HPC16 4th Presentation

Yohei Tsuji

Tokyo institute of technology,

Dept. of Mathematical and Computing Science, Matsuoka Lab.

1

Selected Papers

- P. Watcharapichat, V. L. Morales, R. C. Fernandez, P. Pietzuch.
- Ako: Decentralised Deep Learning with Partial Gradient Exchange.
- SoCC '16 Proceedings of the Seventh ACM Symposium on Cloud Computing.

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

Index

1. Introduction

- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

§1 Introduction

- DNNs in distributed systems

- A common architecture for DNN systems takes advantage of dataparallelism which a set of *workers* train model replicas.
- By using *parameter servers*, model replicas are kept synchronised.
- DNN systems employing parameter server must balance the use of compute and network resources to achieve fastest model.
 - However, an optimal resource allocation depends on many factors, and users must decide it empirically, by trial-and-error approach.

§1 Introduction

- Described system

- Goal is to design a DNN system that always utilises the full CPU resources and network bandwidth of a cluster.
- Paper describe *Ako*, a decentralised DNN system.
 - Homogeneous workers train model replicas without parameter server.
 - Synchronise directly with each other in a peer-to-peer fashion.

Index

1. Introduction

2. Resource Allocation in DNN Systems

- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

- DNN systems with parameter servers

- A scalable approach for training DNNs is to use *parameter server*
 - 1. The training data is split across *worker*.
 - 2. Each worker calculate the gradient over its data partition.
 - 3. Worker sends the local gradient g to parameter servers.
 - 4. Parameter servers aggregate the gradients and update the global model W.
 - 5. And return the new model W to the workers.

For more detail about parameter server architecture, read [24, 2, 19, 26, 49].

- DNN systems with parameter servers

- To reach fastest time-to-convergence, DNN systems must achieve:
 - 1. High hardware efficiency,
 - Which is time to complete a single iteration.
 - 2. High statistical efficiency,
 - Which is the improvement in the model per iteration.
- There is a trade-off between these two aspects.
 - In practice, modern distributed DNN systems require such decision on resource allocation.

- Resource allocation problem

- The best allocation should result in fastest time-to-convergence.
 - However, the best allocation depends on many factors which make prediction difficult.
- This difficulty can be checked through some experiments.
 - Deployed a DNN system with parameter servers on 64-machines, training a model for ImageNet benchmark (explained later).

- Resource allocation problem

Figure 3: Effect of system and workload changes on best resource allocation

- Accuracy with different (a) cluster size, (b) hare, and (c) workloads.
- In (b), comparing "m4.xlarge" and "c4.2xlarge" VM or a 6 m chine Amazon
 EC2 deployment.
- EC2 deployment.
 In (c), low-resolution is 100x100 pixels, and high-reply on s 2 0x200 pixels.
 Memory split [Worker+Server] in GB

- Resource allocation problem

- Accuracy with different worker and parameter server allocation (left), and memory allocation in co-located parameter server (right).
 - Both are accuracy after one hour training.
- In co-located [44], worker and parameter server are located on same node.

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

- Adopting decentralised synchronisation scheme

- Instead of using parameter server, the author adopts a decentralised synchronisation scheme.
 - which workers communicate directly with each other, without intermediate nodes.
- Some decentralised solutions are...
 - All-to-All communication
 - Relaying updates
- However, these are not "good" as parameter server.

- Partial gradient exchange algorithm

- A new decentralised synchronisation approach called *partial gradient exchange*.
 - In this approach, worker sends only one partition to each other worker.
- For each worker, there are three steps which refer as *synchronisation round*.
 - Calculating & accumulating local gradient
 - Partitioning local gradient
 - Sending local gradient

- Partitioning gradients at synchronization round t

Creates the local gradients from (a part of) data points in mini-batch.

Accumulates the gradient with previous-unsent local gradients.

$${}^{(t)}\mathbf{g}_j^* \leftarrow {}^{(t)}\mathbf{g}_j + {}^{(t-1)}\mathbf{g}_j + {}^{(t-2)}\mathbf{g}_j + \cdots$$

To do so, worker needs to store previous local gradients some how.

$$({}^{(t)}\mathbf{g}_{j,1}^{*}, {}^{(t)}\mathbf{g}_{j,2}^{*}, \cdots, {}^{(t)}\mathbf{g}_{j,p}^{*})$$

 $^{(t)}\mathbf{g}$;

Partitions the accumulated gradient into p disjoint **gradient partitions**.

