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Abstract. As an important approach to analyze the massive data set,
an efficient k-means implementation on MapReduce is crucial in many
applications. In this paper we propose a series of strategies to improve
the efficiency of k-means for massive high-dimensional data points on
MapReduce. First, we use locality sensitive hashing (LSH) to map data
points into buckets, based on which, the original data points is converted
into the weighted representative points as well as the outlier points.
Then an effective center initialization algorithm is proposed, which can
achieve higher quality of the initial centers. Finally, a pruning strategy
is proposed to speed up the iteration process by pruning the unneces-
sary distance computation between centers and data points. An extensive
empirical study shows that the proposed techniques can improve both
efficiency and accuracy of k-means on MapReduce greatly.

1 Introduction

Clustering large-scale datasets becomes more and more popular with the rapid
development of massive data processing needs in different areas [16]. With the
rapid development of Internet, huge amount of web documents appear. As these
documents contain rich semantics, such as text and medias, they can be repre-
sented as multi-dimensional vectors. To serve the searching and classification of
these documents, we need efficient high-dimensional clustering technology. The
clustering algorithms for massive data should have the following features:

– It should have good performance when the number of clusters is large. The
number maybe more than several thousands, because many applications need
to depict the feature of the data in a fine granularity. However, it will increase
the cost significantly.

– It can deal with the high-dimensional data efficiently. Computing the dis-
tance between high-dimensional centers and data points is time consuming,
especially when the large number of clusters is large.
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In this paper, we select k-means algorithm to resolve the clustering problem for
massive high-dimensional datasets. The k-means algorithm has maintained its
popularity for large-scale datasets clustering, it is among the top 10 algorithms
in data mining [20]. The k-means algorithm is used in many applications such as
multimedia data management, recommendation system, social network analysis
and so on.

However, the execution time of k-means is proportional to the product of
the number of clusters and the number of data points per iteration. Clustering
the massive high-dimensional data set into a large number of clusters is time
consuming, even executing on MapReduce. To solve this and other related per-
formance problems, Alsabti et al. [3] proposed an algorithm based on the data
structure of the k-d tree and used a pruning function on the candidate centroid
of a cluster. However tree structure is inefficient for high-dimension space. For
high-dimensional similarity search, the best-known indexing method is locality
sensitive hashing (LSH) [15]. The basic method uses a family of locality-sensitive
hash functions to hash nearby objects in the high-dimensional space into the
same bucket.

In this paper, we use LSH from a different angle, instead of using it as an index.
We use it to partition data points into buckets, based on which, the original data
points is converted into the weighted representative points as well as the outlier
points, named data skeleton. The benefit is two-folds. First, the number of data
points used to initialize the centers is reduced dramatically, which can improve
its efficiency. Second, during the iteration phase of k-means, we use it to prune off
the unnecessary distance computation. In addition, the output of LSH is integer
numbers, which makes it a natural choice to generate the “Key” for MapReduce.

A high-quality initialized centers are important for both accuracy and effi-
ciency of k-means. Some initialization algorithms [5] exploit the fact that a good
clustering is relatively spread out. Based on it, these approaches prefer the points
far away from the already selected centers. However, they need to make k passes
over the whole data set sequentially to find k centers, which limits their appli-
cability to massive data: The scalable k-means++ [2] overcomes the sequential
nature by selecting more than one centers at an iteration. However, it still faces
huge computation when updating the weights for all points. In this paper, we
propose an efficient implement of scalable k-means++ on MapReduce, which
improve both efficiency and accuracy of center initialization.

Finally, a pruning strategy is proposed to speed up the iteration process of
k−means. The basic idea is as follows. First, we use the representative points, p,
to find the nearest center, say c. If their distance is apparently smaller than that
between the representative points and the second nearest center, c is also the
nearest center for all data points represented by p. Second, the locality property
of LSH is used to make pruning. In other words, for a data point p, we only
compute the distance between it and the small number of centers which stays in
the buckets near to that of p.
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Our contributions are as follows:

– The LSH-based data skeleton is proposed to find representative points for
similar points, which can speed up the center initialization phase and itera-
tion phase.

