoids the
challenge of having to decide on a resource split between
workers and parameter servers.

A strawman solution for decentralised synchronisation is
to use all-to-all communication between the workers, but
this does not scale: n workers would require O(n2) network
bandwidth for the synchronisation, but worker bandwidth
only grows linearly with cluster size, O(n).

To reduce the bandwidth requirement of decentralised
synchronisation, workers could propagate model updates in-
directly, i.e. with some workers relaying updates [41]. Such
an approach, however, degrades statistical efficiency because
it suffers from higher synchronisation latency, and it requires
typically additional all-to-all full model exchanges [23].

We thus want to design a new decentralised synchroni-
sation approach that (i) scales near linearly with the clus-
ter size, and (ii) also exhibits high statistical efficiency that
matches current parameter-server-based approaches.

87

Worker1 Worker3 Worker2

Parameter
server1

Parameter
server2

W1 W2

g
2,1

g
2,1

g
2,2

g
2,2

g1,1

g1,2

g3,2

W1 W2

w1,1 w1,2 w2,1 w2,2 w3,1 w3,2

g
3,1

g
3,2

g3,1

1

2

3

g
1,1

g
1,2

Figure 1: DNN architecture with parameter servers

cost function, generally the error. For the remainder of the
paper, we will refer to F(w) just as the gradients g. To
compute the gradients, forward propagation first obtains the
output layer activations, whose error towards the real output
is used then for the backward propagation.

For gradient descent, there are several possibilities when
the weight updates can be applied. In stochastic learning,
each propagation of a data point is followed immediately by
a weight update. For efficiency, a common technique is to
use mini-batches, i.e. use stochastic learning with more than
one data point at a time.

2.2 DNN systems with parameter servers
DNNs with high accuracy require millions of features, or-
ganised into tens of layers, and they must be trained by iter-
ating repeatedly over gigabytes or terabytes of data [5, 35].
To have an acceptable time-to-convergence, i.e. the training
time required to reach a given accuracy, they must execute
on compute clusters, ranging from tens to thousands of ma-
chines [5, 12, 35].

A scalable approach for training DNNs is to use a param-
eter server architecture [24], as shown in Fig. 1. The training
data is split across worker nodes. Each worker calculates the
gradients g in parallel over its data partition, and refines a
model replica, i.e. its own weights w, according to the back-
propagation algorithm (step 1). In this example, the model
at worker j contains two weight parameters, w j,1 and w j,2,
whose gradients are represented as g j,1 and g j,2, respectively.

After a mini-batch is processed, a worker only has a
model w that is updated with its own gradient from the local
data. To obtain a global model of all data, W , the workers
synchronise their models through parameter servers. The
parameter servers update the global model W by aggregat-
ing the local gradients g (step 2), and return a new global
model W to the workers (step 3). To prevent the communi-
cation from becoming a bottleneck, each parameter server is
responsible for a disjoint part of the model Wn, only manag-
ing the weights of the corresponding layers and/or neurons.

Previous research has shown that the global model can be
updated asynchronously—with each worker synchronising
independently—and still converge [5, 12]. To avoid diver-

0

5

10

15

20

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

PS[60+4]
PS[56+8]

PS[52+12]
PS[48+16]

PS[44+20]

Figure 2: Accuracy for di↵erent worker/parameter server

allocations in cluster

gence between workers, systems include staleness thresh-
olds, i.e. an upper bound on how many model updates can
be missed by a worker [2, 19, 26, 49].

In a distributed setting, a DNN system must therefore op-
timise two different performance aspects to reach the fastest
time-to-convergence. It must achieve:
(i) high hardware efficiency, which is the time to complete
a single iteration. With more workers, a system increases
parallelism and thus reduces iteration time; and
(ii) high statistical efficiency, which is the improvement in
the model per iteration. For this, workers must synchronise
their model replicas as often as possible to maximise global
information gain. Since the synchronisation frequency is
limited by the available network bandwidth, DNN systems
scale out via multiple parameter servers to improve statisti-
cal efficiency.