- Sending gradients at synchronization round t

Sending to other workers

- Sends each gradient partitions to other workers in round-robin fashion.
- It takes *p* synchronization rounds to send complete gradient which calculated at synchronization round *t*.

- Accumulating gradients

- According to the previous slide, only last p gradients are needed to be accumulated.
 - Thus, the relational expression will be:

$$\begin{cases} {}^{(1)}\mathbf{g}_{j}^{*} \leftarrow {}^{(1)}\mathbf{g}_{j} \\ {}^{(t)}\mathbf{g}_{j}^{*} \leftarrow {}^{(t-1)}\mathbf{g}_{j}^{*} + {}^{(t)}\mathbf{g}_{j} & \text{if } 2 \leq t \leq p \\ {}^{(t)}\mathbf{g}_{j}^{*} \leftarrow {}^{(t-1)}\mathbf{g}_{j}^{*} + {}^{(t)}\mathbf{g}_{j} - {}^{(t-p)}\mathbf{g}_{j} & \text{if } t > p \end{cases}$$

• Subtracting $^{(t-p)}\mathbf{g}_j$ is needed to avoid sending already-sent gradient partitions.

This improves the training quality when compared with no accumulation.

- Receiving gradients (cont.)

synchronization round : *t*

- Receiving gradients (cont.)

synchronization round : t + 1

- Receiving gradients (cont.)

- Receiving gradients (cont.)

- Since the communication is asynchronous, accumulated gradient partitions may not be received in their expected synchronisation rounds.
 - Expected to be received in p synchronisation rounds.
 - Although this introduce staleness in the local model, it does not compromise convergence (mentioned later).

- Algorithm

- Each worker executes two functions, generateGradients and updatePartialModel, asynchronously.
 - c_j, s_{j,i}, and τ are used for bounding staleness (mentioned later).
 - The updatePartialModel function is executed when an gradient partition is received by a worker.

Algorithm 1: Partial gradient exchange

```
1 function generateGradients (j, d, t, \eta, \tau)
           input : worker index j, mini-batch data points d,
                        gradient computation timestamp t, learning
                        rate \eta, staleness bound \tau
           while ¬converged do
 2
                  if c_j \leq \min(s_{j,1}, \ldots, s_{j,n}) + p + \tau then
 3
                        {}^{t}g_{j} \leftarrow \text{computeGradient}({}^{t}w_{i},d)
 4
                        {}^{(t+1)}w_i \leftarrow {}^tw_i + \eta \cdot {}^tg_i
 5
                        {}^{t}g_{j}^{*} \leftarrow {}^{(t-1)}g_{j}^{*} + {}^{t}g_{j} - {}^{(t-p)}g_{j}
 6
                        \binom{t}{g}_{i,1}^*, \dots, \binom{t}{g}_{i,p}^* \leftarrow \text{partitionGrad}\binom{t}{g}_{j}^*, p
 7
                        for i = 1 \dots n in parallel do
 8
                               k \leftarrow i \mod p
 9
                               sendGradient (i, {}^{t}g_{j,k}^{*})
10
                        c_i \leftarrow c_i + 1
11
12 function updatePartialModel (j, i, g_{j,p}, \eta)
| input : receiver worker index j, origin worker index i,
                        gradient partition g_{j,p}, learning rate \eta
           w_{j,p} \leftarrow w_{j,p} + \eta \cdot g_{j,p}
13
           s_{i,i} \leftarrow s_{i,i} + 1
14
```

- Deciding the number of gradient partitions (p)

- The number of gradient partitions *p* impacts the statistical efficiency.
 - Workers can use cost model to select p when training begins:

$$p = \left\lceil \frac{\gamma m(n-1)}{B} \right\rceil$$

Where, m is the local model size, n is the number of the workers, γ is the rate which workers compute new gradient partitions[?], and B is the given available full-bisection bandwidth.

- Deciding the number of gradient partitions (p) (cont.)

- The reason of this cost model
 - The amount of data to send the full gradient is m(n-1) per worker.
 - With partial gradient exchange, it is m(n-1)/p.
 - And only γ of the whole workers need to communicate, thus $\gamma m(n-1)/p$.
 - And this $\gamma m(n-1)/p$ is the required bandwidth usage of partial gradient exchange.
 - This means,

$$B = \frac{\gamma m(n-1)}{p}$$

Assuming system has a $m \times m$ network with bandwidth B.

