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Abstract—We propose a novel context-dependent (CD) model for
large-vocabulary speech recognition (LVSR) that leverages recent
advances in using deep belief networks for phone recognition. We
describe a pre-trained deep neural network hidden Markov model
(DNN-HMM) hybrid architecture that trains the DNN to produce
a distribution over senones (tied triphone states) as its output. The
deep belief network pre-training algorithm is a robust and often
helpful way to initialize deep neural networks generatively that
can aid in optimization and reduce generalization error. We il-
lustrate the key components of our model, describe the procedure
for applying CD-DNN-HMMs to LVSR, and analyze the effects of
various modeling choices on performance. Experiments on a chal-
lenging business search dataset demonstrate that CD-DNN-HMMs
can significantly outperform the conventional context-dependent
Gaussian mixture model (GMM)-HMMs, with an absolute sen-
tence accuracy improvement of 5.8% and 9.2% (or relative error
reduction of 16.0% and 23.2%) over the CD-GMM-HMMs trained
using the minimum phone error rate (MPE) and maximum-likeli-
hood (ML) criteria, respectively.

Index Terms—Artificial neural network–hidden Markov model
(ANN-HMM), context-dependent phone, deep belief network,
deep neural network hidden Markov model (DNN-HMM), speech
recognition, large-vocabulary speech recognition (LVSR).

I. INTRODUCTION

E VEN after decades of research and many successfully
deployed commercial products, the performance of auto-

matic speech recognition (ASR) systems in real usage scenarios
lags behind human level performance (e.g., [2], [3]). There have
been some notable recent advances in discriminative training
(see an overview in [4]; e.g., maximum mutual information
(MMI) estimation [5], minimum classification error (MCE)
training [6], [7], and minimum phone error (MPE) training [8],
[9]), in large-margin techniques (such as large-margin estima-
tion [10], [11], large-margin hidden Markov model (HMM)
[12], large-margin MCE [13]–[16], and boosted MMI [17]), as
well as in novel acoustic models (such as conditional random
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fields (CRFs) [18]–[20], hidden CRFs [21], [22], and segmental
CRFs [23]). Despite these advances, the elusive goal of human
level accuracy in real-world conditions requires continued,
vibrant research.

Recently, a major advance has been made in training densely
connected, directed belief nets with many hidden layers. The
resulting deep belief nets learn a hierarchy of nonlinear feature
detectors that can capture complex statistical patterns in data.
The deep belief net training algorithm suggested in [24] first
initializes the weights of each layer individually in a purely
unsupervised1 way and then fine-tunes the entire network using
labeled data. This semi-supervised approach using deep models
has proved effective in a number of applications, including
coding and classification for speech, audio, text, and image
data ([25]–[29]). These advances triggered interest in devel-
oping acoustic models based on pre-trained neural networks
and other deep learning techniques for ASR. For example,
context-independent pre-trained, deep neural network HMM
hybrid architectures have recently been proposed for phone
recognition [30]–[32] and have achieved very competitive
performance. Using pre-training to initialize the weights of a
deep neural network has two main potential benefits that have
been discussed in the literature. In [33], evidence was presented
that is consistent with viewing pre-training as a peculiar sort of
data-dependent regularizer whose effect on generalization error
does not diminish with more data, even when the dataset is so
vast that training cases are never repeated. The regularization
effect from using information in the distribution of inputs can
allow highly expressive models to be trained on comparably
small quantities of labeled data. Additionally, [34], [33], and
others have also reported experimental evidence consistent
with pre-training aiding the subsequent optimization, typically
performed by stochastic gradient descent. Thus, pre-trained
neural networks often also achieve lower training error than
neural networks that are not pre-trained (although this effect
can often be confounded by the use of early stopping). These
effects are especially pronounced in deep autoencoders.

Deep belief network pre-training was the first pre-training
method to be widely studied, although many other techniques
now exist in the literature (e.g., [35]). After [34] showed that
deep auto-encoders could be trained effectively using deep be-
lief net pre-training, there was a resurgence of interest in using
deeper neural networks for applications. Although less patho-
logical deep architectures than deep autoencoders can in some
cases be trained without pre-training, for many problems and
model architectures, researchers have reported pre-training to be

1In the context of ASR, we use the term “unsupervised” to mean acoustic data
with no transcriptions of any kind.
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helpful (even in some cases for large single hidden layer neural
networks trained on massive datasets, as in [28]). We view the
various unsupervised pre-training techniques as convenient and
robust ways to help train neural networks with many hidden
layers that are generally helpful, rarely hurtful, and sometimes
essential.

In this paper, we propose a novel acoustic model, a hybrid
between a pre-trained, deep neural network (DNN) and a con-
text-dependent (CD) hidden Markov model. The pre-training
algorithm we use is the deep belief network (DBN) pre-training
algorithm of [24], but we will denote our model with the
abbreviation DNN-HMM to help distinguish it from a dynamic
Bayes net (which we will not abreviate in this article) and to
make it clear that we abandon the deep belief network once
pre-training is complete and only retain and continue training
the recognition weights. CD-DNN-HMMs combine the repre-
sentational power of deep neural networks and the sequential
modeling ability of context-dependent hidden Markov models
(HMMs). In this paper, we illustrate the key ingredients of the
model, describe the procedure to learn the CD-DNN-HMMs’
parameters, analyze how various important design choices
affect the recognition performance, and demonstrate that
CD-DNN-HMMs can significantly outperform strong discrim-
inatively-trained context-dependent Gaussian mixture model
hidden Markov model (CD-GMM-HMM) baselines on the
challenging business search dataset of [36], collected under
actual usage conditions. To our best knowledge, this is the
first time DNN-HMMs, which are formerly only used for
phone recognition, are successfully applied to large-vocabulary
speech recognition (LVSR) problems.

