Distributed Training of Deep Neural Networks:
Theoretical and Practical Limits of Parallel Scalability

BY Janis Keuper & Franz-Josef Pfreundt

17M38236 SUN NAN

Contents

1. Overview of distributed parallel training of Deep Neural Networks(DNN)

2. Three bottlenecks of scalable distributed DNN training
a. Communication Bounds
b. “Skinny” Matrix Multiplication
c. Basic I/O of Data

3. Suggestions to build your own networks

WaGE-19 3d-layer plain 34-layer residual

image mage image

Deep Neural Network

[it 1:s | [ax.'::::-b&..r‘: | | n:.::-;,u..'z |
::P:; [33 w:-v. 256 | [!-‘!{w. T |
[e 256 | [Judcare, G 1
Quora E Hom9 Z Answer ‘ Notifications Q_Search Quora Il ’m}-m : : M{'w lI
. 256 !II'SOU*W.EI
= =
¥
sl 1 | Salcoew,13s 2 |
Deep Residual Learning Deep Learning Artificial Intelligence +1 # 1| u,}.m | [m{mm 1
[SScowiiz | [ateomeam)
- . L ¥
How does deep residual learning work? Capm))
'.]2:3
T
Answer | | Request ¥ | Follow 157 Comment Downvote fy ... ' ”“’;""“ !
[= !T.JH |
?r:p?l [h:Wi:.‘:.u | [Tw.z!::!]
7 Answers ' EE | m}.m 1 m.,..:n,m .
I 3al earw, 513 | [MT_.H& |
’ [asbamewstd | [wdcome i |
Carlos E. Perez, Software A#€hitect - Design Patterns for Deep Learning L | mp..:",m |
Architectures : e :
Updated Jun 3, 2016¢4 Dpvoted by Rafael Espericueta, MS in Computer Science (Machine : ——)
Learning) from Brgia Tech and Erlend Davidson, Academic physics researcher using ML [m.{m]
techniques boiif for work and personal fun. S o 15
. £ . . . [T
Deep Residual Jearning network is a very intriguing network that was developed by aun - : m,},,,,, : CmmimaT
researchers ffom Microsoft Research. The results are quite impressive in that it : — : —
received figdt place in ILSVRC 2015 image classification. The network that they used | m{n.m |
ha ers, an impressive 8 times deeper than a comparable VGG network. This is I| -]'
a snapsmot from the paper: http://arxiv.org/pdf/1512.03385v... .- comparing their =1 LE*L | e | :

network with a similarly constructed VGG Convolution Network: -

Deep Neural Network

At a very abstract level, DNN means:
1. Graphs, more precisely, directed graphs
2. Nodes, compute entities (Layers)

3. Edges, data flow through graphs (Functions
and Weights)

Training the networks means:
Flow the data from the top to the bottom

Deep Neural Network

hyp(X)

Layer L;

hwp(z) =a

Training set: {(m{'lﬁi" y 1))

(3) _ f(Wl':l? ::'a,?:] L

1

a4

f
f(U_,rg':_ll e +
f

, L]

= f(W 2 + W ay + W

»(1)

ILQQ

) _ (W :;11 T+]_{.,r?lfgl) zo + W,

7 (2) |
12 %9

:] + W5 ag

. (aj[f-m.} : y[':-m.})}

) + IIrZI:;ll s + b|21|)

(1) (1)
33 3 1+ by)

r(2) (2)

|2|
+b2)

Deep Neural Network

Layer types(more than 100):

Input Layers

Sigmoid

Convolutional Layer

Pooling

RelLU

Softmax

Loss Layers

Local Response Normalization (LRN)

No Uk wWwNEO

Training Deep Neural Network

JOW.b; 2,y) % Ihwa(z) — vl BP algorithm:
- liJ(W, o H)] | EtT & T (Wj‘) 1. Initialize weights W at random
Kl g 2. Take small random subset X (=batch) of the
(1 &L/ o one train data
— |23 (3 lwata®) = 4O)] A5 (w)’
L =1 =1 sl =1 3. Run X through network (forward feed)