There is a trade-off between hardware efficiency and sta-
tistical efficiency when allocating resources for workers and
parameter servers in a fixed-sized compute cluster: assigning
more machines to workers improves hardware efficiency, but
it reduces statistical efficiency unless more parameter servers
are added; conversely, more parameter servers increase the
network bandwidth for model synchronisation. This permits
more frequent model updates, thus improving statistical effi-
ciency, but if the parameter servers take resources away from
the workers, hardware efficiency is reduced.

In practice, modern distributed deep learning systems [1,
4, 5, 27] require such decisions on resource allocation [47].
For a given resource budget, typically the majority of ma-
chines execute as workers while the rest form a group of dis-
tributed parameter servers, together maintaining the global
model. For example, TensorFlow [1] supports a typical re-
source split resulting in several worker machines that syn-
chronise with the centralised group of parameter servers;
Singa [27, 42, 43] supports even more advanced cluster con-
figurations with multiple parameter server groups.

2.3 Resource allocation problem
An optimal resource allocation for workers and parameter
servers should result in the fastest time-to-convergence. Next
we show experimentally that the best allocation depends
on many factors, including the cluster size, the hardware
capabilities, and the training data.

86

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 13

§3	Partial	Gradient	Exchange
- Adopting	decentralised synchronisation scheme

• Instead	of	using	parameter	server,	the	author	adopts	a	decentralised
synchronisation scheme.
§ which	workers	communicate	directly	with	each	other,	without	intermediate	
nodes.

• Some	decentralised solutions	are…
§ All-to-All	communication
§ Relaying	updates

• However,	these	are	not	“good”	as	parameter	server.

10/21/16 14

§3	Partial	Gradient	Exchange
- Partial	gradient	exchange	algorithm

• A	new	decentralised synchronisation approach	called	partial	gradient	
exchange.
• In	this	approach,	worker	sends	only	one	partition	to	each	other	worker.

• For	each	worker,	there	are	three	steps	which	refer	as	synchronisation
round.
• Calculating	&	accumulating	local	gradient
• Partitioning	local	gradient
• Sending	local	gradient

10/21/16 15

§3	Partial	Gradient	Exchange
- Partitioning	gradients	at	synchronization	round	𝑡

Creates	the	local	gradients	from	(a	part	of)	data	points	in	mini-batch.

Accumulates	the	gradient	with	previous-unsent	local	gradients.

To	do	so,	worker	needs	to	store	previous	local	gradients	some	how.	

(t)gj

(t)g⇤
j

((t)g⇤
j,1,

(t)g⇤
j,2, · · · , (t)g⇤

j,p)

(t)g⇤
j (t)gj +

(t�1)gj +
(t�2)gj + · · ·

Partitions	the	accumulated	gradient	into	𝑝 disjoint	gradient
partitions.

10/21/16 16

§3	Partial	Gradient	Exchange
- Sending	gradients	at	synchronization	round	𝑡

((t)g⇤
j,1,

(t)g⇤
j,2, · · · , (t)g⇤

j,p)

• Sends	each	gradient	partitions	to	other	workers	in	round-robin	
fashion.

• It	takes	𝑝 synchronization	rounds	to	send	complete	gradient	which	
calculated	at	synchronization	round	𝑡.

((t+1)g⇤
j,1,

(t+1)g⇤
j,2, · · · , (t+1)g⇤

j,p)

⋯

➡ Sending	to	other	workers

((t+p�1)g⇤
j,1,

(t+p�1)g⇤
j,2, · · · , (t+p�1)g⇤

j,p)

10/21/16 17

§3	Partial	Gradient	Exchange
- Accumulating	gradients

• According	to	the	previous	slide,	only	last	𝑝 gradients	are	needed	to	be	
accumulated.
§ Thus,	the	relational	expression	will	be:

§ Subtracting													is	needed	to	avoid	sending	already-sent	gradient	partitions.
§ This	improves	the	training	quality	when	compared	with	no	accumulation.

8
>><

>>:

(1)g⇤
j (1)gj

(t)g⇤
j (t�1)g⇤

j +
(t)gj if 2 t p

(t)g⇤
j (t�1)g⇤

j +
(t)gj � (t�p)gj if t > p

10/21/16 18

(t�p)gj

§3	Partial	Gradient	Exchange
- Receiving	gradients

𝑔&,(∗ 𝑔&,&∗ 𝑔&,*∗

Calculated	by	worker	1

Calculated	in	local

Calculated	by	worker	3

Calculated	by	worker	4

Calculated	by	worker	5

Calculated	by	worker	6

Worker	2

Gradients	that	are	calculated	from	all	
data	points	of	one	mini-batch	at	𝑡.

