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Preview of Highlights

=Inference apps usually emphasize response-time over throughput
since they are often user-facing.

=Due to latency limits, the K8O GPU is underutilized for inference,
and is just a little faster than a Haswell CPU.

=Despite having a much smaller and lower power chip, the TPU has
25 times as many MACs and 3.5 times as much on-chip memory as
the K80 GPU.

=The TPU is about 15X - 30X faster at inference than the K80 GPU
and the Haswell CPU.



Preview of Highlights(cont.)

=Four of the six NN apps are memory-bandwidth limited on the TPU;
if the TPU were revised to have the same memory system as the
K80 GPU, it would be about 30X - 50X faster than the GPU and CPU.

=The performance/Watt of the TPU is 30X - 80X that of
contemporary products; the revised TPU with K80 memory would
be 70X - 200X better.

=\While most architects have been accelerating CNNs, they represent
just 59% of our datacenter workload



Introduction

=The synergy between the large data sets in the cloud and the
numerous computers that power it has enabled a renaissance in
machine learning.

=Deep neural networks(DNN) have reduced word error rate in speech
recognition, image recognition and beat a human champion at Go.

AlphaGo




Introduction

=The “deep” part of DNN comes from going beyond a few layers and
virtually all training today is in floating point, which is one reason
GPUs have been so popular.

=Quantization transforms FP numbers into integers (often 8-bit)
which are usually good enough for prediction (inference).

=3-bit integer multiplies can be 6X less energy and area than 16-bit
FP multiplies.

=Integer addition can be 13X less energy and 38X less area than 16-
bit FP additions.

=TPU in this paper doesn't support training.
= TPU2Z supports it.



NNs Are Popular Today

=Multi-Layer Perceptrons (MLP): fully connected NN

=Convolutional Neural Networks (CNN): Each ensuing layer is a set
of nonlinear functions of weighted sums of spatially nearby subsets
of outputs from the prior layer.

=Recurrent Neural Networks (RNN): Each subsequent layer is a
collection of nonlinear functions of weighted sums of outputs and
the previous state. The most popular RNN is Long Short-Term
Memory (LSTM). The art of the LSTM is in deciding what to forget
and what to pass on as state to the next layer. The weights are
reused across time step



Main Purpose

Training

Prediction

In the google data center, computation of prediction is more
than computation of training.



Prediction
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Block Diagram
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Architecture

=To reduce the delay of deployment, the TPU was designed to be a
coprocessor on the PCle I/0O bus.

=The TPU instructions are sent from the host over the PCle Gen3
X16 bus into an instruction buffer.

=Internal blocks are connected together by 256-byte-wide paths.




MMU

=Matrix Multiply Unit(MPU) is a heart of TPU.
= It contains 256x256 MACs(Multiply ACcumulate unit).

= Performing 8-bit multiply and adds on signed or unsigned integers.
= Qutputis 16-bit data.

= 16-bit products are collected in the 4MiB of 32-bit accumulators.
= The 4MiB represents 4096 node.

= Fach node has 256-element of 32-bit accumulators.

= The matrix unit produces one 256-element partial sum per clock cycle

= The matrix unit holds one 64KiB tile of weights plus one for double
buffering. (To hide the 256 cycles it takes to shit a tile in) w_ ,.::::.::§:: ;

= Single weight is 8-Bit.

()




Memory and Buffer

=The weights for the matrix unit are staged through an on-chip
Weight FIFO that reads from an off-chip 8 GiB DRAM called Weight
Memory.

=The weight FIFO is four tiles deep.

= The intermediate results are held in the 24 MiB on-chip Unified Buffer,
which can serve as inputs to the Matrix Unit.
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Architecture (cont.)

=Unified Buffer is almost a third (29%) of the die and the Matrix
Multiply Unit is a quarter (249%).

=The 24 MiIB size was picked in part to match the pitch of the Matrix
Unit on the die.
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Architecture (cont.)

=As instructions are sent over the relatively slow PCle bus, TPU
instructions follow the CISC tradition, including a repeat field.

=The average clock cycles per instruction (CPI) of these CISC
instructions is typically 10 to 20.




TPU Execution Stage
=CISC MatrixMultiply Instruction in TPU. (12bit)

Checo e ten | g || 0 Lo | o

=The philosophy of the TPU microarchitecture is to keep the matrix
unit busy, where each instruction executes in a separate stage.