)
G I-fl-’}'ff:'

W =W — a—2zJ(W,b) 4. Compute Loss

B0 40 af,'—mJ(T-'l-i b 5. Compute Gradient
% 6. Propagate backwards through the network
7. Update W

8. Repeat until convergence

Why Stochastic Gradient Descent

Limitations of gradient descent:
a. Relatively slow close to the minimum
b. Local minima
c. Entire data set is needed for each computation

e
global maximum

local maximum
T T

1(0,,0,) ,

local minimum

.,
global minimum

-4 I I I I I

a 02 0.4 0.8 0.8 1 12

Why Stochastic Gradient Descent

J(6) = ﬁzo} 6y

oI
06,

1 &, iNy i
——> (¥ = hy (X)X
n -

J

' 1 < i i i
6, =9j+Z;(y — hy(x"))x!

In Gradient Descent:

Run every training example before doing an
update. When there is a large dataset, you might
spend much time on getting something that
works.

‘91" - gj +(yi —hg(xi))x;

In SGD:

Update every time it finds a training
example(Online Learning). On large datasets, SGD
can converge faster than gradient descent since it
performs updates more frequently.

Why Stochastic Gradient Descent

- SGD

— Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

XA

1.0

Parallelization

Parallelization of SGD is very hard, it is an inherently sequential
algorithm

" i~ d3 1. Start at a state t (point in a billion
+ dimensional space)
* i 2. Introduce t to data batch d1
Q State t+2 3. Compute an update (based on the objective
Statet Sttt function)

4. Apply the update - t+1

Parallelization

Things we can do:
1.Make faster updates -> Inner parallelization

2.Make larger updates -> Outer parallelization

Parallelization

Inner parallelization

Def. Use parallel algorithms to compute the forward and backward
operations within the layers of the DNN

1. Dense matrix multiplication
a. Open-source BLAS(Basic Linear Algebra Subprograms)

b. Intel® MKL(CPU)
c. NVIDIA® cuBLAS(GPU)

Parallelization

Dense matrix:
1. Definition

(3 3 2 4 0 3 2 11 4\
1 1.3 0 3 3 0 1 4 2 .
s > 5 3 0 3 4 o 4 4 Whether or not we have only a few non-zero entries
1 2 0 4 0 0 4 0 2 4
A 3101 1 1 4 2 01
o4 404021 34 2. Basic rule
4 0 401 2 2 3 0 4 . .
4004242414 Never store the whole matrix in the memory(also
1 4 3 0 2 1 4 4 2 0 . 2\ . . .
s 31002013 bringsaboutO(n®)in multiplication), GPU&CPU

. . doesn’t have “enough” memor
Is it a dense matrix? g Y

Probably YES
3. Block matrix

Parallelization

60

100
120

140

160 J0

0 20 40 60 80 100 120 140 160

A 168X 168 element block matrix with 12X12, 12 X 24,
24x12, and 24 X 24 sub-Matrices. Non-zero elements are
in blue, zero elements are grayed.

Parallelization

Inner parallelization

Def. Use parallel algorithms to compute the forward and backward
operations within the layers of the DNN

2. Task parallelization for special Layers
NVIDIA® Cuda-CNN for fast convolutions

Parallelization

A quick overview of convolution operation in CNN:

(4 x0)

def
(.f * 5’) (t) = / f (T)g (t - T) dr Center element of the kemel is placed over the zg : g;
;4 source pixel. The source pixel is then replaced (0% 0)

M with a weighted sum of itself and nearby pixels. ©0x1)
(fxg)lnl= Y fln—migim]. ©x 1)
= 5 ‘ (0x0)

ource pixel (0x1)

+(-4x2)