– We propose an efficient implement of scalable k-means++ on MapReduce,
which improve both efficiency and accuracy of center initialization.

– A pruning strategy is proposed to speed up the iteration process of k-means.
– We implement our method on MapReduce and evaluate its performance

against the implementation of scalable k-means++ in [2]. The experiments
show we get better performance than scalable k-means++, both in initial-
ization phase and iteration phase.

The rest of this paper is organized as follows. We discuss related work in
Section 2. Section 3 gives the preliminary knowledge. We propose our LSH-
based k-means method in Section 4. A performance analysis of our methods is
presented in Section 5. We conclude the study in section 6.

2 Related Work

Clustering problems have attracted interests of study for the past many years by
data management and data mining researchers. The k-means algorithm keeps
popular for its simplicity. Despite its popularity, k-means suffers several major
shortcomings such as the need of specified k value and proneness of the local min-
ima. There are many variants of naive k-means algorithm. Ordonez and Omiecin-
ski [18] studied disk-based implementation of k-means, taking into account the
requirements of a relational DBMS. The X-means [19] extends k-means with ef-
ficient estimation of the number of clusters. Joshua Zhexue Huang [14] proposes
a k-means type clustering algorithm that can automatically calculate variable
weights. Alsabti et al. [3] proposed an algorithm based on the data structure of
the k-d tree and used a pruning function on the candidate centroid of a cluster.
The k-d tree fulfils the space partitioning and a partition is treated a unit for
processing. The processing in batch can reduce the computation substantially.

The k-means algorithm has also been considered in a parallel environment.
Dhillon and Modha [12] considered k-means in the message-passing model, fo-
cusing on the speed up and scalability issues in this model. MapReduce [10] as
a popular massive-scale parallel data analysis model gains more and more at-
tention and a lot of enthusiasm in parallel computing communities. Hadoop [1]
is a famous open-source implementation of MapReduce model. There are many
applications on top of Hadoop. Mahout [17] is a famous Apache project which
serves as a scalable machine learning libraries, including the k-means imple-
mentation on Hadoop. Robson L.F.Cordeiro [8] proposed a method to cluster
multi-dimensional datasets with MapReduce. Yingyi Bu proposes HaLoop [7],
which is a modified version of Hadoop, and gives the implementation of k-means
algorithm on it. Ene et al.[13] considered the k-median problem in MapReduce
and gave a constant-round algorithm that achieves a constant approximation.
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D. Arthur and S. Vassilvitskii propose k-means++ [5], which can improve
the initialization procedure. Scalable k-means++ [6] is proposed by Bahman
Bahmani and Benjamin Moseley, which can cluster massive data efficiently.

Yi-Hsuan Yang[21] presented an empirical evaluation of clustering for music
search result. The dataset is sampled first to decide the partitions, then m map-
pers read the data, ignore the elements from the clusters found in the sample
and send the rest to r reducers. r reducers use the plug-in to find clusters in
the received elements and send the clusters descriptions to one machine which
merges the clusters received and get the final clusters.

3 Preliminary Knowledge and Background

3.1 K-means Algorithm and Its Variants

In data mining, k-means is a method of cluster analysis which aims to partition
n observations into k clusters in which each observation belongs to the cluster
with the nearest distance. X = {x1, x2, ..., xn} be a set of observations in the
d-dimensional Euclidean space. ‖xi−xj‖ denote the Euclidean distance between
xi and xj . C = {c1, c2, ..., ck} be k centers. We denote the cost of X with respect
to C as

φX(C) =
∑

x⊂X

d2(x,C) =
∑

x⊂X

min
1≤i≤k

‖x− ci‖2 (1)

where d2(x,C) is the smallest distance between x and all points in C.
The goal of k-means is to find C such that the cost φX(C) is minimized.

