
In-Datacenter Performance Analysis 
of A Tensor Processing Unit

DONG-HYUN HWANG



Preview of Highlights
Inference apps usually emphasize response-time over throughput 
since they are often user-facing. 

Due to latency limits, the K80 GPU is underutilized for inference, 
and is just a little faster than a Haswell CPU. 

Despite having a much smaller and lower power chip, the TPU has 
25 times as many MACs and 3.5 times as much on-chip memory as 
the K80 GPU. 

The TPU is about 15X - 30X faster at inference than the K80 GPU 
and the Haswell CPU. 



Preview of Highlights(cont.)
Four of the six NN apps are memory-bandwidth limited on the TPU; 
if the TPU were revised to have the same memory system as the 
K80 GPU, it would be about 30X - 50X faster than the GPU and CPU. 

The performance/Watt of the TPU is 30X - 80X that of 
contemporary products; the revised TPU with K80 memory would 
be 70X - 200X better. 

While most architects have been accelerating CNNs, they represent 
just 5% of our datacenter workload



Introduction
The synergy between the large data sets in the cloud and the 
numerous computers that power it has enabled a renaissance in 
machine learning.

Deep neural networks(DNN) have reduced word error rate in speech 
recognition, image recognition and beat a human champion at Go.



Introduction
The “deep” part of DNN comes from going beyond a few layers and 
virtually all training today is in floating point, which is one reason 
GPUs have been so popular.

Quantization transforms FP numbers into integers (often 8-bit) 
which are usually good enough for prediction (inference).

8-bit integer multiplies can be 6X less energy and area than 16-bit 
FP multiplies.

Integer addition can be 13X less energy and 38X less area than 16-
bit FP additions.

TPU in this paper doesn’t support training.
 TPU2 supports it.



NNs Are Popular Today
Multi-Layer Perceptrons (MLP): fully connected NN

Convolutional Neural Networks (CNN): Each ensuing layer is a set 
of nonlinear functions of weighted sums of spatially nearby subsets 
of outputs from the prior layer. 

Recurrent Neural Networks (RNN): Each subsequent layer is a 
collection of nonlinear functions of weighted sums of outputs and 
the previous state. The most popular RNN is Long Short-Term 
Memory (LSTM). The art of the LSTM is in deciding what to forget 
and what to pass on as state to the next layer. The weights are 
reused across time step



Main Purpose

Training

In the google data center, computation of prediction is more 
than computation of training.



Prediction



Block Diagram



Architecture
To reduce the delay of deployment, the TPU was designed to be a 
coprocessor on the PCIe I/O bus.

The TPU instructions are sent from the host over the PCIe Gen3 
x16 bus into an instruction buffer.

Internal blocks are connected together by 256-byte-wide paths.



MMU
Matrix Multiply Unit(MPU) is a heart of TPU.
 It contains 256x256 MACs(Multiply ACcumulate unit).

 Performing 8-bit multiply and adds on signed or unsigned integers.

 Output is 16-bit data.

 16-bit products are collected in the 4MiB of 32-bit accumulators.

 The 4MiB represents 4096 node.
 Each node has 256-element of 32-bit accumulators. 

 The matrix unit produces one 256-element partial sum per clock cycle

 The matrix unit holds one 64KiB tile of weights plus one for double 
buffering. (To hide the 256 cycles it takes to shit a tile in)
 Single weight is 8-Bit.



Memory and Buffer
The weights for the matrix unit are staged through an on-chip 
Weight FIFO that reads from an off-chip 8 GiB DRAM called Weight 
Memory.

The weight FIFO is four tiles deep.
 The intermediate results are held in the 24 MiB on-chip Unified Buffer, 

which can serve as inputs to the Matrix Unit.



Architecture (cont.)
Unified Buffer is almost a third (29%) of the die and the Matrix 
Multiply Unit is a quarter (24%).

The 24 MiB size was picked in part to match the pitch of the Matrix 
Unit on the die.



Architecture (cont.)
As instructions are sent over the relatively slow PCIe bus, TPU 
instructions follow the CISC tradition, including a repeat field.

The average clock cycles per instruction (CPI) of these CISC 
instructions is typically 10 to 20. 



TPU Execution Stage
CISC MatrixMultiply Instruction in TPU. (12bit)

The philosophy of the TPU microarchitecture is to keep the matrix 
unit busy, where each instruction executes in a separate stage. 