-8

Convolution kernel
(emboss)

-
-”
-

New pixel value (destination pixel)

Parallelization

How to accelerate the convolution with Cuda?

void __global__ vectorADD_gpu(double *A, blOCkDim.X: Number Of th read
double *B,
oue blockldx.x: Index of block
double *C,
] threadldx.x: Index of thread

int const tid = blockDim.x * blockldx.x + threadldx.x;

int const t_n=gridDim x*blockDim x; Kernel function will compute tid(thread’s ID)
‘{”“"‘"‘“d"N) elements in A,B and C in each thread

Cltid] = A[tid] + B[tid]; simultaneously

tid+=t_n;
}

}

vectorADD_gpu<<<blocksPerGrid, threadsPerBlock>>>(A, B, C, N);

Parallelization

Similarly, Cuda use the parallelization to reduce time in calculating
convolution

FFT(Fast Fourier Transform)
O(n?) -> O(nlogn)

Parallelization

Outer parallelization

Def. Use parallel algorithms to compute the forward and backward
operations over the distributed batches

2
3
1

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients EEnE EEnm EEn
to master

3. Master combines
gradients and
computes updates
of W. Sends new
W' to workers

forward backward forward backward forward backward

Two famous CNN models for evaluation

2. GdedieN ¢8(lapees|aner 68 M patarmedensdiutions)
GooglLeNet

'
1 pEgad
g § g 1o g8, 00, A iugglgglle
1800, na Al igglggl®l gy wa |
Eﬁﬂggﬂlﬁgﬁﬁﬁﬂﬁﬁﬁﬂ BE BE EE Jdense
BB RO Ggo g, S0t :

Convolution
Pooling

wooling

Other

1000

Evaluation

AlexNet vs GoogleNet on the ImageNet 2D Image labeling and object

detection benchmark:

AlexNet GoogLeNet
ExaFLOP to convergence ~ (.8 ~1.1
Iterations till convergence 450k 1000k
Model size @32 bit FP ~250 MB ~50 MB
Default batch size 256 32
Default step-size 0.01 0.01
Layers 25 159
Convolutional layers 5 59
Fully-connected (FC) layers 3 1
Weights in FC layers ~H5M ~1M

Table 2: Properties of the Deep Neural Networks
used for the following benchmarks.

CPU K80 TitanX KNL

AlexNet:
time per iteration 2s 0.9s 0.2s[10] 0.6s
time till convergence | 250h 112h 25h [10] 75h
GooglLeNet:
time per iteration 1.3s 0.36s - 0.32s
time till convergence | 361h 100h - 89h

Table 1: Approximate computation times for
AlexNet with batch size B = 256 and 450k itera-
tions and GoogLeNet with B = 32 and 1000k itera-
tions. KNL (Xeon Phi “Knights Landing”) results
with MKL17. TitanX with Pascal GPU. See section
1.2.3.

Evaluation

128
64
M
32
4]
16
=
'g w
s
& 8 /‘\/‘
4
-
2 — —m- —=
p-
1k
1 2 4 8 16 32 64 128
nodes
== AlexNet (B=1024) AlexNet [1]

—i— AlexNet (B=256)
—ir— GooglLeNet (B=32)
=pé= GooglLeNet [6] (B=1024)

—p— GooglLeNet (B=256)
Linear Speedup

GooglLeNet (B=1024)

A HPC cluster with nodes holding a dual Xeon E5-2680
v3 CPU (12 cores @ 2.50GHz), a NVIDIA Tesla K80 GPU

GPU

Graphics Processing Unit

1. Rendering
2. Work independently, no relations between each other

GPU

CPUs: Latency Oriented Desigr

Powerful ALU
— Reduced operation latency
Large caches
— Convert long latency memory
accesses to short latency cache
accesses
Sophisticated control
— Branch prediction for reduced
branch latency