Clustering is achieved by an iterative process that assigns each observation to its
closest center, constantly improving the centers according to the points assigned
to each cluster. The process stops when a maximum number of iterations is
achieved or when a quality criterion is satisfied. The quality criterion is generally
set that φX(C) is less than a predefined threshold.

3.2 MapReduce and Hadoop

MapReduce [11] was introduced by Dean et. al. in 2004. It is a software archi-
tecture proposed by Google. The kernel idea of MapReduce is map and reduce.
Themap phase callsmap functions iteratively, each time processing an key/value
input record to generate a set of intermediate key/value pairs, and a reduce func-
tion merges all intermediate values associated with the same intermediate key. It
is a simplified parallel programming model and it is associated with processing
and generating large data sets. Hadoop implements a computational paradigm
named MapReduce, where the application is divided into many small fragments
of works, every fragment is processed by a map function first on any node in
the cluster, then the results are grouped by the key and processed by a reduce
function. Hadoop provides a distributed file system (HDFS) that stores data on
the compute nodes.
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3.3 Locality Sensitive Hashing

The indexing technique called locality sensitive hashing(LSH) [4] emerged as a
promising approach for high-dimensional data similarity search. The basic idea
of locality sensitive hashing is to use hash functions that map similar objects
into the same hash buckets with high probability. LSH function families have the
property that objects that are close to each other have a higher probability of
colliding than objects that are far apart. More formally, assume S be the domain
of objects, and D be the distance measure between objects.

Definition 1. A function family H={h : S → U} is called (r; cr; p1; p2)- sensi-
tive for D if for any v; q ∈ S

– if v ∈ B(q, r) then PrH [h(q) = h(v)] ≥ p1,
– if v /∈ B(q, cr) then PrH [h(q) = h(v)] ≤ p2.

In this paper, we adopt hash function in Eqution 1, considering its simplicity.
Different LSH families can be used for different distance functions. D. Datar

et al [9] have proposed LSH families for lp norms, based on p-stable distributions.
When p is 2, it is Eclidean space. Here, each hash function is defined as:

ha,b(v) =

⌊
a.v + b

r

⌋
(2)

4 LSH-kmeans for Massive Datasets

4.1 Overview

In this session we propose LSH-kmeans which includes several optimization
strategies for large-scale high-dimensional data clustering. Our goal is to opti-
mize both the initialization phase and the iteration phase for k-means on MapRe-
duce. First, we use LSH to get the data skeleton by which the similar points are
reduced to a weighted point (Session 4.2). Secondly, we propose an efficient im-
plement of scalable k-means++ on MapReduce, which improve both efficiency
and accuracy of center initialization. Furthermore, we reduce the intermediate
messages for the MapReduce implementation by adopting coarse granularity of
input (Session 4.3). Thirdly, we make use of the low bound property of LSH to
prune off the unnecessary comparisons which can guarantee the correctness of
the clustering results (Session 4.4).

4.2 Data Skeleton

For massive datasets, it is quite time-consuming for k-means to compute the
distance between any point and center pair, especially when k is large. One
intuitive idea is that we can group the similar points together first, and so all
points in the same group may belong to the same cluster with high probability.
We illustrate it in Fig. 1. Let c1 and c2 are two center points, and p1 and p2
are two points. r1, r1′ , r2 and r2′ are the distances between p1, p2 and c1, c2
respectively. d is the distane between p1 and p2. If we know that r1 < r2 and d
is small, it is very likely that r1′ < r2′ . We can generalize it to Theorem 1.
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Fig. 1. Points and Centers Fig. 2. Data Skeleton

Theorem 1. Given c1 and c2 as two centers, p1 and p2 as two points with
the distance d, r1, r1′ , r2 and r2′ are the distances between p1, p2 and c1, c2
respectively. If r1 < r2 and r2 − r1 > 2 ∗ d, then it holds that r1′ < r2′ .