A. Previous Work Using Neural Network Acoustic Models

The combination of artificial neural networks (ANNs) and
HMMs as an alternative paradigm for ASR started between the
end of 1980s and the beginning of the 1990s. A variety of dif-
ferent architectures and training algorithms have been proposed
in the literature (see the comprehensive survey in [37]). Among
these techniques, the ones most relevant to this work are those
that use the ANNs to estimate the HMM state-posterior proba-
bilities [38]–[45], which have been referred to as ANN-HMM
hybrid models in the literature. In these ANN-HMM hybrid
architectures, each output unit of the ANN is trained to esti-
mate the posterior probability of a continuous density HMMs’
state given the acoustic observations. ANN-HMM hybrid
models were seen as a promising technique for LVSR in the
mid-1990s. In addition to their inherently discriminative nature,
ANN-HMMs have two additional advantages: the training can
be performed using the embedded Viterbi algorithm and the
decoding is generally quite efficient.

Most early work (e.g., [39] and [38]) on the hybrid approach
used context-independent phone states as labels for ANN
training and considered small vocabulary tasks. ANN-HMMs
were later extended to model context-dependent phones and
were applied to mid-vocabulary and some large-vocabulary
ASR tasks (e.g., in [45], which also employed recurrent neural
architectures). However, in earlier work on context dependent

ANN-HMM hybrid architectures [46], the posterior probability
of the context-dependent phone was modeled as either

(1)

(2)

where is the acoustic observation at time is one of
the clustered context classes is either a
context-independent phone or a state in a context-independent
phone. ANNs were used to estimate and
(alternatively and ). Note that although
these types of context-dependent ANN-HMMs outperformed
GMM-HMMs for some tasks, the improvements were small.

These earlier hybrid attempts had some important limita-
tions. For example, using only backpropagation to train the
ANN makes it challenging (although not impossible) to exploit
more than two hidden layers well and the context-depen-
dent model described above does not take advantage of the
numerous effective techniques developed for GMM-HMMs.
Around 1999, the desire to use HMM advances from the speech
research community directly without developing replacement
techniques and tools contributed to a shift from using neural
nets to predict phonetic states to using neural nets to augment
features for later use in a conventional GMM-HMM recognizer
(e.g., [47]). In this work, however, we do not take that approach,
but instead we try to improve the earlier hybrid approaches by
replacing more traditional neural nets with deeper, pre-trained
neural nets and by using the senones [48] (tied triphone states)
of a GMM-HMM tri-phone model as the output units of the
neural network, in line with state-of-the-art HMM systems.

Although this work uses the hybrid approach, as alluded to
above, much recent work using neural networks in acoustic
modeling uses the so-called TANDEM approach, first proposed
in [49]. The TANDEM approach augments the input to a
GMM-HMM system with features derived from the suitably
transformed output of one or more neural networks, typically
trained to produce distributions over monophone targets. In
a similar vein, [50] uses features derived from an earlier
“bottle-neck” hidden layer instead of using the neural network
outputs directly. Many recent papers (e.g., [51]–[54]) train
neural networks on LVSR datasets (often in excess of 1000
hours of data) and use variants of these approaches, either
augmenting the input to a GMM-HMM system with features
based on the neural network outputs or some earlier hidden
layer. Although a neural network nominally containing three
hidden layers (the largest number of layers investigated in [55])
might be used to create bottle-neck features, if the feature layer
is the middle hidden layer then the resulting features are only
produced by an encoder with a single hidden layer.

Neural networks for producing bottle-neck features are very
similar architecturally to autoencoders since both typically have
a small code layer. Deeper neural networks, especially deeper
autoencoders, are known to be difficult to train with backprop-
agation alone. For example, [34] reports in one experiment that
they are unable to get results nearly so good as those possible
with deep belief network pre-training when training a deep (the
encoder and decoder in their architecture both had three hidden
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layers) autoencoder with a nonlinear conjugate gradient algo-
rithm. Both [56] and [57] investigate why training deep feed-for-
ward neural networks can often be easier with some form of
pre-training or a sophisticated optimizer of the sort used in [58].

Since the time of the early hybrid architectures, the vector
processing capabilities of modern GPUs and the advent of more
effective training algorithms for deep neural nets have made
much more powerful architectures feasible. Much previous hy-
brid ANN-HMM work focused on context-independent or rudi-
mentary context-dependent phone models and small to mid-vo-
cabulary tasks (with notable exceptions such as [45]), possibly
masking some of the potential advantages of the ANN-HMM
hybrid approach. Additionally, GMM-HMM training is much
easier to parallelize in a computer cluster setting, which his-
torically gave such systems a significant advantage in scala-
bility. Also, since speaker and environment adaptation is gener-
ally easier for GMM-HMM systems, the GMM-HMM approach
has been the dominant one in the past two decades for speech
recognition. That being said, if we consider the wider use of
neural networks in acoustic modeling beyond the hybrid ap-
proach, neural network feature extraction is an important com-
ponent of many state-of-the-art acoustic models.