• Therefore, integer p will be represented as:

$$p = \left\lceil \frac{\gamma m(n-1)}{B} \right\rceil$$

- Bounding staleness

- The gradients computed by each worker may use weights from previous mini-batch, which introduces *staleness*.
- To guarantee convergence, Ako imposes a staleness bound τ .
 - Limits the generation of new local gradients when a worker has advanced in the computation further than τ compared to all other workers.
 - To do so, each worker j maintain,
 - Staleness clock $s_{j,i}$ for each other worker *i*.
 - Local staleness clock c_j.
 - As p synchronisation rounds are necessary to fully propagate model, staleness bound is $p + \tau$.

- Bounding staleness (cont.)

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange

4. Ako Architecture

- 5. Evaluation
- 6. Related work
- 7. Conclusion

- Implementation of the Ako architecture

- The Ako architecture follows a stateful distributed dataflow model.
- Execution is broken into a series of short *tasks*.
 - Compute tasks have one work
 - Gradient computation
 - Network tasks have four works
 - Gradient accumulation
 - Gradient partitioning
 - Gradient sending
 - Gradient receiving

- Implementation of the Ako architecture (cont.)

- Gradient computation
 - Local computation is in parallel and each task has exclusive access to a partition of the local model.
 - When the gradient computation is at the end of the mini-batch, the computed (local) gradients are aggregated and updates the (local) model.
 - Update occurs concurrently with other compute task reading the (local) model.
- Gradient accumulation
 - The computed gradients at the end of a mini-batch are accumulated by a pool of network task.

- Implementation of the Ako architecture (cont.)

- Gradient partitioning
 - Before sending the gradients, it is partitioned using range-partitioning.
- Gradient sending
 - Send the gradient partitions, tagged by the partitioning range, to other workers in round-robin.
 - After *p* rounds, complete gradients have been sent to all workers.
- Gradient receiving
 - Concurrently, workers receive gradient partitions from other worker.
 - Network task apply the gradients immediately without locking.

- Fault tolerance

- Ako uses checkpointing for fault tolerance.
 - Each worker saves their local models and the staleness counter.
 - Similar to SEEP [14] and TensorFlow [1].
 - SEEP's master node notifies the other workers and let them remove the staleness counter.
 - Counters are re-added when worker recover.

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture

5. Evaluation

- 6. Related work
- 7. Conclusion

- Setting-up datasets and DNNs

- Datasets
 - MNIST
 - ImageNet
- DNNs
 - 3 convolutional (with max-pooling) and 2 fully-connected layers.
 - For MNIST, 10/20/100 convolutional kernels (filters) with 200 neurons
 - For ImageNet 32/64/256 convolutional kernels (filters) with 800 neurons.
- Prior to training
 - Datasets are partitioned evenly across the workers.
 - The model parameters are initialized using <u>warm-start</u>.

- Setting-up systems

- Ako vs. PS[w+p] (parameter server) vs. Al-to-All
 - All are implemented on top of the SEEP stateful distributed data platform with the same optimizations.
- Ako vs. TF (TensorFlow) vs. SG (Singa)
 - For TF and SG, asynchronous Downpour algorithm architecture is used to train DNNs.
- Staleness bound au
 - Decided according to the used data set and DNN models.
 - As a heuristic, τ is increased proportionally to the # of used workers.

- Short intro of MNIST and ImageNet

• MNIST

- Dataset of handwritten digits (0 to 9).
- 60,000 training sets, and 10,000 test sets.
- Each image has 28x28 pixels which have 0 to 255 value.
- http://yann.lecun.com/exdb/mnist/
- ImageNet
 - Dataset of images that illustrate synonym set (synset) nouns.
 - More than 14,000,000 images that have been indexed.
 - <u>http://image-net.org/</u>

- Short intro to SEEP and Downpour SGD

- SEEP [14] (<u>http://lsds.doc.ic.ac.uk/projects/SEEP</u>)
 - An experimental parallel data processing system developed by LSDS.
 - Handles large scale stream data processing in cloud architectures with stateful operator.
- Downpour SGD [12]
 - Asynchronous SGD algorithm on parameter server deployment.
 - Using AdaGrad learning rate.