Proof. According to triangle inequality, we have r1 − d < r1′ < r1 + d and
r2 − d < r2′ < r2 + d. Therefore, we have

r1′ < r1 + d

< r2 − 2d+ d (r2 − r1 > 2 ∗ d)
= r2 − d

< r2′ (r2 − d < r2′)

According to Theorem 1, if we group similar points together, we have large
probability to save some unnecessary distance computation. In this paper, we
propose data skeleton to achieve this goal.

Each element of data skeleton is a triple < pr, Lp, weight > , where L is the
list of points which are represented by p. Formally, for point p, if the distance
between p and pr is smaller than a user-specified threshold, denoted as ε, we add
it to Lp. weight is set to |Lp| + 1. Data skeleton is computed as follows. First,
we use m number of LSH functions to divide the original data set into buckets.
All points in each point share the same hash values. From each bucket, we select
the center of all points in it as a representative data point, pr. The distances
between all points in this bucket and pr are computed, and all of them with
distance smaller than ε are added into Lp. Other points are named as outlier
points, each of which is also an element in data skeleton. Lp of an outlier point
is an empty set, and the weight is set to 1. Fig. 2 illustrate it.

Considering that LSH may miss some similar points due to its probabilistic
property, we use an iterative process to compute data skeleton with MapReduce.
In each iteration, we use a different set of hash functions to find the representative
points and outlier points. For the first iteration, the input is the whole dataset.
For the rest iterations, the input is the outlier points in the last round. m hash
functions in each iteration are selected independently.
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Note that, different from the traditional k-means, in which all points have
equal weights, in data skeleton, different points have different weights. For rep-
resentative point, the more points it represents, the higher the weight. For outlier
points, the weight is 1. We will use the weighted points to initialize the centers
in next section.

4.3 Improving the Seeding Quality

Improving the initialization procedure of k-means is quite important in terms
of the clustering quality. The state-of-the-art k-means variants are k-means++
and k-means||. We introduce them respectively.

K-means++ and K-means||. The k-means++ is proposed by Arthur and
Vassilvitskii[7], which focuses on improving the quality of the initial centers.
The main idea is to choose the centers one by one in a controlled fashion, where
the current set of chosen centers will stochastically bias the choice of the next
center. The sampling probability for a point is decided by the distance between
the point and the center set(Line 3). The distances are considered as weights for
sampling. After an iteration, the weights should be changed because of the new
centers added into the center set. The details of k-means++ are presented in
Algorithm 1. The advantage of k-means++ is that the initialization step itself
obtains an (8 log k)-approximation to the optimization solution in expectation.
However, its inherent sequential nature makes it unsuitable for massive data set.

Algorithm 1. k-means++ initialization

Require: X : the set of points, k: number of centers;
1: C ← sample a point uniformly at random from X
2: while |C| ≤ k do

3: Sample x ∈ X with probability d2(x,c)
φX (C)

4: C ← C
⋃

x
5: end while

The second variant of k-means is k-means||, which is the underlying algorithm
for the scalable k-means++ in [6]. The k-means|| improves the parallelism of k-
means++ by selecting l centers at one iteration. The k-means|| picks an initial
center and computes the initial cost of the clustering. It then proceeds in logψ
iterations. In each iteration, given the current set of centers C, it samples each

x with probability l·d2(x,c)
φX (C) and obtain l new centers. The sampled centers are

then added to C, the quantity φX(C) updated, and the iteration continued. The
details are presented in Algorithm 2.

