
High-Performance-Class
“FireCaffe:	near-linear	acceleration	of	
deep	neural	network	training	on	
compute	clusters”
2017/10/24

Yashima Keita

Tokyo	 Inst i tute 	of 	Technology 	at 	Matsuoka	Lab(B4)

What	is	Deep	Neural	Network,	DNN?
What	is	DNN?
◦ input…Image, Sentence,	etc
◦ output…something	like	probability

Motivation
DNN	architectures	have	been	developed	
(GoogLeNet,AlexNet,NiN(Network-in-Network),VGC)

Thanks	to	cuDNN or	maxDNN,	GPUs	can	perform	their	theoretical	
peak	computation	per	second(=flops)

But	GoogleNet takes	weeks	to	train	on	a	modern	GPU…

Motivation
Long	time	training	is	serious	problem	in	research
◦ The	speed	and	scalability	of	distributed	algorithm	is	almost	always	
limited	by	the	overhead	of	“communication”	between	servers

This	“FireCaffe”	focus	on	“communication-time”

To	reduce	Communication	Time
There	are	3	approach	to	this
◦ Using	high	performance	network	hardware(e.g infiniband,Cray
interconnnect)

◦ Considering	communication	algorithm
◦ Increasing	batch	size	and	identifying	hyperparameters

Hardware	for	scalable	DNN	training
The	speed	at	which	data	can	be	sent	between	nodes	is	a	key
◦ The	faster	the	interconnect	between	nodes	is,	the	more	scale	we	can	
achieve	without	being	dominated	by	communication	overhead

Cray	, Mellanox and	Infiniband (high-bandwidth	low-latency)	are	
faster	than	typical	Ethernet	connnection

Considering	communication	algorithm
Preliminaries	and	terminology

DNN	training	is	comprised	of	iterating	between	two	phase
Forward-propagation
◦ Batch	of	items	is	taken	from	the	training	set,	and	DNN	attempts	to	
classify	them

Backward-propagation
◦ Computing	gradient	with	respect	to	the	weights(𝛻𝑊) and	data(𝛻𝐷)

Considering	communication	algorithm
Preliminaries	and	terminology

Considering	communication	algorithm
Preliminaries	and	terminology

The	total	size(in	bytes)	of	the	weights	in	all	CNN	and	full-conn	layers

𝑊 = ∑ 𝑐ℎ(∗ 𝑛𝑢𝑚𝐹𝑖𝑙𝑡(∗ 𝑓𝑖𝑙𝑡𝑒𝑟𝑊(∗ 𝑓𝑖𝑙𝑡𝑒𝑟𝐻(∗ 4
#789:;<
(=>

The	total	size	of	activation	produced	by	all	layers,	combined

𝐷 = ∑ 𝑐ℎ(∗ 𝑛𝑢𝑚𝐹𝑖𝑙𝑡(∗ 𝑑𝑎𝑡𝑎𝑊(∗ 𝑑𝑎𝑡𝑎𝐻(∗ 𝑏𝑎𝑡𝑐ℎ ∗ 4
#789:;<
(=>

Considering	communication	algorithm
Parallelism	strategies

Two	commonly-used	methods	for	parallelizing	neural	network	
training	across	GPU-Server
Model-Parallelism
◦ Each	GPU	gets	a	subset	of	the	model	parameters	and	GPUs	
communicate	by	exchanging	𝛻𝐷 and	activations	D

Data-Parallelism
◦ Each	GPU	gets	a	subset	of	the	batch	and	each	GPUs	communicate	by	
exchanging	weight	gradient	updates	𝛻𝑊

Considering	communication	algorithm
Parallelism	strategies

Considering	communication	algorithm
Parallelism	strategies

Popular	and	accurate	DNN	models(e.g.	GoogLeNet)	consists	
primarily	of	convolution	layers