Gradients	that	are	calculated	from	1/6	
data	points	of	one	mini-batch	at	𝑡.	

Gradients	from	other	workers	
are	received	asynchronously.

10/21/16 19

𝑝 = 3

§3	Partial	Gradient	Exchange
- Receiving	gradients	(cont.)

𝑔(,(∗

𝑔&,(∗ 𝑔&,&∗ 𝑔&,*∗

𝑔-,*∗

𝑔.,&∗

Calculated	by	worker	1

Calculated	in	local

Calculated	by	worker	3

Calculated	by	worker	4

Calculated	by	worker	5

Calculated	by	worker	6

Worker	2synchronization	round	:	𝑡
10/21/16 20

§3	Partial	Gradient	Exchange
- Receiving	gradients	(cont.)

𝑔(,(∗ 𝑔(,&∗

𝑔&,(∗ 𝑔&,&∗ 𝑔&,*∗

𝑔*,&∗

𝑔/,(∗

𝑔-,*∗

𝑔.,&∗ 𝑔.,*∗

Calculated	by	worker	1

Calculated	in	local

Calculated	by	worker	3

Calculated	by	worker	4

Calculated	by	worker	5

Calculated	by	worker	6

Worker	2synchronization	round	:	𝑡 + 1
10/21/16 21

§3	Partial	Gradient	Exchange
- Receiving	gradients	(cont.)

𝑔(,(∗ 𝑔(,&∗ 𝑔(,*∗

𝑔&,(∗ 𝑔&,&∗ 𝑔&,*∗

𝑔*,&∗ 𝑔*,*∗

𝑔/,(∗

𝑔-,(∗ 𝑔-,&∗ 𝑔-,*∗

𝑔.,(∗ 𝑔.,&∗ 𝑔.,*∗

Calculated	by	worker	1

Calculated	in	local

Calculated	by	worker	3

Calculated	by	worker	4

Calculated	by	worker	5

Calculated	by	worker	6

Worker	2synchronization	round	:	𝑡 + 2
10/21/16 22

§3	Partial	Gradient	Exchange
- Receiving	gradients	(cont.)

• Since	the	communication	is	asynchronous,	accumulated	gradient	
partitions	may	not	be	received	in	their	expected	synchronisation
rounds.
§ Expected	to	be	received	in	𝑝 synchronisation rounds.
§ Although	this	introduce	staleness	in	the	local	model,	it	does	not	compromise	
convergence	(mentioned	later).

10/21/16 23

§3	Partial	Gradient	Exchange
- Algorithm

• Each	worker	executes	two	functions,	
generateGradients and	
updatePartialModel,	
asynchronously.
§ 𝑐4, 𝑠4,6, and	𝜏 are	used	for	bounding	
staleness	(mentioned	later).

§ The	updatePartialModel function	is	
executed	when	an	gradient	partition	is	
received	by	a	worker.

Algorithm 1: Partial gradient exchange

1 function generateGradients (j, d, t, h , t)
input : worker index j, mini-batch data points d,

gradient computation timestamp t, learning
rate h , staleness bound t

2 while ¬converged do
3 if c j & min (s j,1, . . . ,s j,n)+ p+ t then
4

t g j ⇥ computeGradient (tw j,d)
5

(t+1)w j ⇥ tw j + h � t g j

6
t gòj ⇥ (t�1)gòj + t g j �

(t�p)g j

7 (t gòj,1, . . . , t gòj,p) ⇥ partitionGrad (t gòj , p)
8 for i = 1 . . .n in parallel do
9 k ⇥ i mod p

10 sendGradient (i, t gòj,k)
11 c j ⇥ c j + 1

12 function updatePartialModel (j, i, g j,p, h)
input : receiver worker index j, origin worker index i,

gradient partition g j,p, learning rate h
13 w j,p ⇥ w j,p + h �g j,p
14 s j,i ⇥ s j,i + 1

idation accuracy has not improved after a fixed number of
evaluation rounds.