The MapReduce implementation of k-means|| is given in [6], which is called
the scalable k-means++. In the rest of this paper, for simplicity, we denote the
MapReduce implementation of k-means|| as k-means++ directly.
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Algorithm 2. k-means|| initialization
Require: X : the set of points,l: the number of centers sampled for a time, k: number

of centers;
1: C ← sample a point uniformly at random from X
2: ψ ← φXC
3: for o(logψ) do

4: Sample C′ each point x ∈ X with probability l·d2(x,C)
φX(C)

5: C ← C
⋃

C′

6: end for
7: For x ∈ C, set wx to be the number of points in X closer to x than any other point

in C
8: Recluster the weighted points in C into k

Our Approach. We improve k-means++ with the help of data skeleton. There
are two major improvements. First, we use the weighted points in data skeleton
to sample the centers. The advantage of sampling centers on the weighted points
produced from the data skeleton is that we can acquire a more spread-out center
set because the close points are treated as a weighted point. Second, we propose
a new sampling implementation on MapReduce.

Our approach includes three steps:

– Step 1: Data partitioning and weight initialization
– Step 2: Sampling l centers
– Step 3: Updating the weights

In first step, we divide the points in data skeleton into |B| disjoint blocks,
(B1, B2, · · · , B|B|) randomly. Then a random data point is selected as the first
center in C. Based on it, we compute the initial sampling weights both each
block as well the all points in it. Each block has a unique ID, which is a number
within the interval [1, |B|]. For each block, the initial sampling weight is the sum
of the weights for points in this block. The sampling weight for a weighted point
< x,wx > is wx ∗ d2(x,C), denoted as wpx. It is the smallest distance between
x and all centers in C, multiplied by wx. The sampling weight for block Bi is
defined as

∑
x∈Bi

wpx, denoted as wbi. Moreover, we compute φx(C), which is
the sum of all wbi’s.

A MapReduce job is utilized to partition the data. In Map phase, each point
in data skeleton is assigned to a block randomly and the distances for this point
to the current centers are calculated. In Reduce phase, we compute the sum of
the weights for the points in this block.

Step 2 and 3 are an iterative process. In each round, step 2 generate l centers,
and step 3 update the weights of block and points. The iteration continues until
we obtain k centers.

In second step, we generate l random numbers randomly within the range
(0, φX(C)]. For the i-th random number numi, we can get the correspond-
ing block and points. The corresponding block is Bnb

such that
∑

j<nb
wbj <

numi ≤
∑

j≤nb
wj . Within block Bnb

, the point pnp which satisfies
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wb1 wb2 ... Wbk

Random Number

Block Weights

wp1 wp2 ... wpj ...Point Weights
For block k

offset

offset

...

Fig. 3. Sample blocks and points

∑

j<nb

wbj +
∑

j<np

wpj < numi ≤
∑

j<nb

wbj +
∑

j≤np

wpj

is selected as the i-th center in this iteration. Fig. 3 illustrates it. Also, a MapRe-
duce job is executed in step 2.

Since l new centers are added, the weights for both the block and the points
are changed. In third step, we update the weights for blocks and points. This
can be implemented by a MapReduce job only with Map phase to update the
weights for blocks and for points.

4.4 Pruning Unnecessary Comparisons Using LSH

After k centers are initialized, the iterative phase is conducted to adjust the
centers. When k is large, and the data points are high-dimensional, this phase
is very time consuming. In this section, we propose a pruning strategy to prune
off the unnecessary distance comparisons, which contains two types of pruning.
Next, we introduce them respectively.

The first pruning strategy is based on Theorem 1 to reduce the number of data
points which needs to find the nearest centers. For each representative point in
data skeleton pr, we first compute its distance to all centers. Let c1 is the nearest
center and c2 is the second nearest one. If it holds that d(pr, c2)−d(pr, c1) > 2ε,
we can conclude that c1 is exactly the nearest center for all points represented
by pr. In this case, we need not to compute the distance for all these points.

The second strategy is utilized the local property of LSH to reduce the number
of centers to be compared for each data points. Specifically, for a data point, we
only compute the distance between it and a few centers which stays in the buckets
near to that of this point. It is based on Theorem 2.

Theorem 2. Given a LSH function: ha,b(v) =
⌊
a·v+b

r

⌋
. If | ha,b(v1)−ha,b(v2) |≥

δh, then we have d(v1 − v2) ≥ (δh−1)·r
|a| .