=]t uses a 4-stage pipeline for these CISC instructions, where each
instruction executes in a separate stage.
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Systolic Array Example:
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Systolic Array Example:
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Systolic Array Example:
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Systolic Array Example:
3x3 Systolic Array Matrix Multiplication

* Processors arranged in a 2-D grid

* Each processor accumulates one
element of the product

Alignments in time
«

! ! !

al,0*b0.0 al,0%hi,1 .
p| +a0.1°bL0 p| *20.1°bLI =4,0°D8,2
+ al,2*h2.0 + al,2*h2.1 P + a0,1*b1,2
bl L) " + nl],l“hl,l
: } Yh22
1,0%h0,0
e al,0*b0,1 ] 2| al.0*b02
+al,1*h1,0 al, i
—» +al,2%a2,0 ——{ +al,1*h1,1 [— +al,1*bl.2
+al,2*h2,1 +al,2*h2,2
h "bza]- Y b l ,2
a2,0%h0,1 a2,0*bi,2
a2,0%b0,0 0*b0, 4
— | +al.1*b1,0 3_2% +a2,1*bl.1 3231 +a2,1*h1,2
+22,2*h2,0 +a2,2*b1.1

T=6

Example source: http://www.cs.hme.edu/courses/2001/spring/cs156/

EECC756 - Shaaban I—

#8 lec# 1 SprinE 2003 3-11-2003




Systolic Array Example:
3x3 Systolic Array Matrix Multiplication
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Systolic Array

=As reading a large SRAM uses much more power than arithmetic,
the matrix unit uses systolic execution to save energy by reducing
reads and writes of the Unified Buffer.

=The data flows in from the left, and the weights are loaded from the

top.
=A given 256-element multiply-accumulate operation moves through
the matrix as a diagonal wavefront. I

— = Data l

i
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Software

=The TPU software stack had to be compatible with those developed
for CPUs and GPUs so that applications could be ported quickly to
the TPU.

=The portion of the application run on the TPU is typically written in
TensorFlow and is compiled into an API that can run on GPUSs or
TPUS.

=In TensorFlow 1.3, operations and bindings for the cloud TPU are

included.

TensorFlow




Key Instruction Set

=]t has about a dozen instructions overall, but these five are the key
ones.

= Read_Host_Memory reads data from the CPU host memory into the
Unified Buffer.

= Read_Weights reads weights from Weight Memory into the Weight FIFO
as input to the Matrix Unit.

= MatrixMultiply/Convolve do matrix multiply or convolution operation and
save results to accumulator.

= Activate do activate function operation such as RELU, Sigmoid.

= Write_Host_Memory writes data from the Unified Buffer into the CPU
host memory.




NN Structure and H/W

Layers Nonlinear . TPU Ops / |TPU Batch| % of Deployed
Name | LOC FC | Conv |Vector | Pool |Total |  function Weights Weight Byte| Size |TPUs in July 2016
MLPO 100 5 5 RelLU 20M 200 200 61%
MLP1 [1000| 4 4 ReLU 5M 168 168 °
LSTMO [ 1000 | 24 34 58 | sigmoid, tanh | 52M 64 64 29%
LSTM1 | 1500 [ 37 19 56 |sigmoid, tanh | 34M 96 96
CNNO | 1000 16 16 ReLU &M 2888 8 59,
CNNI1 [1000 4 72 13 89 ReLU 100M 1750 32
Die Benchmarked Servers
Model 5 Measured | TOPS/s On-Chip |,.. . Measured
MH=z|TDP B, D DRAM S TDP
S : Idle | Busy | 8b | FP GB/s Memory e = Idle | Busy
Haswell 1 ¢ 125 [2300[145W|41W|145w| 2.6 [1.3] 51 | s1miB | 2 256 GiB 504W [159WH55W
E5-2699 v3
NVIDIA K80 . 256 GiB (host)
(2 dies/card) 561 |28 [ 560 [150W|25W| 98W | -- |2.8| 160 [ 8 MiB 8 12 GiB x 8 1838W 357TW|991W
TPU NA*[28 [700 | 75W |28W|[40W | 92 | --| 34 | 28 MiB | 4 25_'_65&]?]3(1020 861W [290W]3R84W




Performance

=To illustrate the performances, they used Roofline Performance
model.

86.0 -
= Roofline

* LSTMO
@ LSTM1
4 MLP1
¢ MLPO
= CNNO
@ CNN1

TeraOps/sec (log scale)

Operations per second
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Operational Intensity: MAC Ops/weight byte (log scale)

Operations per DRAM Byte accessed



Performance (cont.)

Haswell Log-Log

TeraOps/sec (log scale)

~ Roafline

X LSTMO
% ® LsTM1
A MLPY
* MLPO

& CNN1

Operational Intensity: MAC Ops/weight byte (Tog scale)

TeraOps/sec (log scale)

K80 Log-Log

3.1 = Roofline
%~ LSTMO
@ LsT™M1
09 _a- MLP1
-4 MLPO
= CNNO
~ #® CNN1

1 10 100 1000

Operational Intensity: Ops/weight byte (log scale)

=The six NN applications are
generally further below
their ceilings than was the
TPU and reason is the
response time.

