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What we’ll cover

• What is a Convolutional Neural 
Network (CNN)?

• Accelerators: problem statement and 
paper introduction

• Data-parallelization scheme
• Kernel-level parallelism

• Adaptivity, regardless of NN topology & 
hardware  

• Putting the “petal to the metal” –
performance and energy evaluation



Convolutional Neural Network (CNN)

• A Deep Learning, feed-forward, neural network known for its success 
in image recognition (think Facebook’s tagging algorithm)

• General idea: make series of reductions of an image, analyze its 
fundamental properties, and arrive at a result

• 3 types of layers:
• Convolutional layers 

• Pooling layers

• Fully connected layers

• Our example CNN: is input an X or an O?  



Convolutional layer

• Input: image of n x n pixels.  
• 3D stack of layers called features (ex. RGB, lines)

• Output: smaller image of values.  
• A map showing how well that feature is 

represented throughout original image.

• In our example, values 0 <= c <= 1

• What is a convolution?
• The act of sliding a kernel (window) k x k pixels 

across an image, and looking for something.  
Called stride.

• Usually a matrix of parameters the NN is trying to 
learn



Convolution example 
• Define feature

• Any property of X.  Let’s say the top left slant.

• White pixel = 1, black pixel -1

• In kernel, compare each pixel in feature to those in image

• Perform dot product and divide by # of pixels in feature.

Images for this example courtesy of 
Brandon Rohrer

http://brohrer.github.io/how_convolut
ional_neural_networks_work.html



Convolution example cont.
• After iterating over the entire image, below we get our feature map

*Aside: On Instagram, this is 
known as a Box Blur.



Pooling layer

• Input: convolutional layer

• Output: even smaller image containing max values of input layer

• Like convolution, pick kernel and stride

• Calculate maximum value, insert value p into new image



Trick: Normalization (Linear Rectified Units (ReLU))
• Input: convolution layer or pooling layer

• Output: same image, with all c and p > 0.

• This keeps math consistent throughout the network



Fully Connected layer

• All neurons in a layer L1 is connected to all neurons in layer L2.

• Basically, each neuron has a say in the final result (X or O?).



Bringing it all together

These layer operations can be combined in any order (generally speaking).

Back propagation works in same way as other NNs, with gradient descent.

In CNNs there are potentially many steps, so indeed they’re computational beasts!



Accelerating CNNs

• How to make CNNs       faster
• Parallelizing:

• Output layer creation

• Inner-kernel operations (without buffers for data re-use)

• Memory bandwidth utilization (between layers)

• Using special hardware (FPGAs)

• However, these attempts consistently ignore:
• Data reuse – too much data!

• Network topology – too specific!

• Hardware overreliance – too power hungry & costly!



C-Brain Introduction

• This paper tries to solve these problems by proposing a 2-pronged 
software-based approach

1. Kernel partitioning scheme
• Inter- and intra- kernel parallelization, by splitting and transferring kernel data 

intelligently

• Pros and cons to both styles, so a hybrid approach is desired

2. Adaptiveness scheme
• Generalizing inter- and intra- kernel strategy with –any – network topology or hardware

Tested on 4 main NNs: Alexnet, GoogleNet, VGG, and NIN



Inter-kernel Parallelization
• Goal: efficiently transfer data in one kernel k * k

across several input layers from memory to the Processing Elements (PEs)

• Result: load pairs into input buffer, compute k * k operations, sum them 
up, load number into output buffer  



Inter-kernel Parallelization (2) Direct Insert
• Problem: Parallelization is limited by dimensions of Din and Dout.

• Ideal case: input map size well matches size Tin

AlexNet example

C1 = 3 layers
1 layer assigned per PE

if Tin = 16, we have 16 PEs

16-3 = 13 PEs not used.
Waste of resources!

PROS: if layers can be inserted in PEs well, then super fast
CONS: if PEs really underestimate or overestimate # of layers, 

either we use too few resources, or wait unnecessarily for time on PE.  