Considering	communication	algorithm
Parallelism	strategies

In	CNN,	data-parallel	is	typically	preferable
Because	it	requires	less	communication(𝛻D ≫ 𝛻𝑊)	

Considering	communication	algorithm
(Data-Parallel)

Considering	communication	algorithm
Choosing	DNN	architecture	to	accelerate

	𝛻𝑊 is	the	data	sent	by	each	GPUs,	so	DNN	architecture	with	fewer	
parameters	require	less	communication

Considering	communication	algorithm
Choosing	DNN	architecture	to	accelerate

What	are	the	architecture	choices	that	led	to	NiN and	GoogLeNet
having	8-10x	fewer	parameters	than	AlexNet and	VGG?
◦ Many	of	filter	in	(GoogLeNet,NiN)	are	more	small	(1x1)	than	others(3x3)
◦ GoogLeNet has	smaller	full-connected	layers	than	AlexNet VGG(more	
than	150MB)	and	NiN does	not	have	full-connected	layer

This	FireCaffe focus	on	accelerating	the	training	of	models	with	fewer	
parameters(e.g.	NiN or	GoogLeNet)	while	maintaining	high	accuracy

Implementing	efficient	
Data-parallel	training

Forward-propagation
◦ No	communication	among	GPUs
Backward-propagation
◦ To	sum	the	weight	gradients	over	all	images,	have	to	communicate	
among	GPUs	

Next	task	is	to	find	an	efficient	way	to	sum	up	𝛻𝑊 among	GPUs

How	to	sum	up	𝛻𝑊 among	GPUs
1.Parameter	server	
One	node	is	used	as	a	parameter	server	to	control	𝛻𝑊

What	is	a	communication	overhead	of	a	parameter	server	and	how	it	
behave	as	we	increase	the	number	of	GPUs?

How	to	sum	up	𝛻𝑊 among	GPUs
1.Parameter	server	
If	there	are	𝑝 GPUs,	the	parameter	server	is	responsible	for	sending	
and	receiving	 𝛻𝑊 ∗ 𝑝 bytes	of	data.
When	each	GPU	can	send	and	receive	data	at	rate	of	BW(bytes/s)

	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑟𝑒𝑣𝑒𝑟_𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒= JK ∗L
MK

	(𝑠𝑒𝑐)

The	parameter	server’s	communication	time	scales	linearly	as	we	
increase	the	number	of	GPUs…

How	to	sum	up	𝛻𝑊 among	GPUs
2.Reduction	tree
Frequently	occurring	one	is	allreduce
◦ This	pattern	occurs	when	each	GPU	produces	one	or	more	data	value		
to	produce	a	single	value	and	then	this	single	value	must	be	broadcast	
to	all	GPU	before	they	can	continue

In	this	work(sum	up	𝛻𝑊)
◦ Each	GPU	produces	a	single	vector	of	length	|𝛻𝑊| and	it	is	reduced	to	
update	models	

How	to	sum	up	𝛻𝑊 among	GPUs
2.Reduction	tree
Allreduce algorithm	use	binomial	reduction	tree

How	to	sum	up	𝛻𝑊 among	GPUs
2.Reduction	tree
If	there	are	𝑝 GPUs	and	binary	tree	with	a	branding	factor	of	2	and	a	
depth	of	logT 𝑝,	in	this	case	the	serialized	communication	is	2logT 𝑝

	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑒𝑒_𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒= JK ∗T VWXY L
MK

	(𝑠𝑒𝑐)

Reduction	tree	scales	logarithmically	as	𝑂 log 𝑝

How	to	sum	up	𝛻𝑊 among	GPUs
Parameter	server	vs	Reduction	tree

Evaluation	of	FireCaffe-acceleration	
training	in	ImageNet

Train	GoogLeNet and	Network-in-Network	on	up	to	128	GPU	
server(NVIDIA	Kepler-based	K20x	with	Cray	Gemini	interconnect)
Cray	Gemini
◦ 3D	Torus	network
◦ 168GB/sec	routing	capacity
K20x
◦Memory	size:	6GB
◦ Peak	Single	Precision:	3.95TF
◦ Cuda cores:	2688