It uses a 4-stage pipeline for these CISC instructions, where each 
instruction executes in a separate stage.

UB Ad dr Accu Addr Len gth OP code, flags



Systolic Array (Fundamental)

















Systolic Array
As reading a large SRAM uses much more power than arithmetic, 
the matrix unit uses systolic execution to save energy by reducing 
reads and writes of the Unified Buffer.

The data flows in from the left, and the weights are loaded from the 
top.

A given 256-element multiply-accumulate operation moves through 
the matrix as a diagonal wavefront. 



Software
The TPU software stack had to be compatible with those developed 
for CPUs and GPUs so that applications could be ported quickly to 
the TPU. 

The portion of the application run on the TPU is typically written in 
TensorFlow and is compiled into an API that can run on GPUs or 
TPUs.

In TensorFlow 1.3, operations and bindings for the cloud TPU are 
included. 



Key Instruction Set
It has about a dozen instructions overall, but these five are the key 
ones.
 Read_Host_Memory reads data from the CPU host memory into the 

Unified Buffer. 

 Read_Weights reads weights from Weight Memory into the Weight FIFO 
as input to the Matrix Unit. 

 MatrixMultiply/Convolve do matrix multiply or convolution operation and 
save results to accumulator.

 Activate do activate function operation such as RELU, Sigmoid.

 Write_Host_Memory writes data from the Unified Buffer into the CPU 
host memory. 



NN Structure and H/W



Performance
To illustrate the performances, they used Roofline Performance 
model.

O
p

e
ra

ti
o

n
s 

p
er

 s
ec

o
n

d

Operations per DRAM Byte accessed



Performance (cont.)
The six NN applications are 
generally further below 
their ceilings than was the 
TPU and reason is the 
response time.

Many of these NN 
applications are parts of 
end-user-facing services.

Small increases in response 
time cause customers to 
use a service less.



Performance (cont.)
CPU and GPU performance in 
restrict response time(7ms) is 
almost 40% of their full 
performance.

TPU’s performance in restrict 
response time is 80% of TPU’s full 
performance.



Performance (cont.)



The Time TPU Interacts with CPU



Performance (cont.)

Relative inference(prediction) performance per die including the 
host server overhead for the two accelerators versus the CPU.

GM and WM are geometric and weighted mean.

TPU is 14.5 times faster than CPU and is 13.2 times faster than 
GPU.



Performance/Watt
TPU’ is an improved TPU.

Total Perf./Watt includes CPU and 
GPU power consumption for 
server computing

Incremental Perf./Watt doesn’t 
includes CPU and GPU power 
consumption for server 
computing.

In incremental case, TPU’ 
Perf./Watt by GM is 17, 34times 
better than CPU and is 14, 16 
times better than GPU.



Watts/die for CNN0
The Total GPU and TPU power are 
the red and orange lines and their 
Incremental power are the green 
and purple lines.

A server has 2 CPUs and 8 GPUs 
or 4 TPUs.

TPU’s energy proportionality is 
most bad.

However, TPU consumes only 
around 40Watt.



Performance by element scale
Weighted mean TPU performance 
as metrics scale from 0.25x to 4x: 
memory bandwidth, clock rate + 
accumulators, clock rate, matrix 
unit dimension + accumulators, 
and matrix unit dimension.

Memory bandwidth is most 
important element for performance.

Because most NN Benchmark 
applications cause performance 
bottlenecks due to memory 
bounds.



Usage of Unified Buffer

A 14 MiB Unified Buffer is sufficient for these apps. 



Discussion
In this paper, they organize the authors' ideas by dividing various 
topics (author thoughts) into Fallacy (false thinking) and Pitfall 
(danger).



Discussion(cont.)
Fallacy: NN inference applications in datacenters value throughput 
as much as response time.

Answer: Developers had strong response-time demands.
Even the developers of one application in 2014 that cared about 
response time (LSTM1) said the limit was 10 ms in 2014, but 
shrank it to 7 ms when they actually ported it to the TPU. 

Fallacy: The K80 GPU architecture is a good match to NN inference.

Answer: K80 is only a little faster at inference than Haswell and 
much slower than the TPU. Throughput-oriented architectural 
approach, it may be more challenging for GPUs to meet the strict 
latency limits



Discussion(cont.)
Pitfall: Architects have neglected important NN tasks

Answer: 15% of the papers at ISCA 2016 were on hardware 
accelerators for NN. All nine papers looked at CNNs, and only two 
mentioned other NNs. CNN is only about 5% of our datacenter NN 
workload.