=Many of these NN
applications are parts of
end-user-facing services.

=Small increases in response
time cause customers to
use a service less.



Performance (cont.

Type | Batch | 99th% Response | Infls (IPS) | Y% Max IPS «aCP U an d GP U p e rfo rmance in
CPU | 16 7.2 ms 5.482 42% : . .
cPU | & 313 ms 13.194 100% restrict response time(7ms) is
ggg éi g-;ms ;éigé 13070‘76'; almost 40% of their full

3 ms ; o
TPU | 200 7.0 ms 225,000 80% performa nce.
TPU | 250 10.0 ms 280.000 100%

Table 4. 99th% response time and per die throughput (IPS) 'TPU,S perfO rmance in restrict

for MLPO as batch size varies for MLPO. The longest i i 0 ’
allowable latency is 7 ms. For the GPU and TPU, the response timeis 80 /O Of TPU S fUH
performance.

maximum MLPO throughput is limited by the host server
overhead. Larger batch sizes increase throughput, but as the
text explains, their longer response times exceed the limit, so
CPUs and GPUs must use less-efficient, smaller batch sizes (16
vs. 200). They run 23X — 2.7X slower than if response time
was unbound, but the for the more deterministic TPU, the
slowdown from the 99" % response-time limit is just 1.2X.



Performance (cont.

Application MLPO MLPI | LSTMO  LSTMI |CNNO CNNI | Mean | Row

Array active cycles 12.7% 10.6% 8.2% 105%|78.2% 46.2% | 28%| 1

Useful MACs in 64K matrix (% peak) 125% 94% 8.2% 6.3%]78.2% 22.5%| 23%| 2

Unused MACs 03% 12% 0.0% 42%| 0.0% 23.7%| 5%| 3
Weight stall cycles 53.9% 442%| 58.1%  62.1%)] 0.0% 28.1%| 43%| 4
Weight shift cycles 159% 134%| 158% 17.1%| 0.0% 7.0%| 12%| 5
Non-matrix cycles 17.5% 31.9%| 179% 10.3%|21.8% 18.7%| 20%| 6
RAW stalls 33% 84%] 146% 106%| 3.5% 228%| 11%| 7
Input data stalls 6.1% 8.8% 5.1% 24%] 3.4% 0.6%| 4% 8
TeraOps/sec (92 Peak) 123 97 37 28 860 141 |214 9

Table 3. Factors limiting TPU performance of the NN workload based on hardware performance counters. Rows 1, 4, 5, and 6 total 100%
and are based on measurements of activity of the matrix unit. Rows 2 and 3 further break down the fraction of 64K weights in the matrix
unit that hold useful weights on active cycles. Our counters cannot exactly explain the time when the matrix unit is idle in row 6; rows 7 and
8 show counters for two possible reasons, including RAW pipeline hazards and PCle input stalls. Row 9 (TOPS) 1s based on measurements
of production code while the other rows are based on performance-counter measurements, so they are not perfectly consistent. Host server
overhead 1s excluded here. The MLPs and LSTMs are memory-bandwidth limited but CNNs are not. CNN1 results are explained in the text.



The Time TPU Interacts with CPU

MLPO | MLPI JLSTMO| LSTMI | CNNO | CNNI
21% | 76% 11% 20% 51% 14%

Table 5. Time for host CPU to interact with the TPU expressed as percent of TPU execution time (from TPU performance counters). This
fraction is the time the CPU and TPU are communicating over the PCle bus, not including the time the CPU is doing a portion of the
application but not interacting with the TPU. As the text explains, it’s hard for the TPU to measure if the CPU is idle or working on the app.




Performance (cont.)

MLPO | MLPI [LSTMOILSTMI|CNNO | CNNI | GM | WM

0.3 0.4 1.2 1.6 2.7 1.1 | 1.9
1.2 | 403 | 710 | 145|292

263 | 13.2 1153

Type
GPU | 25
TPU | 410 | 185 | 35
Ratio | 16.7 | 60.0 | 8.0 1.0 | 254

=Relative inference(prediction) performance per die including the
host server overhead for the two accelerators versus the CPU.

=*GM and WM are geometric and weighted mean.

=TPU is 14.5 times faster than CPU and is 13.2 times faster than
GPU.



Performance/Watt

=TPU" is an improved TPU.

W cPucPu [ TPUCPU [l TPU/GPU [l TPU/CPU [ TPU/GPU - ITOta| Perf/\/\/att ||’]C|udes CPU ar‘]d

200 GPU power consumption for
server computing

150

=Incremental Perf./Watt doesn’t
includes CPU and GPU power
consumption for server
computing.