The updatePartialModel function is executed when an
accumulated gradient partition is received by a worker. It
updates the local model w j,p asynchronously (line 13).

3.2 Number of gradient partitions
The number of gradient partitions p impacts the statistical
efficiency of partial gradient exchange. There is a trade-off:
when p is small, a worker exchanges large gradient parti-
tions, synchronising local models more quickly but requir-
ing more network bandwidth; when p is large, a worker uses
less bandwidth but requires more synchronisation rounds to
receive a full mini-batch gradient update.

The best choice of p therefore depends on the available
network bandwidth, and workers can use a cost model to
select p when training begins: let m be the local model size,
and n the number of workers, the amount of data to send the
full gradient update to all workers is m(n�1). With partial
gradient exchange, the amount becomes m

p (n�1) as only one
partition is sent to each worker.

Assuming a rate g at which workers compute new gradi-
ent partitions, which is profiled during system start-up, par-
tial gradient exchange requires a bandwidth usage of g m (n�1)

p
to be sustainable, i.e. have a constant transmission delay.
Given an available bandwidth B at each worker (e.g. 1 Gbps),
and assuming full-bisection bandwidth, the workers thus se-
lect the partition number p as:

p = .g m (n�1)
B 4 (3)

3.3 Bounding staleness
The gradients computed by each worker may use weights
from previous mini-batches, which introduces staleness [39].
This staleness has two sources: (i) a simple delay due to
the asynchronous updates to the local models [3] because a
worker computes new gradients without receiving updates
from all the other workers; and (ii) a distributed aggregated
delay [2] because a worker only completes a mini-batch af-
ter it has received all p gradient partitions, requiring multiple
synchronisation rounds.

To guarantee convergence, partial gradient exchange thus
imposes a staleness bound, analogous to the stale syn-
chronous parallel (SSP) model [7]: it limits the generation of
new local gradients when a worker has advanced in the com-
putation further than t compared to all other workers (line 3
in Alg. 1). To do so, each worker j maintains multiple stale-
ness clocks s j,n, one for each other worker n, and a local stal-
eness clock c j. The local clock is incremented after each pro-
duced gradient (line 11); the other workers’ staleness clocks
are incremented when partial updates are received (line 14).

As there is no global model state in partial gradient ex-
change, for workers to check the staleness bound and iden-
tify the least progressed worker, they must maintain the
clock information of other worker to compute the clock dif-
ferential. The staleness bound check also depends on the
number of partitions p because p synchronisation rounds
are necessary to fully propagate a model. Therefore the used
staleness bound is p+ t (line 3). Since updates are incorpo-
rated into the local model as soon as they are available, par-
tial gradient exchange reduces empirical staleness, similar to
the eager stale synchronous parallel model [11], leading to
faster convergence.

4. Ako Architecture
We describe the architecture and implementation of Ako,
a decentralised DNN system that uses partial gradient ex-
change for synchronisation. To combine parallelism for
model training with low communication latency for syn-
chronisation, the architecture of an Ako worker follows a
stateful distributed dataflow model [14]: as shown in Fig. 7,
execution is broken into a series of short, data-parallel tasks.
Tasks can update in-memory state and exchange data with
each other, and also over the network.

We first summarise Ako’s design goals (§4.1) and then
give implementation details (§4.2).

4.1 Design goals

(1) Full utilisation of CPU and network resources. We
want each worker to fully utilise all CPU cores for train-
ing the local model (for highest hardware efficiency), while
also saturating the available network bandwidth for synchro-
nisation (for highest statistical efficiency). Fig. 7 shows how
workers decouple compute tasks that train the local model

89

10/21/16 24

§3	Partial	Gradient	Exchange
- Deciding	the	number	of	gradient	partitions	(p)

• The	number	of	gradient	partitions	𝑝 impacts	the	statistical	efficiency.
§ Workers	can	use	cost	model	to	select	𝑝 when	training	begins:

§ Where,	𝑚 is	the	local	model	size,	𝑛 is	the	number	of	the	workers,	𝛾 is	the	rate	
which	workers	compute	new	gradient	partitions?,	and	𝐵 is	the	given	available	
full-bisection	bandwidth.