Proof. According to definition of LSH, we have | ha,b(v1)−ha,b(v2) |=| ⌊ a·v1+b
r

⌋−⌊
a·v2+b

r

⌋ |≥ δh. We can conclude that | a·v1+b
r − a.v2+b

r + 1 |≥ δh. Therefore, we

have | a·(v1−v2)
r |≥ δh − 1. We have | v1 − v2 |≥ r(δh−1)

|a cos θ| ≥ r·(δh−1)
|a| . Here θ is the

angle between point a and vector v1 − v2.
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We only use one hash function to map all data points and centers into buckets.
We use h(p) to denote the bucket ID for point p. For each point p, we first find
the bucket, say bi, which satisfies

– bi is closest to h(p)
– bi contains at least one center.

In bi, We randomly select one center, denoted as c. Note that although c and p
belong to the nearest buckets, c may not be the closest center for p, due to the
probability property of LSH. However, we can use c to prune centers based on
Theorem 2.

We calculate the distance from p to c, denoted as d(p, c). From Theorem2, we
can get the threshold δh to guarantee if the difference of LSH function value is
greater than δh, the real distance is greater than d(p, c). So we can use only need
to compute the distance between p and centers in set {c||h(c)− h(p)| < δh}.

In fact, these two pruning strategies can be combined. Algorithm 3 shows
the pseudo-code of MapReduce job to combine these two pruning strategies. For
Map phase, the < key, value > pairs of input represent < pr, Lp, weight >.

We can get the representative point pr and the points in Lp (Line 3). We
record the centers in ordered buckets according to the hash values by a given
LSH function when mapper initializes. The results can be shared by all map
functions. We use binary search to find the closest bucket from the given point
pr and compute the distance from pr to a point in the bucket. From Theorem 2,
we can get the safe pruning threshold δh (Line 5 ∼ Line 7). We can prune the
centers by the threshold δh (Line 8 ∼ Line 14). From left centers, we get
the closet center c′ for pr (Line 15). From Theorem 1, we can conclude that
the points in L shares the same center if the distance from pr to c′ is less than
min + 2ε. We denote the set of candidate centers as closeSet. Because if the
distance is greater than min + 2ε, they share the same closest center with pr.
Here min is the distance from pr to its closest center c′ (Line 17 ∼ Line 24). We
find the closest centers for the points represented by pr in closeSet (Line 25 ∼
Line 35). In Reduce phase, new centers are calculated (Line 38 ∼ Line 41);

5 Experiments

In this section we present the experimental results of LSH-kmeans. The ex-
periment environment includes a cluster of 14 computers, each of which has two
Pentium(R) Dual-Core (2.70GHz) CPU E5400 and 4GB of memory, using Linux.
Hadoop version 0.20.3 and Java 1.6 are used as the MapReduce system.

5.1 Dataset and Baseline

We use two datasets. The first is KDDCUP1999 dataset which is publicly avail-
able from the UC Irvine Machine Learning repository. The original dataset is
comprised of 41 attributes and one class label.
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Algorithm 3. LSH-based pruning

Require: Set[1:k] C, parameter a, b, r, ε
1: Pruning-Map( Key k, Value v)
2: begin
3: Set < pr, Lp, weight >← v
4: hash1 = h(pr)
5: get so− far− closest from the closest bucket from hash1 using binary search;

6: dis = d(pr, so− far − closest)

7: δh = |a|·dis
r

+ 1
8: Set C′ = null
9: for c in C do
10: hash2 =

⌊
a·c+b

r

⌋

11: Set diff ← abs(hash1− hash2)
12: if diff ≤ δh then
13: C′ = C′ + {c}
14: end if
15: end for
16: get closest center c′ for pr in C′

17: min = distance(pr, c
′)