B. Introduction to the DNN-HMM Approach

The primary contributions of this work are the development
of a context-dependent, pre-trained, deep neural network HMM
hybrid acoustic model (CD-DNN-HMM); a description of our
recipe for applying this sort of model to LVSR problems; and an
analysis of our results which show substantial improvements in
recognition accuracy for a difficult LVSR task over discrimina-
tively-trained pure CD-GMM-HMM systems. Our work differs
from earlier context-dependent ANN-HMMs [42], [41] in two
key respects. First, we used deeper, more expressive neural
network architectures and thus employed the unsupervised
DBN pre-training algorithm to make sure training would be
effective. Second, we used posterior probabilities of senones
(tied triphone HMM states) [48] as the output of the neural
network, instead of the combination of context-independent
phone and context class used previously in hybrid architectures.
This second difference also distinguishes our work from earlier
uses of DNN-HMM hybrids for phone recognition [30]–[32],
[59]. Note that [59], which also appears in this issue, is the
context-independent version of our approach and builds the
foundation for our work. The work in this paper focuses on
context-dependent DNN-HMMs using posterior probabilities
of senones as network outputs and can be successfully applied
to large vocabulary tasks. Training the neural network to predict
a distribution over senones causes more bits of information to
be present in the neural network training labels. It also incor-
porates context-dependence into the neural network outputs
(which, since we are not using a Tandem approach, lets us use a
decoder based on triphone HMMs), and it may have additional
benefits. Our evaluation was done on LVSR instead of phoneme
recognition tasks as was the case in [30]–[32], [59]. It repre-
sents the first large-vocabulary application of a pre-trained,
deep neural network approach. Our results show that our
CD-DNN-HMM system provides dramatic improvements over
a discriminatively trained CD-GMM-HMM baseline.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce RBMs and deep belief nets, and
outline the general pre-training strategy we use. In Section III,
we describe the basic ideas, the key properties, and the training
and decoding strategies of our CD-DNN-HMMs. In Section IV,
we analyze experimental results on a 65 vocabulary busi-
ness search dataset collected from the Bing mobile voice search
application (formerly known as Live Search for mobile [36],
[60]) under real usage scenarios. Section V offers conclusions
and directions for future work.

II. DEEP BELIEF NETWORKS

Deep belief networks (DBNs) are probabilistic generative
models with multiple layers of stochastic hidden units above
a single bottom layer of observed variables that represent a
data vector. DBNs have undirected connections between the
top two layers and directed connections to all other layers from
the layer above. There is an efficient unsupervised algorithm,
first described in [24], for learning the connection weights in a
DBN that is equivalent to training each adjacent pair of layers
as an restricted Boltzmann machine (RBM). There is also a
fast, approximate, bottom-up inference algorithm to infer the
states of all hidden units conditioned on a data vector. After
the unsupervised pre-training phase, Hinton et al. [24] used the
up-down algorithm to optimize all of the DBN weights jointly.
During this fine-tuning phase, a supervised objective function
could also be optimized.

In this paper, we use the DBN weights resulting from the un-
supervised pre-training algorithm to initialize the weights of a
deep, but otherwise standard, feed-forward neural network and
then simply use the backpropagation algorithm [61] to fine-tune
the network weights with respect to a supervised criterion. Pre-
training followed by stochastic gradient descent is our method
of choice for training deep neural networks because it often
outperforms random initialization for the deeper architectures
we are interested in training and provides results very robust to
the initial random seed. The generative model learned during
pre-training helps prevent overfitting, even when using models
with very high capacity and can aid in the subsequent optimiza-
tion of the recognition weights.

Although empirical results ultimately are the best reason for
the use of a technique, our motivation for even trying to find and
apply deeper models that might be capable of learning rich, dis-
tributed representations of their input is also based on formal
and informal arguments by other researchers in the machine
learning community. As argued in [62] and [63], insufficiently
deep architectures can require an exponential blow-up in the
number of computational elements needed to represent certain
functions satisfactorily. Thus, one primary motivation for using
deeper models such as neural networks with many layers is that
they have the potential to be much more representationally ef-
ficient for some problems than shallower models like GMMs.
Furthermore, GMMs as used in speech recognition typically
have a large number of Gaussians with independently parame-
terized means which may result in those Gaussians being highly
localized and thus may result in such models only performing
local generalization. In effect, such a GMM would partition the
input space into regions each modeled by a single Gaussian.
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[64] proved that constant leaf decision trees require a number of
training cases exponential in their input dimensionality to learn
certain rapidly varying functions. [64] also makes more general
and less formal arguments that models that create a single hard
or soft partitioning of the input space and use separately param-
eterized simple models for each region are doomed to have sim-
ilar generalization issues when trained on rapidly varying func-
tions. In a related vein, [65] also proves an analogous “curse of
rapidly-varying functions” for a large class of local kernel ma-
chines that include both supervised learning algorithms (e.g.,
SVMs with Gaussian kernels) and many semi-supervised al-
gorithms and unsupervised manifold learning algorithms. It is
our fear that functions important for solving difficult perceptual
tasks in domains such as computer vision and computer audition
will have a componential structure that makes them vary rapidly
even though there is perhaps only a comparatively small number
of factors that cause these variations. Although it remains to be
seen to what extent these arguments about architectural depth
and local generalization apply to speech recognition, one of our
hopes in this work is to demonstrate that replacing GMMs with
deeper models can reduce recognition error in a difficult LVSR
task, even if we are unable to show that our proposed system
performs well because of some sort of avoidance of the poten-
tial issues we discuss above.