10/21/16 25

p =

&
�m(n� 1)

B

'

§3	Partial	Gradient	Exchange
- Deciding	the	number	of	gradient	partitions	(p)	(cont.)

• The	reason	of	this	cost	model
§ The	amount	of	data	to	send	the	full	gradient	is	𝑚(𝑛 − 1) per	worker.
§ With	partial	gradient	exchange,	it	is	𝑚(𝑛 − 1)/𝑝.
§ And	only	𝛾 of	the	whole	workers	need	to	communicate,	thus	γ𝑚(𝑛 − 1)/𝑝.
§ And	this	γ𝑚(𝑛 − 1)/𝑝 is	the	required	bandwidth	usage	of	partial	gradient	
exchange.

§ This	means,	

§ Therefore,	integer 𝑝 will	be	represented	as:

10/21/16 26

p =

&
�m(n� 1)

B

'

B =
�m(n� 1)

p
Assuming	system	has	a	𝑚×𝑚
network	with	bandwidth	𝐵.

§3	Partial	Gradient	Exchange
- Bounding	staleness

• The	gradients	computed	by	each	worker	may	use	weights	from	
previous	mini-batch,	which	introduces	staleness.
• To	guarantee	convergence,	Ako imposes	a	staleness	bound	𝜏.

§ Limits	the	generation	of	new	local	gradients	when	a	worker	has	advanced	in	
the	computation	further	than	𝜏 compared	to	all	other	workers.

§ To	do	so,	each	worker	𝑗 maintain,
• Staleness	clock 𝑠4,6 for	each	other	worker	𝑖.
• Local	staleness	clock 𝑐4.	

§ As	𝑝 synchronisation rounds	are	necessary	to	fully	propagate	model,	staleness	
bound	is	𝑝 + 𝜏.

10/21/16 27

§3	Partial	Gradient	Exchange
- Bounding	staleness	(cont.)

10/21/16 28

Algorithm 1: Partial gradient exchange

1 function generateGradients (j, d, t, h , t)
input : worker index j, mini-batch data points d,

gradient computation timestamp t, learning
rate h , staleness bound t

2 while ¬converged do
3 if c j & min (s j,1, . . . ,s j,n)+ p+ t then
4

t g j ⇥ computeGradient (tw j,d)
5

(t+1)w j ⇥ tw j + h � t g j

6
t gòj ⇥ (t�1)gòj + t g j �

(t�p)g j

7 (t gòj,1, . . . , t gòj,p) ⇥ partitionGrad (t gòj , p)
8 for i = 1 . . .n in parallel do
9 k ⇥ i mod p

10 sendGradient (i, t gòj,k)
11 c j ⇥ c j + 1

12 function updatePartialModel (j, i, g j,p, h)
input : receiver worker index j, origin worker index i,

gradient partition g j,p, learning rate h
13 w j,p ⇥ w j,p + h �g j,p
14 s j,i ⇥ s j,i + 1

idation accuracy has not improved after a fixed number of
evaluation rounds.

The updatePartialModel function is executed when an
accumulated gradient partition is received by a worker. It
updates the local model w j,p asynchronously (line 13).

3.2 Number of gradient partitions
The number of gradient partitions p impacts the statistical
efficiency of partial gradient exchange. There is a trade-off:
when p is small, a worker exchanges large gradient parti-
tions, synchronising local models more quickly but requir-
ing more network bandwidth; when p is large, a worker uses
less bandwidth but requires more synchronisation rounds to
receive a full mini-batch gradient update.

The best choice of p therefore depends on the available
network bandwidth, and workers can use a cost model to
select p when training begins: let m be the local model size,
and n the number of workers, the amount of data to send the
full gradient update to all workers is m(n�1). With partial
gradient exchange, the amount becomes m

p (n�1) as only one
partition is sent to each worker.

Assuming a rate g at which workers compute new gradi-
ent partitions, which is profiled during system start-up, par-
tial gradient exchange requires a bandwidth usage of g m (n�1)

p
to be sustainable, i.e. have a constant transmission delay.
Given an available bandwidth B at each worker (e.g. 1 Gbps),
and assuming full-bisection bandwidth, the workers thus se-
lect the partition number p as:

p = .g m (n�1)
B 4 (3)

3.3 Bounding staleness
The gradients computed by each worker may use weights
from previous mini-batches, which introduces staleness [39].
This staleness has two sources: (i) a simple delay due to
the asynchronous updates to the local models [3] because a
worker computes new gradients without receiving updates
from all the other workers; and (ii) a distributed aggregated
delay [2] because a worker only completes a mini-batch af-
ter it has received all p gradient partitions, requiring multiple
synchronisation rounds.