Evaluation	of	FireCaffe-acceleration	
training	in	ImageNet

The	accuracy	of	DNN	depends	highly	on	the	specifics	of	the	
application	and	dataset	to	which	they	are	applied.
ImageNet-1k	(which	contains	more	than	1	million	training	images)	is	
widely-studied	dataset

This	paper	use	ImageNet-1k

Report	hyperparameter setting	such	as	weight	
initialization,	momentum,	batch	size,	and	learning	
rate
Hyperparameter setting	such	as	weight	initialization	can	have	a	big	impact	
on	the	speed	and	accuracy	produced	in	DNN	training	
NiN
◦ weight:	gaussian distribution	centered	at	0,	std =	0.01	for	1x1	CN-layer
and	std =	0.05	for	other	layer

◦ bias:	initialize	0
◦ weight	decay:	0.0005
◦ momentum:	0.9

These	settings	are	consistent	with	Caffe configuration	files	released	by	the	
NiN auther

Report	hyperparameter setting	such	as	weight	
initialization,	momentum,	batch	size,	and	
learning	rate
GoogLeNet
◦ momentum:	0.9
◦ weight	decay:	0.0002
◦ bias:	initialize	0.2
◦ weight:	xavier initializetion

Benchmark-Midsized	deep	models
(AlexNet,NiN)

Benchmark-Midsized	deep	models
(AlexNet,NiN)

◦ Using	data-parallelism	in	convolutional	layers	and	model	parallelism	in	
fully-connected	layers

◦ 8	GPU	achieved	7.7	times	fast
◦ For	reasons	that	accuracy	drop	by	1.8%	is	not	clear…
◦ As	in	when	we	increase	the	batch	size,	we	increase	learning-rate	to	
0.4(32-128GPU)

◦ 23x	speed-up	on	32	GPUs	and	39	speed-up	on	128	GPUs	

Benchmark-Ultra	deep	models
(GoogLeNet)

Benchmark-Ultra	deep	models
(GoogLeNet)

◦ Using	a	polynomial	learning	rate	– that	is	,	the	learning	rate	is	gradually	
reduced	after	every	iteration	of	training
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = (1 − 𝑖𝑡𝑒𝑟/maxiter)Lgh:;	(𝑝𝑜𝑤𝑒𝑟 = 0.5)

◦ trained	5	separeate version	of	GoogLeNet,	learnin-
rate{0.02,0.04,0.08,0.16,0.32}	and	batch_size =1024
When	0.32	and	0.16,	GoogLeNet failed	to	learn	and	0.08	achieved	most	
high	accuracy	68.3%

◦ 20x	speed-up	on	32	GPUs	and	47x	speed-up	on	128	GPUs	

Conclusions
Accelerating	DNN	training	has	several	benefits
◦ Increasing	dataset	sizes	in	a	tractable	amount	of	time
◦ Accelerating	DNN	enable	product	teams	to	bring	DNN-based	product	to	
market	more	rapidly

◦ There	are	a	number	of	compelling	use-cases	for	real-time	DNN	training	
(robot	self-learning)

Conclusions
This	paper	has	three	key	pillars	to	accelerating	DNN	training
◦ Select	network	hardware	which	is	high	bandwidth	between	GPU	server	
(infiniband,	Cray	interconnects)

◦ Found	that	reduction	tree	are	more	efficient	and	scalable	than	the	
traditional	parameter	server	approach

◦ Increase	the	batch	size	to	reduce	the	total	quantity	of	communication	
during	DNN	training	and	identify	hyperparameters that	allow	us	to	
reproduce	the	small-batch	accuracy	while	training	with	large	batch	size

Thank	you	for	listening!!!