A. Restricted Boltzmann Machines

RBMs [66] are a type of undirected graphical model con-
structed from a layer of binary stochastic hidden units and a
layer of stochastic visible units that, for the purposes of this
work, will either be Bernoulli or Gaussian distributed condi-
tional on the hidden units. The visible and hidden units form
a bipartite graph with no visible-visible or hidden-hidden con-
nections. For concreteness, we will assume the visible units are
binary for the moment (we always assume binary hidden units
in this work) and describe how we deal with real-valued speech
data at the end of this section. An RBM assigns an energy to
every configuration of visible and hidden state vectors, denoted

and respectively, according to

(3)

where is the matrix of visible/hidden connection weights,
is a visible unit bias, and is a hidden unit bias. The probability
of any particular setting of the visible and hidden units is given
in terms of the energy of that configuration by

(4)

where the normalization factor is known
as the partition function.

The lack of direct connections within each layer enables us
to derive simple exact expressions for and ,
since the visible units are conditionally independent given the
hidden unit states and vice versa. We perform this derivation for

below. We will refer to the term in (3) dependent on
as , with denoting the

th column of . Starting with the definition of , we

obtain (see [62] for another version of this derivation along with
other useful ones)

(5)

(6)

Since the , the sum in the denominator of (5) has
only two terms and thus

yielding

(7)

where denotes the (elementwise) logistic sigmoid,
. For the binary visible unit case to which we restrict

ourselves to at the moment, a completely symmetric derivation
lets us obtain

(8)

The form of (7) is what allows us to use the weights of an RBM
to initialize a feed-forward neural network with sigmoidal
hidden units because we can equate the inference for RBM
hidden units with forward propagation in a neural network.

Before writing an expression for the log probability assigned
by an RBM to some visible vector , it is convenient to define
a quantity known as the free energy:

Using , we can write the per-training-case log likelihood
as

with denoting the model parameters.
To train an RBM, we perform stochastic gradient descent on

the negative log likelihood. In the experiments in this work, we
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use the following expression for the th weight update for
some typical model parameter :

(9)

where is the learning rate/step size and is the “momentum”
factor used to smooth out the weight updates. Unlike in a GMM,
in an RBM the gradient of the log likelihood of the data is not
feasible to compute exactly. The general form of the derivative
of the log likelihood of the data is

In particular, for the visible-hidden weight updates we have

(10)

The first expectation is the frequency with which
the visible unit and the hidden unit are on together in
the training set and is that same expectation under
the distribution defined by the model. Unfortunately, the term

takes exponential time to compute exactly, so we are
forced to use an approximation. Since RBMs are in the inter-
section between Boltzmann machines and product of experts
models, they can be trained using contrastive divergence as de-
scribed in [67]. The one-step contrastive divergence approxima-
tion for the gradient with respect to the visible-hidden weights
is

(11)

where denotes the expectation over one-step reconstruc-
tions. In other words, an expectation computed with samples
generated by running the Gibbs sampler [defined using (7) and
(8)] initialized at the data for one full step. Similar update rules
for the other model parameters are easy to derive by simply re-
placing in (11) with the appropriate par-
tial derivative of the energy function (or by creating a hidden
unit and a visible unit both with the constant activation of one
to derive the updates for the biases).

Although RBMs with the energy function of (3) are suitable
for binary data, in speech recognition the acoustic input is
typically represented with real-valued feature vectors. The
Gaussian–Bernoulli restricted Boltzmann machine (GRBM)
only requires a slight modification of (3) (see [68] for a general-
ization of RBMs to any distribution in the exponential family).
The GRBM energy function we use in this work is given by

(12)

Note that (12) implicitly assumes that the visible units have a
diagonal covariance Gaussian noise model with a variance of 1
on each dimension. In the GRBM case, (7) does not change, but
(8) becomes

where is the appropriate identity matrix. However, when ac-
tually training a GRBM and creating a reconstruction, we never
actually sample from the distribution above; we simply set the
visible units to be equal to their means. The only difference be-
tween our training procedure for GRBMs using the energy func-
tion in (12) and binary RBMs using the energy function in (3) is
how the reconstructions are generated, all positive and negative
statistics used for gradients are the same.

B. Deep Belief Network Pre-Training

Now that we have described using contrastive divergence
to train an RBM and the two types of RBMs we use in this
work, we will discuss how to perform deep belief network
pre-training. Once we have trained an RBM on data, we can
use the RBM to re-represent our data. For each data vector

, we use (7) to compute a vector of hidden unit activation
probabilities . We use these hidden activation probabilities as
training data for a new RBM. Thus each set of RBM weights
can be used to extract features from the output of the previous
layer. Once we stop training RBMs, we have the initial values
for all the weights of the hidden layers of a neural net with
a number of hidden layers equal to the number of RBMs we
trained. With pre-training complete, we add a randomly initial-
ized softmax output layer and use backpropagation to fine-tune
all the weights in the network discriminatively. Since only
the supervised fine-tuning phase requires labeled data, we can
potentially leverage a large quantity of unlabeled data during
pre-training, although this capability is not yet important for
our LVSR experiments [69] due to the abundance of weakly
supervised data.