To guarantee convergence, partial gradient exchange thus
imposes a staleness bound, analogous to the stale syn-
chronous parallel (SSP) model [7]: it limits the generation of
new local gradients when a worker has advanced in the com-
putation further than t compared to all other workers (line 3
in Alg. 1). To do so, each worker j maintains multiple stale-
ness clocks s j,n, one for each other worker n, and a local stal-
eness clock c j. The local clock is incremented after each pro-
duced gradient (line 11); the other workers’ staleness clocks
are incremented when partial updates are received (line 14).

As there is no global model state in partial gradient ex-
change, for workers to check the staleness bound and iden-
tify the least progressed worker, they must maintain the
clock information of other worker to compute the clock dif-
ferential. The staleness bound check also depends on the
number of partitions p because p synchronisation rounds
are necessary to fully propagate a model. Therefore the used
staleness bound is p+ t (line 3). Since updates are incorpo-
rated into the local model as soon as they are available, par-
tial gradient exchange reduces empirical staleness, similar to
the eager stale synchronous parallel model [11], leading to
faster convergence.

4. Ako Architecture
We describe the architecture and implementation of Ako,
a decentralised DNN system that uses partial gradient ex-
change for synchronisation. To combine parallelism for
model training with low communication latency for syn-
chronisation, the architecture of an Ako worker follows a
stateful distributed dataflow model [14]: as shown in Fig. 7,
execution is broken into a series of short, data-parallel tasks.
Tasks can update in-memory state and exchange data with
each other, and also over the network.

We first summarise Ako’s design goals (§4.1) and then
give implementation details (§4.2).

4.1 Design goals

(1) Full utilisation of CPU and network resources. We
want each worker to fully utilise all CPU cores for train-
ing the local model (for highest hardware efficiency), while
also saturating the available network bandwidth for synchro-
nisation (for highest statistical efficiency). Fig. 7 shows how
workers decouple compute tasks that train the local model

89

Local	staleness	bound	
is	incremented	after	
one	synchronisation
round	ended. Staleness	bound	for	

worker	𝑖 is	incremented	
when	partial	gradient	is	
received.

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 29

§4	Ako Architecture
- Implementation	of	the	Ako architecture

• The	Ako architecture	follows	a	stateful
distributed	dataflow	model.
• Execution	is	broken	into	a	series	of	
short	tasks.
§ Compute	tasks	have	one	work

• Gradient	computation
§ Network	tasks	have	four	works

• Gradient	accumulation
• Gradient	partitioning
• Gradient	sending
• Gradient	receiving

10/21/16 30

Computation	is	parallel.	
Each	task	has	exclusive	

access	to	the	local	model.

§4	Ako Architecture
- Implementation	of	the	Ako architecture	(cont.)

• Gradient	computation
§ Local	computation	is	in	parallel	and	each	task	has	exclusive	access	to	a	
partition	of	the	local	model.

§ When	the	gradient	computation	is	at	the	end	of	the	mini-batch,	the	
computed	(local)	gradients	are	aggregated	and	updates	the	(local)	model.

§ Update	occurs	concurrently	with	other	compute	task	reading	the	(local)	
model.

• Gradient	accumulation
§ The	computed	gradients	at	the	end	of	a	mini-batch	are	accumulated	by	a	pool	
of	network	task.

10/21/16 31

§4	Ako Architecture
- Implementation	of	the	Ako architecture	(cont.)

• Gradient	partitioning
• Before	sending	the	gradients,	it	is	partitioned	using	range-partitioning.

• Gradient	sending
• Send	the	gradient	partitions,	tagged	by	the	partitioning	range,	to	other	
workers	in	round-robin.
• After	𝑝 rounds,	complete	gradients	have	been	sent	to	all	workers.

• Gradient	receiving
• Concurrently,	workers	receive	gradient	partitions	from	other	worker.
• Network	task	apply	the	gradients	immediately	without	locking.