— Data forwarding for reduced data
latency

ALU | ALU .
Control
ALU ALU

CPU

GPUs:

Throughput Oriented Design
g] i — Small caches

— To boost memary throughput
-: -~ * Simple control

— No branch prediction

— No data forwarding
Energy efficient ALUs

— Many, long latency but heavily
pipelined for high throughput

Require massive number of |
threads to tolerate latencies [

GPU

GPU vs. CPU

1. More threads(not cores) and registers
2. Cache is used to improve thread'’s
performance, not to store the data

3. Different coding methods

4. More SIMD(single instruction multiple
data) Unit

5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

GPU

CPU GPU
Latency Oriented Cores Throughput Oriented Cores

Chip Chip

Cache/Local Mem
Local Cache

SIMD

SIMD Unit Unit

—
)
=
()
Q
Q
2

(0]

|[OJ1UOD

GPU vs. CPU

1. More threads(not cores) and registers
2. Cache is used to improve thread’s
performance, not to store the data

3. Different coding methods

4. More SIMD(single instruction multiple
data) Unit

5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

GPU

SIMD

Instruction Pool

PU|

Data FPool

+|PU|

JIEVIEs

:F'an—

GPU vs. CPU

1. More threads(not cores) and registers
2. Cache is used to improve thread’s
performance, not to store the data

3. Different coding methods

4. More SIMD(single instruction multiple
data) Unit

5. Compute-intensive & Parallelized
calculations

“One professor vs. Thousands of primary
school students”

Limitation I

Distributed SGD is heavily Communication Bound:

Network Bandwidth is limited:

1. Model size can be hundreds of
MB(Transfer Data)

= ﬁ ﬁ 2. GPU lIteration time

forward yackward — forward bat forward

time (s)

Limitation 1

i COom. time AlexNet

- = =g = = Timefiter. AlexNet GPU (B=256)
w—r—— COm. ime GoogLeNet

= = =p= = = Time/iter. GoogLeNet GPU (B=32)

Linear (Com. ime AlexNet)

------- ¥ Time/lter. AlexNet GPU (B=1024)
Linear (Com. ime GoogLeNet)
Time/lter. GoogLeNet GPU (B=256)

Communication overhead for different
models and batch sizes. The scalability
stalls when the compute times drop below
the communication times, leaving
compute units idle. Hence becoming an
communication bound problem.

Limitation 1

Hardware solutions:

Speedup

4.5

3.5

2.5

15

0.5

0.5

Minsky Benchmark Deep Learning

AlexNet Topology with NVIDIA-Caffe on ImageNet Data (batch_size 1024)

1

15

2

25

GPUs used

3

35

4

== Linear Scaling

—4-= Theoretical Speedup Limit
Actual Speedup

==dr= PCle 4x K80

4.5

IBM Minsky

* 4x P100

» 2x10 core Power8 (160 hw threads)
* NVLIink between all components

NVLink spec: ~40GB/s (single direction)

Limitation 1

Algorithm solutions:

(1) Re-design of the network eliminating unused weights
a. Avoid fully connected Layers for smaller models

(1) Limit the numerical precision of the model weights
a. Reduce Floating Point precision (8 Bit is enough)

(111) Reduce / Avoid Communication
a. Compression

b. Transmit key information

Limitation 1

But we are still not there, why?

Assume we have already solved all the problems in communication, or Free
Communication...

Limitation 1

Single Node Speedup by Batch Size

AlexNet
256
128
64 e CPU
32 e GPU
16 KNL

= |inear speedup

speedup

= N A~ o

256 128 64 32 16 8 4 2 1
batch size

Simulated by measuring the compute

times at a single node at decreasing
batch sizes

Limitation 1

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

256 128 64

Compute time by Layer

AlexNet (GPU + cuDNN) GooglLeNet (GPU + cuDNN)

100%

0%

Split T B B
® SoftmaxWithLoss ~ 20%
ReLU 80%
m Pooling 70%
LRN 60%
® InnerProduct 50%
® Dropout 40%
® Convolution 30%
m Concat 20%

10% .
8 4

batch size batch size

Evaluation of the relative compute time for each layer

type (several layers of the same type are accumulated) per
training iteration on a single node GPU based.