III. CD-DNN-HMM

Hidden Markov models (HMMs) have been the dominant
technique for LVSR for at least two decades. An HMM is a
generative model in which the observable acoustic features are
assumed to be generated from a hidden Markov process that
transitions between states . The key param-
eters in the HMM are the initial state probability distribution

, where is the state at time ; the transition
probabilities ; and a model to esti-
mate the observation probabilities .

In conventional HMMs used for ASR, the observation prob-
abilities are modeled using GMMs. These GMM-HMMs are
typically trained to maximize the likelihood of generating the
observed features. Recently, discriminative training strategies
such as MMI [5], MCE [6], [7], MPE [8], [9], and large-margin
techniques [10]–[17] have been proposed. The potential of
these discriminative techniques, however, is restricted by the
limitations of the GMM emission distribution model. The
recently proposed CRF [18]–[20] and HCRF [21], [22] models
use log-linear models to replace GMM-HMMs. These models
typically use manually designed features and have been shown
to be equivalent to the GMM-HMM [20] in their modeling
ability if only the first and second order statistics are used as
the features.
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Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use
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and – to generate a new state-level
alignment – on the training set and go to
Step 7.

To support the training and decoding of CD-DNN-HMMs, we
needed to develop a series of tools, the most important of which
were: 1) the tool to convert the CD-GMM-HMMs to CD-DNN-
HMMs; 2) the tool to do forced alignment using CD-DNN-
HMMs; and 3) the CD-DNN-HMM decoder. We have found
that it is relatively easy to develop these tools by modifying the
corresponding HTK tools if the format of the CD-DNN-HMM
model files is wisely specified.

In our specific implementation, each senone in the
CD-DNN-HMM is identified as a (pseudo) single Gaussian
whose dimension equals the total number of senones. The vari-
ance (precision) of the Gaussian is irrelevant, so it can be set to
any positive value (e.g., always set to 1). The value of the first
dimension of each senone’s mean is set to the corresponding

determined in Step 2 in Algorithm 1. The values of
other dimensions are not important and can be set to any value
such as 0. Using this trick, evaluating each senone is equivalent
to a table lookup of the features (log-likelihood) produced by
the DNN with the index indicated by the .

IV. EXPERIMENTAL RESULTS

To evaluate the proposed CD-DNN-HMMs and to un-
derstand the effect of different decisions made at each step
of CD-DNN-HMM training, we have conducted a series of
experiments on a business search dataset collected from the
Bing mobile voice search application (formerly known as Live
Search for mobile [36], [60])—a real-world large-vocabulary
spontaneous speech recognition task. In this section, we report
our experimental setup and results, demonstrate the efficacy of
the proposed approach, and analyze the training and decoding
time.

A. Dataset Description

The Bing mobile voice search application allows users to do
US-wide business and web search from their mobile phones via
voice. The business search dataset used in our experiments was
collected under real usage scenarios in 2008, at which time the
application was restricted to do location and business lookup.
All audio files collected were sampled at 8 kHz and encoded
with the GSM codec. Some examples of typical queries in the
dataset are “Mc-Donalds,” “Denny’s restaurant,” and “oak ridge
church.” This is a challenging task since the dataset contains all
kinds of variations: noise, music, side-speech, accents, sloppy
pronunciation, hesitation, repetition, interruption, and different
audio channels.

The dataset was split into a training set, a development set,
and a test set. To simulate the real data collection and training
procedure, and to avoid having overlap between training, devel-
opment, and test sets, the dataset was split based on the time
stamp of the queries. All queries in the training set were col-
lected before those in the development set, which were in turn
collected before those in the test set. For the sake of easy com-
parisons, we have used the public lexicon from Carnegie Mellon
University. The normalized nationwide language model (LM)

TABLE I
INFORMATION ON THE BUSINESS SEARCH DATASET

used in the evaluation contains 65 K word unigrams, 3.2 mil-
lion word bi-grams, and 1.5 million word tri-grams, and was
trained using the data feed and collected query logs; the per-
plexity is 117.

Table I summarizes the number of utterances and total dura-
tion of audio files (in hours) in the training, development, and
test sets. All 24 hours of training data included in the training
set are manually transcribed. We used 24 hours of training data
in this study since it lets us run more experiments (training
our CD-DNN-HMM systems is time consuming compared to
training CD-GMM-HMMs).

Performance on this task was evaluated using sentence accu-
racy (SA) instead of word accuracy for a variety of reasons. In
order to compare our results with [70], we would need to com-
pute sentence accuracy anyway. The average sentence length
is 2.1 tokens, so sentences are typically quite short. Also, the
users care most about whether they can find the business or
location they seek in the fewest attempts. They typically will
repeat what they have said if one of the words is mis-recog-
nized. Additionally, there is significant inconsistency in spelling
that makes using sentence accuracy more convenient. For ex-
ample, “Mc-Donalds” sometimes is spelled as “McDonalds,”
“Walmart” sometimes is spelled as “Wal-mart,” and “7-eleven”
sometimes is spelled as “7 eleven” or “seven-eleven.” For these
reasons, when calculating sentence accuracy we concatenate all
the words in the utterance and remove hyphens and apostrophes
before comparing the recognition outputs with the references
so that we can remove some of the effects caused by the LM
and poor text normalization and focus on the AM. The sentence
out-of-vocabulary rate (OOV) using the 65 K vocabulary LM is
6% on both the development and test sets. In other words, the
best possible SA we can achieve is 94% using this setup.