10/21/16 32

§4	Ako Architecture
- Fault	tolerance

• Ako uses	checkpointing for	fault	tolerance.
§ Each	worker	saves	their	local	models	and	the	staleness	counter.
§ Similar	to	SEEP	[14]	and	TensorFlow [1].
§ SEEP’s	master	node	notifies	the	other	workers	and	let	them	remove	the	
staleness	counter.
• Counters	are	re-added	when	worker	recover.

10/21/16 33

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 34

§5	Evaluation
- Setting-up	datasets	and	DNNs

• Datasets
§ MNIST
§ ImageNet

• DNNs
§ 3	convolutional	(with	max-pooling)	and	2	fully-connected	layers.

• For	MNIST,	10/20/100	convolutional	kernels	(filters)	with	200	neurons
• For	ImageNet	32/64/256	convolutional	kernels	(filters)	with	800	neurons.

• Prior	to	training
§ Datasets	are	partitioned	evenly	across	the	workers.
§ The	model	parameters	are	initialized	using	warm-start.

10/21/16 35

§5	Evaluation
- Setting-up	systems

• Ako vs.	PS[w+p]	(parameter	server)	vs.	Al-to-All
§ All	are	implemented	on	top	of	the	SEEP stateful distributed	data	platform	
with	the	same	optimizations.

• Ako vs.	TF	(TensorFlow)	vs.	SG	(Singa)
§ For	TF	and	SG,	asynchronous	Downpour	algorithm architecture	is	used	to	
train	DNNs.

• Staleness	bound	𝜏
§ Decided	according	to	the	used	data	set	and	DNN	models.
§ As	a	heuristic,	𝜏 is	increased	proportionally	to	the	#	of	used	workers.

10/21/16 36

§5	Evaluation
- Short	intro	of	MNIST	and	ImageNet

• MNIST	
§ Dataset	of	handwritten	digits	(0	to	9).
§ 60,000	training	sets,	and	10,000	test	sets.
§ Each	image	has	28x28	pixels	which	have	0	to	255	value.
§ http://yann.lecun.com/exdb/mnist/

• ImageNet	
§ Dataset	of	images	that	illustrate	synonym	set	(synset)	nouns.
§ More	than	14,000,000	images	that	have	been	indexed.
§ http://image-net.org/

10/21/16 37

§5	Evaluation
- Short	intro	to	SEEP	and	Downpour	SGD

• SEEP	[14]	(http://lsds.doc.ic.ac.uk/projects/SEEP)
§ An	experimental	parallel	data	processing	system	developed	by	LSDS.
§ Handles	large	scale	stream	data	processing	in	cloud	architectures	with	stateful
operator.

• Downpour	SGD	[12]
§ Asynchronous	SGD	algorithm	on	parameter	server	deployment.
§ Using	AdaGrad learning	rate.

10/21/16 38

§5	Evaluation
- Performance	metrics	&	cluster	hardware

• Validation	of	the	DNN	models
§ Based	on	top-1	accuracy	with	the	validation	data,	not	the	top-5.

• Hardware	environment
1. For	MNIST,	16-machine	cluster	with	4-core	Intel	Xeon	E3-1220	3.1GHz	CPUs	

with	8GB	RAM	and	1Gbps	Ethernet
2. For	ImageNet,	64-machine	Amazon	EC2	cluster	with	“m4.xlarge”	Intel	Xeon	

instances,	each	with	4	vCPU	cores	at	2.4GHz	and	16GB	RAM

10/21/16 39

§5	Evaluation
- Results	of	convergence	and	scalability	(MNIST)

§ Fig.	(a)	shows	that	Ako achieves	similar	convergence	as	PS*.
• PS*[1+3]	for	4	machines	and	PS*[7+1]	for	8	machines.

§ Fig.	(b)	shows	that	Ako achieves	similar	convergence	as	PS*	and	converges	
faster	than	All-to-All.
• All-to-All	is	not	“too	bad”	since	the	data	that	need	to	communicate	is	not	too	large.