Intra-kernel Parallelization

• Goal: efficiently transfer data from several kernels k1 k2 … kn

across one input layer from memory into the Pes
• In CNNs, layer size X * Y almost always > layer depth Din. So intra- is more 

efficient than inter-

• Strategies:

1. Data unrolling

2. Sliding window

3. 2D PEs



Intra-kernel (2) Data Unrolling

• Involves unrolling (doing all 
kernel operations on a given 
layer) in 1-fell swoop on a PE.

• Example:

28 x 28 pixel layer

5 x 5 pixel kernel

stride of 1 pixel

• While great (and super 
efficient) in theory, data 
duplicates everywhere!

28 x 28

5 x 5

1

28 x 28
28 x 28

24 x 24 x 25
Input layer

Data unrolling to PE



Intra-kernel (3) Data Unrolling cont.

Example:
28 x 28 pixel layer
5 x 5 pixel kernel
stride of 1 pixel

Data increase by factor of T, given input layer X*Y, kernel k, stride s

= 4.22x raw input size

Data duplication 
rose by factor of 
9x ~ 18.9x
on AlexNet and 
GoogleNet

We’ll tackle this later!



Intra-kernel (4) Sliding Window

• Only good when kernel size = stride (k=s)
• In most cases, k > s

• This special case avoids the data overlap & duplication we saw before



Intra-kernel (5) 2D-PEs
• The best solution for that pesky data overlap/duplication

• Flexible system where we can store consistently-accessed 

input data OR weight in buffer, rather than external memory

k11 can be stored in buffer 
while PE cycles through all kernels in I1. 

I1 can be stored in buffer 
while PE cycles through all weights k11~kn. OR

PROS: Lowered bus traffic considerably.  More power efficient, too.
CONS: Layers vary in kernel size and parameters, so making sure everything is aligned in PEs is hard



Hybrid (inter- & intra-)
How can we use inter- and intra-
kernel parallelization intelligently?

…Kernel-Partitioning!

Given k x k >> Tin, and s < k x k

g = # of kernel partitions 

ks = kernel partition stride

In this example, we’ve convolved a 
large image of 228x228 to just 9 
images of size 55 x 55, all on PEs



Furthering the mapping scheme for Kernel-Partitioning

• In particular, how to better use inter-kernel parallelization
• Recall inter- tends to ignore data reuse between kernel and layer 

• Striding kernel tends to reuse data
• Instead of computing whole kernel before striding, 

do partial sums 1/(k x k) then stride 

• Partial sums all sent to output buffer, ready to be added after entire image is 
complete. Extra store-and-sum operations better than many buffer loads. 

Partial sums result in:
X * Y * Dout * k * k more stores

But…

(Din/Tin) * X * Y * Dout * k * k less loads



Kernel-Partitioning Summary



Self adaptiveness

• Truth about CNNs:
• Surface layers: small # input maps, big 

kernels
• Deeper layers: large # input maps, small 

kernels
** Due to more and more feature 
abstractions 
• Thus there is a need to adapt to the 

changing structure as we venture deep

• Solution: Algorithm to best choose 
which type of kernel parallelism is best 
in a given point of the CNN

• 2 adaptive versions were tested:
• Adpa1- original (limited) inter-kernel 

parallelism
• Adpa 2- improved inter-kernel mapping 



Performance evaluation: Speedup
System specs:
• Verilog-based CNN accelerator
• Synopsys Design Compiler
Neural Net specs:
• Pre-trained CNNs with fixed accuracies
• Only forward propagation
• Data recorded were cycles of simulation

Outperforms Zhang-7-64’s FPGA (circa 2015) by 
2.22x on Conv1 1.20x whole network

Outperforms Intel Xeon 2.2GHz by whopping 696.88x max



Performance evaluation: Energy Consumption

System specs:
• Verilog-based CNN accelerator
• Synopsys Design Compiler
Neural Net specs:
• Pre-trained CNNs with fixed accuracies
• Only forward propagation
• Data recorded were cycles of simulation

Best result: Adpa2 90.13% memory traffic reduction Thus, Adpa2 also achieved 47.1% energy reduction



Conclusion

• Achieved a generalized, flexible, CNN accelerator that outperforms 
several current accelerators on popular CNNs

• Uses a variety of innovative data-parallel schemes

• Highly adaptive, which allows it to maintain speedups and save 
energy, no matter what network, or what layers within a network



Thank you!