B. CD-GMM-HMM Baseline Systems

To compare our proposed CD-DNN-HMM model with stan-
dard discriminatively trained, GMM-based systems, we have
trained clustered cross-word triphone GMM-HMMs with max-
imum-likelihood (ML), maximum mutual information (MMI),
and minimum phone error (MPE) criteria. The 39-dim features
used in the experiments include the 13-dim static Mel-frequency
cepstral coefficient (MFCC) (with C0 replaced with energy) and
its first and second derivatives. The features were pre-processed
with the cepstral mean normalization (CMN) algorithm.

We optimized the baseline systems by tuning the tying
structures, number of senones, and Gaussian splitting strate-
gies on the development set. The performance of the best
CD-GMM-HMM configuration is summarized in Table II.
All systems reported in II have 53 K logical and 2 K physical
tri-phones with 761 shared states (senones), each of which
is a GMM with 24 mixture components. Note that our ML
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TABLE II
CD-GMM-HMM BASELINE RESULTS

TABLE III
PERFORMANCE OF SINGLE HIDDEN LAYER MODELS USING MONOPHONE

AND TRIPHONE HMM ALIGNMENT LABELS

baseline of 60.4% trained using 24 hours of data is only 2.5%
worse than the 62.9% obtained in [70], even though the latter
used 130 hours of manually transcribed data and about 2000
hours of user-click confirmed data (90% accuracy). This small
difference in accuracy indicates that the baseline we compare
with in this paper is not weak. Since we did not personally
obtain the result from [70], there may be other differences
between our setup and the one used in [70] in addition to the
larger training set.

The discriminative training of the CD-GMM-HMM was car-
ried out using the HTK.2 The lattices were generated using HDe-
code3 and, when generating the lattices, the weak word uni-
gram LM estimated from the training transcription was used. As
shown in Table II, the MPE-trained CD-GMM-HMM outper-
formed both the ML- and MMI-trained CD-GMM-HMM with
a sentence accuracy of 65.5% and 63.8% on the development
and test sets respectively.

C. CD-DNN-HMM Results and Analysis

Many decisions need to be made when training CD-DNN-
HMMs. In this subsection, we will examine how these choices
affect recognition accuracy. In particular, we will empirically
compare the performance difference between using a mono-
phone alignment and a tri-phone alignment, using monophone
state labels and tri-phone senone labels, using 1.5 K and 2 K
hidden units in each layer, using an ANN-HMM and a DNN-
HMM, and tuning and not tuning the transition probabilities. For
all experiments reported below, we have used 11 frames (5-1-5)
of MFCCs as the input features of the DNNs, following [30] and
[31]. During pre-training we used a learning rate of 0.004 for all
layers. For fine-tuning, we used a learning rate of 0.08 for the
first 6 epochs and a learning rate of 0.002 for the last 6 epochs.
In all our experiments, we averaged updates over minibatchs of
256 training cases before applying them. To all weight updates,
we added a “momentum” term of 0.9 times the previous update
[see (9)]. We selected the values of these hyperparameters by

2The lattice probability scale factorLATPROBSCALEwas set to 1/LMWwhere
LMW is the LM weight, i-smooth parameters ISMOOTHTAU, ISMOOTHTAUT,
and ISMOOTHTAUW were set to 100, 10, and 10, respectively, for the MMI
training, and 50, 10, and 10, respectively, for the MPE training.

3We used HDecode.exe with command line parameters “-t 250.0 -v 200.0 -u
5000 -n 32 -s 15.0 -p 0.0” for the denominator and “-t 1500.0 -n 64 -s 15.0 -p
0.0” for the numerator.

TABLE IV
COMPARISON OF CONTEXT-INDEPENDENT MONOPHONE STATE LABELS

AND CONTEXT-DEPENDENT TRIPHONE SENONE LABELS

TABLE V
CONTEXT-DEPENDENT MODELS WITH AND WITHOUT PRE-TRAINING

hand, based on preliminary single hidden layer experiments so
it may be possible to obtain even better performance with the
deeper models using a more exhaustive hyperparameter search.

Our first experiment used an alignment generated from a
monophone GMM-HMM and used the monophone states as the
DNN training labels. Such a setup only achieved 55.5% sen-
tence accuracy on the development set if a single 1.5 K hidden
layer is used, as shown in Table III. Switching to an alignment
generated from an ML-trained triphone GMM-HMM, but
still using monophone states as labels for the DNN, increased
accuracy to 59.1%.

The performance can be further improved to 59.3% if we
use 2 K instead of 1.5 K hidden units, as shown in Table IV.
However, an even larger performance improvement occurred
when we used triphone senones as the DNN training labels,
which yields 68.1% sentence accuracy on the development
set, even with only one hidden layer. Note that this accuracy
is already 2.6% higher than the 65.5% achieved using the
MPE-trained CD-GMM-HMMs. The accuracy increased to
69.6% when three hidden layers were used. Table IV shows
that models trained using senone labels perform much better
than those trained using monophone state labels when either
one or three hidden layers were used. Using senone labels has
been the single largest source of improvement of all the design
decisions we analyzed.