10/21/16 40

§5	Evaluation
- Results	of	convergence	and	scalability	(MNIST)

§ Fig.	(c)	shows	that	Ako converges	faster	than	both	TF	and	SG.
§ From	table	1,	it	takes	Ako 7	minutes	and	TF*	more	than	20	minutes	to	achieve	
validation	accuracy	of	99%.
• Author	speculates	this	difference	is	caused	from	synchonisation under	downpour	SGD.

10/21/16 41

§5	Evaluation
- Results	of	convergence	and	scalability	(ImageNet)

§ Fig.	(a)	shows	that	Ako achieves	a	higher	validation	accuracy	than	PS*,	and	
with	more	machines,	Ako and	PS*	convergence	improves.
• Any	Ako worker	can	be	used	for	validation,	as	difference	between	them	are	negligible.

§ Fig.	(b)	shows	that	Ako requires	less	training	time	than	PS*.
• As	Ako has	more	worker	nodes	than	PS	has.

10/21/16 42

§5	Evaluation
- Results	of	convergence	and	scalability	(ImageNet)

§ Fig.	(c)	shows that Ako scales gracefully.
• Ako keeps the communication cost constant with 𝑝.

§ Fig.	(a)	shows	that	Ako achieves	higher	accuracy	from	the	begging	of	training.

10/21/16 43

§5	Evaluation
- Results	of	statistical	efficiency

§ Number	of	epochs	to	achieve	5,	10,	15,	20%	accuracy	in	ImageNet.
§ Fig.	shows	that the	PS	approach	requires	the	fewest	passes.

• Ako requires	extra	epochs,	which	is	less	statistically	efficient	than	PS.
• Workers	receive	incomplete	gradients	but	with	low	latency.

10/21/16 44

§5	Evaluation
- Results	of	hardware	efficiency

§ Collected	time	per	epoch	with	two	aspects.
§ Fig.	shows	that	Ako has	shorter	epoch	time	than	PS.

10/21/16 45

§5	Evaluation
- Results	of	resource	utilisation

• Average	CPU	resource	utilisations on	16-machines	were
§ Worker	of	Ako:	87%
§ Worker	of	PS*[12+4]:	84%,	parameter	server	of	PS*[12+4]:	17%
§ Worker	of	All-to-All:	85%

10/21/16 46

§5	Evaluation
- Results	of	resource	utilisation

§ Fig.	shows	the	accumulated	network	usage	utilisation in	MBs.
• For	Ako,	usage	is	high	while	still	achieving	a	low	synchronisation delay.
• For	PS*,	worker-worker	networks	are	unused.
• All-to-All	also	saturates	the	network,	but	suffers	from	a	high	delay.	

10/21/16 47

§5	Evaluation
- Effectiveness	of	gradient	partitions	and	accumulation

§ Fig.	(a)	shows	how	partition	number	effects	accuracy	in	Ako.
§ Fig.	(b)	shows	how	partition	number	effects	bandwidth	usage	in	Ako.
§ Right	fig.	shows	how	accumulation	of	gradient	effects	accuracy	in	Ako.

• Without	accumulation,	workers	do	not	receive	complete	gradients,	make	the	statistical	
efficiency	low.

10/21/16 48

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 49

§6	Related	Work
- DNN	systems	with	parameter	servers

• DistBelief [12]
• TensorFlow [1]
• Project	Adam	[5]
• Singa [27,	42,	43]
• Poseidon	[48]
• SparkNet [25]
• Bösen [44]
• Yan	et	al.	[47]

10/21/16 50

§6	Related	Work
- DNN	systems	without	parameter	servers

• Wang	et	al.	[41]
• MALT	[23]
• CNTK	[32,	33]
• Mariana	[50]
• Deep	Image	[45]

10/21/16 51

Index

1. Introduction
2. Resource	Allocation	in	DNN	Systems
3. Partial	Gradient	Exchange
4. Ako Architecture
5. Evaluation
6. Related	work
7. Conclusion

10/21/16 52

§7	Conclusions

• To	achieve	the	best	performance,	distributed	DNN	systems	must	fully	
utilise the	system	resources.
• This	paper	described	Ako,	a	decentralised DNN	system	that	does	not	
use	parameter	servers.
• In	the	experiment	of	Ako implementation	on	a	fixed-size	cluster,	it	
achieved	better	performance	than	one	with	parameter	servers.

10/21/16 53