18: closeSet = null
19: for c in C′ do
20: dis2 = d(pr, c)
21: if | dis2−min |≤ 2ε then
22: closeSet = closeSet+ {c}
23: end if
24: end for
25: if closeSet = null then
26: for p in Lp do
27: Output(c′, p)
28: end for
29: else
30: for p in Lp do
31: get closest center cen′ from closeSet
32: Output(cen′, p)
33: end for
34: end if
35: Output(c′, pr)
36: end
37: Pruning-Reduce( Key k, Set values)
38: begin
39: mean = (

∑
vεvalues v)/sizeof(values)

40: center = nearest point from mean
41: Output(center, null)
42: end
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The second dataset is from our music database, which consists of about 1000
MP3 songs downloaded from the Internet, in which most of them are pop songs
and the rest are classical and folk music. We extract the key features from the
audible data and get the 26-dimension set of points. One point represents a
frame of the song. Totally the dataset includes 919711 26-dimensional vectors.

5.2 Experiment Results

Data Reduction of Data Skeleton. In this experiment, we compare the
number of data points in original dataset and data skeleton. We execute this
process for three iterations. For KDDCUP1999, the time for an iteration about
60s, much less than an k-means iteration (above 600s for k=1500). For Music
Frames, the time for an iteration about 130s, much less than an k-means iteration
(above 1567s for k=1500). The results are shown in Fig. 4. We see that after
data skeleton, the number of data points is reduced dramatically.
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Fig. 4. Data Skeleton For KDDCUP1999

The Center Initialization. We evaluate the quality by two factors with the
cost φX(C) in Equation 1. One is the clustering cost after seeding phase, and
the other is the convergence property. We use KDDCUP1999 dataset for this
evaluation. First we analysis the time performance, which is shown in Fig 7.
The time for seeding using LSH-kmeans is about 1/3 the seeding phase of k-
means++. The cost comparison is shown in Table 1. It can be seen that our
approach generates better cost than k-means++.

The LSH Pruning Performance. To evaluate the performance of the LSH
pruning in the iteration phase, we compare the time performance with and with-
out LSH pruning on KDDCUP1999 dataset. The results are shown in Fig. 6. In
each iteration, the time using LSH pruning is only 1/3 of the time without prun-
ing. Theorem 1 provides the guarantee for the correctness of the pruning. It can
be seen that when k is 3000, the time cost is reduced by about 68%.
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Fig. 5. Data Skeleton For Music Frames
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Fig. 6. LSH Pruning Performance

Table 1. Comparison of Clustering Cost (k=3000)

Iteration Cost of Original Dataset Cost of Data Sleleton

1 47824.77 47664.18

2 40292.91 40200.01

3 38318.60 38222.02

4 37474.73 37355.58

5 37019.76 36950.85

6 36714.02 36672.52

The Overall Performance Comparisons. We analyze the overall perfor-
mance of LSH-kmeans compared with k-means++. LSH-kmeans includes three
phases, skeleton, sampling centers and iteration. k-means++ includes two phases,
sampling centers and iterations. The running time for different phases are shown
in Fig. 7. Fig. 7(a) shows four groups of data, which are the running time for
different phases in terms of LSH-kmeans and k-means++, with k as 1500 and
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3000 respectively. The dataset is KDDCUP1999. As we can see, LSH-kmeans
outperforms k-means++ greatly, especially for a larger k (k = 3000). The time
cost is reduced by 67% when k is 1500, and 76% when k is 3000. We can get the
same conclusion for Music Frames from Fig. 7(b). The time cost is reduced by
57% when k is 1500, and 64% when k is 3000.
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Fig. 7. Overall Performance Comparisons

6 Conclusion and Future Work

In this paper we propose an improved k-means algorithm to cluster high-
dimensional data on MapReduce with the LSH technology. With the increase
of k, the number of clusters, the computation cost increases rapidly for high-
dimension data. Our method improves the performance of k-means both in
the initialization phase and the iteration phase. We implement LSH-kmeans
on MapReduce and evaluate its performance on several datasets. The experi-
ment results show that our method can improve the performance dramatically
without decreasing the quality.
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