An obvious question to ask is whether the pre-training
step in the DNN is truly necessary or helpful. To answer this
question, we compared CD-DNN-HMMs with and without
pre-training in Table V. As expected, if only one hidden
layer was used, systems with and without pre-training have
comparable performance. However, when two hidden layers
were used, the accuracy of 69.6% obtained with pre-training
applied noticeably surpassed the accuracy of 68.2% obtained
without pre-training on the development set. The pre-trained
two layer model had a frame-level misclassification rate of
31.13%, whereas the un-pre-trained two layer model had a
frame-level misclassification rate of 32.83%. The cross entropy
loss per case of the two hidden layer models was 1.73 and 1.18
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Fig. 2. Relationship between the recognition accuracy and the number of
layers. Context-dependent models with 2 K hidden units per layer were used
to obtain the results.

bits, respectively. Our general anecdotal experience (built in
part from other speech datasets) has been that pre-training on
acoustic data never hurts the frame-level error of models we try
and can be especially helpful when using very large models.
Even the largest models we use in this work are comparable in
size to ones used on TIMIT by [30], even though we use a much
larger dataset here. We hope to use much larger models still in
the future and make better use of the regularization effect of
generative pre-training. That being said, the pre-training phase
seems to give a clear improvement in the two hidden layer
experiment we describe in Table V.

Fig. 2 demonstrates how the sentence accuracy improves
as more layers are added in the CD-DNN-HMM. When three
hidden layers were used, the accuracy increased to 69.6%.
The accuracy further improved to 70.2% with four hidden
layers and 70.3% with five hidden layers. Overall, using the
five hidden-layer models provides us with a 2.2% accuracy
improvement over the single hidden-layer system when the
same alignment is used. Although it is possible that using even
more than five hidden layers would continue to improve the
accuracy, we expect any such gains to be modest at best, so we
restricted ourselves to at most five hidden layers in the rest of
this work.

In order to demonstrate the efficiency of parameterization en-
joyed by deeper neural networks, we have also trained a single
hidden layer neural network with 16 K hidden units, a number
chosen to guarantee that the weights required a little more space
to store than the weights for our five hidden layer models. We
were able to obtain an accuracy of 68.6% on the development
set, which is slightly more than the 2K hidden unit single layer
result of 68.1% in Fig. 2, but well below even the two layer re-
sult of 69.5% (let alone the five layer result of 70.3%).

Table VI shows our results after the main steps of Algorithm
1. All systems in Table VI use a DNN with five hidden layers
of 2K units each and senone labels. As we have shown in
Table III, using a better alignment to generate training labels
for the DNN can improve the accuracy. This observation is
also confirmed in Table VI. Using alignments generated with
MPE-trained CD-GMM-HMMs, we can obtain 70.7% and
68.8% accuracies on the development and test sets, respec-
tively. These results are 0.4% higher than those we achieved
using the ML CD-GMM-HMM alignments.

TABLE VI
EFFECTS OF ALIGNMENT AND TRANSITION PROBABILITY TUNING

ON BEST DNN ARCHITECTURE

TABLE VII
SUMMARY OF TRAINING TIME USING 24 HOURS OF TRAINING

DATA AND 2 K HIDDEN UNITS PER LAYER

Table VI also demonstrates that tuning the transition prob-
abilities in the CD-DNN-HMMs also seems to help slightly.
Tuning the transition probabilities comes with another benefit.
When we use transition probabilities directly borrowed from
the CD-GMM-HMMs, the best decoding performance usually
was obtained when the AM weight was set to 2. However, after
tuning the transition probabilities, we no longer need to tune the
AM weights.

Once we have trained our best CD-DNN-HMM using a
CD-GMM-HMM alignment, we can use the CD-DNN-HMM
to generate an even better alignment. Table VI shows that
the accuracies on the development and test sets can be in-
creased to 71.7% and 69.6%, respectively, from 71.0% and
69.0%, which were obtained using – . Tuning the
transition probabilities again only marginally improves the
performance. Overall, our proposed CD-DNN-HMMs obtained
69.6% accuracy on the test set, which is 5.8% (or 9.2%)
higher than those obtained using the MPE (or ML)-trained
CD-GMM-HMMs. This improvement translates to a 16.0%
(or 23.2%) relative error rate reduction over the MPE (or
ML)-trained CD-GMM-HMMs and is statistically significant
at significant level of 1% according to McNemar’s test.

D. Training and Decoding Time

We have just shown that CD-DNN-HMMs substantially out-
perform CD-GMM-HMMs in terms of recognition accuracy on
our task. A natural question to ask is whether the gain was ob-
tained at a significantly higher computational cost for training
and decoding.