2 1

Split

W SoftmaxWithLoss
RelLu

B Pooling
LRN

B InnerProduct

B Dropout

m Convolution

W Concat

Limitation 1

64
32
=1
g 16
E == MKL SGEMM
“ 8 == |inear scaling
4
2
1
256 128 64 32 16 8 4 2 1

batch size

Impact of the batch size b for matrix multiplications
with the shape b X 4096 4096 X 9192

“1 million neurons with 256 training samples ”

Limitation II

Parallelizing “Skinny” Matrix Multiplication:
One problem, but very basically: Batch size decreases with distributed
scaling

For skinny matrices there is simply not enough work for efficient internal
parallelization over many threads

Limitation II

Solution:
Increase Batch size(advantage)
a. Enhance the utilization of memory, also improves parallel efficiency

b. Iterations of the whole epoch is reduced, which means a great speedup
in dealing with the same amount of data compared to the small size

c. Faster in determining the gradient direction

Limitation I

0.6

Solution: f
Increase Batch size(disadvantage) |

0.3

— D56
s 512
1024
0.2 — 2048

Accuracy

a. Memory capacity is limited
b. Loss of accuracy

0.1

c. Direction is a tiny issue

Iteration

Full validation accuracy plot for AlexNet with different
large batch sizes. Settings [B = 256; €= 0.01; iter = 450k],
[B=512; €=0.02; iter = 225k], [B = 1024, € = 0.04; iter =
112k], [B = 2048; € =0.08; iter = 56k]. € is Step sizes

Limitation II

Distributed File Systems(1/0):

Compute time by Layer

AlexNet (GPU + cuDNN)

100% _ Split
90% I l l W SoftmaxWithLoss
80% . RelLU

70% H Pooling
60% LRN
50% B InnerProduct
40% B Dropout
30% Data
20% B Convolution
10% B Concat

0% | —— e

256 128 64 32 16 8 4 2 1

batch size

Results shown for SINGLE node access
to a Lustre working directory
(HPC Cluster, FDR-Infiniband)

“Loading Data, very fundamentally but you have to spend time on it”

Compute time by Layer

AlexNet (GPU + cuDNN)

100% — —
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% | ||

2

256 128 64

batch size

Results shown for SINGLE node
Data on local SSD.

Split

B SoftmaxWithLoss
RelLU

H Pooling
LRN

W InnerProduct

B Dropout

B Convolution

H Concat

Limitation II

1. Network bandwidth is already exceeded by the SGD communication(l/O)

AlexNet needs 100 epochs(=full pass of the training data) till convergence,
resulting in 100 X 150GB= 15TB of total data traffic compared to 450000 X

250MB X2(n- 1) in gradient and update communication

2. Worst possible file access pattern:
Access many small files at random

An example on local multi-GPU computations:
Single SSD (>0.5 GB/s) to slow to feed >= 4 GPUs

Limitation II

Solutions:
Local SSDs, but more problems to solve

Conclusions

Situations:

1. The main problem with training DNNs via distributed SGDs is that the
computation load per iteration is too low.

2. This problem will further increase with faster compute units (GPUs).

Possible solutions:
1. Change Network to handle the over-fitting problem for large Batch sizes
2. Alternative optimization methods (SGD is not the only way)

Suggestions

1. Avoid “fat” layers with too many parameters:
a. For CNNs, go deeper with convolutions (As MS does in their modules)
b. Use less fully connected layers

2. Revise network
3. Optimize meta-parameters for larger batch-sizes:

a. Better scalability(At the very beginning)
b. Better I/0 performance

Thank youl!