- Performance metrics & cluster hardware

Validation of the DNN models

Based on top-1 accuracy with the validation data, not the top-5.

- Hardware environment
 - 1. For MNIST, 16-machine cluster with 4-core Intel Xeon E3-1220 3.1GHz CPUs with 8GB RAM and 1Gbps Ethernet
 - 2. For ImageNet, 64-machine Amazon EC2 cluster with "m4.xlarge" Intel Xeon instances, each with 4 vCPU cores at 2.4GHz and 16GB RAM

- Results of convergence and scalability (MNIST)

- Fig. (a) shows that Ako achieves similar convergence as PS*.
 - PS*[1+3] for 4 machines and PS*[7+1] for 8 machines.
- Fig. (b) shows that Ako achieves similar convergence as PS* and converges faster than All-to-All.
 - All-to-All is not "too bad" since the data that need to communicate is not too large.

- Results of convergence and scalability (MNIST)

(c) Comparison with TensorFlow and Singa

Dataset	Accuracy	TensorFlow	All-to-All	Ako
MNIST	99%	> 20 min	14 min	7 min
ImageNet	30%	3.3 h	>4 h	1.5 h

Table 1: Time to reach target validation accuracy

- Fig. (c) shows that Ako converges faster than both TF and SG.
- From table 1, it takes Ako 7 minutes and TF* more than 20 minutes to achieve validation accuracy of 99%.
 - Author speculates this difference is caused from synchonisation under downpour SGD.

- Results of convergence and scalability (ImageNet)

- Fig. (a) shows that Ako achieves a higher validation accuracy than PS*, and with more machines, Ako and PS* convergence improves.
 - Any Ako worker can be used for validation, as difference between them are negligible.
- Fig. (b) shows that Ako requires less training time than PS*.
 - As Ako has more worker nodes than PS has.

- Results of convergence and scalability (ImageNet)

- Fig. (c) shows that Ako scales gracefully.
 - Ako keeps the communication cost constant with *p*.
- Fig. (a) shows that Ako achieves higher accuracy from the begging of training.

- Results of statistical efficiency

(b) Epoch number for given accuracy goal

- Number of epochs to achieve 5, 10, 15, 20% accuracy in ImageNet.
- Fig. shows that the PS approach requires the fewest passes.
 - Ako requires extra epochs, which is less statistically efficient than PS.
 - Workers receive incomplete gradients but with low latency.

- Results of hardware efficiency

- Collected time per epoch with two aspects.
- Fig. shows that Ako has shorter epoch time than PS.

- Results of resource utilisation

- Average CPU resource utilisations on 16-machines were
 - Worker of Ako: 87%
 - Worker of PS*[12+4]: 84%, parameter server of PS*[12+4]: 17%
 - Worker of All-to-All: 85%

- Results of resource utilisation

Figure 11: Average network usage with 16 machines (ImageNet)

- Fig. shows the accumulated network usage utilisation in MBs.
 - For Ako, usage is high while still achieving a low synchronisation delay.
 - For PS*, worker-worker networks are unused.
 - All-to-All also saturates the network, but suffers from a high delay.

- Effectiveness of gradient partitions and accumulation

Figure 12: Effect of gradient partitions

- Fig. (a) shows how partition number effects accuracy in Ako.
- Fig. (b) shows how partition number effects bandwidth usage in Ako.
- Right fig. shows how accumulation of gradient effects accuracy in Ako.
 - Without accumulation, workers do not receive complete gradients, make the statistical efficiency low.

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

§6 Related Work

- DNN systems with parameter servers

- DistBelief [12]
- TensorFlow [1]
- Project Adam [5]
- Singa [27, 42, 43]
- Poseidon [48]
- SparkNet [25]
- Bösen [44]
- Yan et al. [47]

§6 Related Work

- DNN systems without parameter servers

- Wang et al. [41]
- MALT [23]
- CNTK [32, 33]
- Mariana [50]
- Deep Image [45]

Index

- 1. Introduction
- 2. Resource Allocation in DNN Systems
- 3. Partial Gradient Exchange
- 4. Ako Architecture
- 5. Evaluation
- 6. Related work
- 7. Conclusion

§7 Conclusions

- To achieve the best performance, distributed DNN systems must fully utilise the system resources.
- This paper described Ako, a decentralised DNN system that does not use parameter servers.
- In the experiment of Ako implementation on a fixed-size cluster, it achieved better performance than one with parameter servers.