Table VII summarizes the DNN training time using 24 hours
of training data, 2 K hidden units, and 11 frames of MFCCs
as input features. The time recorded in the table is based on a
trainer written in Python. The training was carried out on a Dell
Precision T3500 workstation, which is a quad core computer
with a CPU clock speed of 2.66 GHz, 8 MB of L3 CPU cache,
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TABLE VIII
SUMMARY OF DECODING TIME

and 12 GB of 1066 MHz DDR3 SDRAM. The training also used
an NVIDIA Tesla C1060 general purpose graphical processing
unit (GPGPU), which contains 4 GB of GDDR3 RAM and 240
processing cores. We used the CUDAMat library [71] to per-
form matrix operations on the GPU from our Python code.

From Table VII we can observe that to train a five-layer
CD-DNN-HMM, pre-training takes about

hours. Fine-tuning
takes about hours. To achieve the best result
reported in this paper, we have to run two passes of fine-tuning,
one with the MPE CD-GMM-HMM alignment, and one with
the CD-DNN-HMM alignment. The total fine-tuning time is
thus hours. To train the system, we also need
to spend time to normalize the MFCC features to allow each to
have zero-mean and unit-variance, and to generate alignments.
However, these tasks can be easily parallelized and the time
spent on them is very small compared to the DNN training
time. The total time spent to train the system from scratch is
about four days. We have observed that using a GPU speeds up
training by about a factor of 30 faster than just using the CPU
in our setup. Without using a GPU, it would take about three
months to train the best system.

The bottleneck in the training process is the mini-batch
stochastic gradient descend (SGD) algorithm used to train
the DNNs. SGD is inherently sequential and is difficult to
parallelize across machines. So far SGD with a GPU is the best
training strategy for CD-DNN-HMMs since the GPU at least
can exploit the parallelism in the layered DNN structure.

When more training data is available, the time spent on
each epoch increases. However, fewer epochs will be needed
when more training data is available. We speculate that using
a strategy similar to our current one described in this paper, it
should be possible to train an effective CD-DNN-HMM system
that exploits 2000 hours of training data in about 50 days (using
a single GPU).

While training is considerably more expensive than for
CD-GMM-HMM systems, decoding is still very efficient.
Table VIII summarizes the decoding time on our four and
five-layer 2K hidden unit CD-DNN-HMM systems with
and without using GPUs. Note that in our implementation,
the search is always done using CPUs. It takes only 0.58
and 0.67 times real time to decode with four and five-layer
CD-DNN-HMMs, respectively, without using GPUs. Using a
GPU reduces decoding time to 0.17 times real time, at which
point DNN computations no longer dominate. For reference,
our baseline CD-GMM-HMM system decodes in 0.54 times
real time.

V. CONCLUSION AND FUTURE WORK

We have described a context-dependent DNN-HMM model
for LVSR that achieves substantially better results than strong,
discriminatively trained CD-GMM-HMM baselines on a chal-
lenging business search dataset. Although our experiments show
that CD-DNN-HMMs provide dramatic improvements in recog-
nition accuracy, training CD-DNN-HMMs is quite expensive
compared to training CD-GMM-HMMs (although on a similar
scale as other neural-network-based acoustic models and cer-
tainly feasible for large datasets, if one can afford weeks of
training time). This is primarily because the CD-DNN-HMM
training algorithms we have discussed are not easy to parallelize
across computers and need to be carried out on a single GPU
machine. That being said, decoding in CD-DNN-HMMs is very
efficient so test time is not an issue in real-world applications.

We believe our work on CD-DNN-HMMs is only the first
step towards a more powerful acoustic model for LVSR; many
issues remain to be resolved. Here are a few we view as par-
ticularly important. First, although CD-DNN-HMM training is
asymptotically quite scalable, in practice it is quite challenging
to train CD-DNN-HMMs on tens of thousands of hours of data.
To achieve this level of practical scalability, we must parallelize
training not just at the matrix arithmetic level. Finding new ways
to parallelize training may require a better theoretical under-
standing of deep learning. Second, we must find highly effec-
tive speaker and environment adaptation algorithms for DNN-
HMMs, ideally ones that are completely unsupervised and in-
tegrated with the pre-training phase. Inspiration for such algo-
rithms may come from the ANN-HMM literature (e.g., [72]
and [73]) or the many successful adaptation techniques devel-
oped in the past decades for GMM-HMMs (e.g., MLLR [74],
MAP [75], joint compensation of distortions [76], variable pa-
rameter HMMs [77]). Third, the training in this study used the
embedded Viterbi algorithm, which is not optimal. We believe
additional improvement may be achieved by optimizing an ob-
jective function based on the full sequence, as we have already
demonstrated on the TIMIT dataset with some success [31].
In addition, we view the treatment of the time dimension of
speech by DNN-HMM and GMM-HMMs alike as a very crude
way of dealing with the intricate temporal properties of speech.
The weaknesses in how HMMs deal with the temporal dimen-
sion of speech inputs have been analyzed in detail in [78]–[81].
There is a vast space to explore in the deep learning frame-
work using the insights gained from temporal-centric genera-
tive modeling research in neural networks and in speech (e.g.,
[2], [47], [82], and [83]). Finally, although Gaussian RBMs can
learn an initial distributed representation of their input, they still
produce a diagonal covariance Gaussian for the conditional dis-
tribution over the input space given the latent state (as diagonal
covariance GMMs also do). A more powerful first layer model,
namely the mean-covariance restricted Boltzmann machine [84]
significantly enhanced the performance of context-independent
DNN-HMMs for phone recognition in [32]. We therefore view
applying similar models to LVSR as an enticing area of future
work.
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