Pitfall: For NN hardware, Inferences Per Second (IPS) is an 
inaccurate summary performance metric

Answer: Results show that IPS is a poor overall performance 
summary for NN hardware. For example, the TPU runs the 4-layer 
MLP1 at 360,000 IPS but the 89-layer CNN1 at only 4,700 IPS, so 
TPU IPS vary by 75X!. To compare NN machines better, we need a 
benchmark suite written at a high-level to port it to the wide variety 
of NN architectures.



Discussion(cont.)
Fallacy: The K80 GPU results would be much better if Boost mode 
were enabled. 

Answer: Setting aside the negative impact of K80 Boost mode on 
TCO (Section 3), we measured it on LSTM1. Boost mode increased 
the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by 
1.3X. The net gain in performance/Watt is 1.1X, and thus for LSTM1, 
boost mode would have a minor impact on our energy-speed 
analysis. 



Discussion(cont.)
Fallacy: CPU and GPU results would be comparable to the TPU if we 
used them more efficiently or compared to newer versions.

Answer: In 8-bit results for just one DNN on the CPU, the benefit 
was ~3.5X. It was less confusing (and less space) to present all 
CPU results in floating point, rather than having one exception, with 
its own roofline. DNNs had similar speedup, performance/Watt ratio 
would drop from 41-83X to 12-24X. 

Pitfall: Performance counters added as an afterthought for NN 
hardware.

Answer: The TPU has 106 performance counters, and if anything 
we would like a few more. The raison d'etre for NN accelerators is 
performance, and it is way too early in their evolution to have good 
intuition about what is going on.



Discussion(cont.)
Fallacy: After two years of software tuning, the only path left to 
increase TPU performance is hardware upgrades. 

Answer: The performance of CNN1 on the TPU could improve if 
developers and compiler writers did more work to match CNN1 to 
the TPU hardware.



Related Work
Fathom: reference workloads for modern deep learning methods

The Handbook of Brain Theory and Neural Networks

Training Neural Networks with Spert-II. Chapter 11 in Parallel Architectures for 
Artificial Networks: Paradigms and Implementations

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural 
Networks

High Performance Hardware for Machine Learning

A VLSI architecture for highperformance, low-cost, on-chip learning

Special-purpose digital hardware for neural networks: An architectural survey

If I could only design one circuit…: technical perspective

Toward accelerating deep learning at scale using specialized hardware in the 
datacenter

A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services

Convolution engine: balancing efficiency & flexibility in specialized computing

Design of a 1st Generation Neurocomputer



Conclusion
Despite living on an I/O bus and having relatively little memory 
bandwidth that limits utilization of the TPU. four of the six NN 
applications are memory-bound.

The TPU leverages the order-of-magnitude reduction in energy and 
area of 8-bit integer systolic matrix multipliers over 32-bit floating-
point datapaths of a K80 GPU to pack 25 times as many MACs and 
3.5 times the on-chip memory (28 MiB vs. 8 MiB) while using less 
than half the power of the K80 in a relatively small die. 

Inference applications have serious response-time bounds because 
they are often part of user facing applications, thus NN 
architectures need to perform well when coping with 99th-
percentile latency deadlines.



Conclusion(cont.)
The TPU die leverages its advantage in MACs and on-chip memory to 
run short programs written using the domain specific TensorFlow
framework 15 times as fast as the K80 GPU die, resulting in a 
performance/Watt advantage of 29 times, which is correlated with 
performance/total cost of ownership. Compared to the Haswell CPU die, 
the corresponding ratios are 29 and 83.

The TPU succeeded because of 
 the large—but not too large—matrix multiply unit
 reduce dependence on host CPU 
 a single-threaded, deterministic execution model that proved to be a good 

match to 99th-percentile response time limits
 enough flexibility to match the NNs of 2017 as well as of 2013
 the omission of general-purpose features that enabled a small and low 

power die despite the larger data path and memory
 the use of 8-bit integers by the quantized applications
 applications were written using TensorFlow, which made it easy to port them 

to the TPU at high-performance rather than them having to be rewritten to 
run well on the very different TPU hardware.