100

50

Total Perf./Watt GM Total Perf./Watt WM Incremental Incremen |

raion  reiaion [N incremental case, TPU'
Perf./Watt by GM is 17, 34times
better than CPU andis 14, 16
times better than GPU.

Performance/Watt Relative to CPU or GPU



Watts/die for CNNO

=The Total GPU and TPU power are
CNNO Watts/Die (Total and Incremental) the red and orange lines and their
_wwa Incremental power are the green
' -we and purple lines.

Haswell/4

"z w7 server has 2 CPUs and 8 GPUs

- K80

A or 4 TPUSs.

200

150

Watts/Die

10073

=TPU’s energy proportionality is

41

40 40

r most bad.
=However, TPU consumes only
Target Workload arOur]d 40Watt.



3.5

3.0

25

2.0

1.5

1.0

Performance Relative to Original TPU

Performance by element scale

1.0 15 20 25

Scale Relative to Original TPU

3.0

3.5

4.0

=\Weighted mean TPU performance
as metrics scale from 0.25x to 4x:

memory

Zc:ic:+ memory bandwidth, clock rate +
-maie  aCCUMUlators, clock rate, matrix

+ matrix

unit dimension + accumulators,
and matrix unit dimension.

=Memory bandwidth is most
important element for performance.

=Because most NN Benchmark
applications cause performance
bottlenecks due to memory
bounds.



Jsage of Unified Buffer

MLP()

MLPI

LSTM0)

LSTM1

CNNO

CNN1

11.0

2.3

4.8

4.5

1.5

13.9

=A 14 MiB Unified Buffer is sufficient for these apps.




Discussion

=In this paper, they organize the authors' ideas by dividing various
topics (author thoughts) into Fallacy (false thinking) and Pitfall
(danger).




Discussion(cont.)

=Fallacy: NN inference applications in datacenters value throughput
as much as response time.

=Answer: Developers had strong response-time demands.

Even the developers of one application in 2014 that cared about
response time (LSTM1) said the limit was 10 ms in 2014, but
shrank it to 7 ms when they actually ported it to the TPU.

=Fallacy: The K80 GPU architecture is a good match to NN inference.

=Answer: K80 is only a little faster at inference than Haswell and
much slower than the TPU. Throughput-oriented architectural
approach, it may be more challenging for GPUs to meet the strict
latency limits



Discussion(cont.)

=Pitfall: Architects have neglected important NN tasks

=Answer: 15% of the papers at ISCA 2016 were on hardware
accelerators for NN. All nine papers looked at CNNs, and only two
mentioned other NNs. CNN is only about 5% of our datacenter NN
workload.

=Pitfall: For NN hardware, Inferences Per Second (IPS) is an
inaccurate summary performance metric

=Answer: Results show that IPS is a poor overall performance
summary for NN hardware. For example, the TPU runs the 4-layer
MLP1 at 360,000 IPS but the 89-layer CNN1 at only 4,700 IPS, so
TPU IPS vary by 75X!. To compare NN machines better, we need a
benchmark suite written at a high-level to port it to the wide variety
of NN architectures.



Discussion(cont.)

=Fallacy: The K80 GPU results would be much better if Boost mode
were enabled.

=Answer: Setting aside the negative impact of K80 Boost mode on
TCO (Section 3), we measured it on LSTM1. Boost mode increased
the clock rate by a factor of up to 1.6—from 560 to 875 MHz—
which increased performance by 1.4X, but it also raised power by
1.3X. The net gain in performance/Watt is 1.1X, and thus for LSTMT,
boost mode would have a minor impact on our energy-speed
analysis.



Discussion(cont.)

=Fallacy: CPU and GPU results would be comparable to the TPU if we
used them more efficiently or compared to newer versions.

=Answer: In 8-bit results for just one DNN on the CPU, the benefit
was ~3.5X. It was less confusing (and less space) to present all
CPU results in floating point, rather than having one exception, with
its own roofline. DNNs had similar speedup, performance/Watt ratio
would drop from 41-83X to 12-24X.

=pitfall: Performance counters added as an afterthought for NN
hardware.

=Answer: The TPU has 106 performance counters, and if anything
we would like a few more. The raison d'etre for NN accelerators is
performance, and it is way too early in their evolution to have good
iIntuition about what is going on.



Discussion(cont.)

=Fallacy: After two years of software tuning, the only path left to
increase TPU performance is hardware upgrades.

=Answer: The performance of CNN1 on the TPU could improve if
developers and compiler writers did more work to match CNN1 to
the TPU hardware.
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Conclusion

=Despite living on an I/0 bus and having relatively little memory
bandwidth that limits utilization of the TPU. four of the six NN
applications are memory-bound.

=The TPU leverages the order-of-magnitude reduction in energy and
area of 8-bit integer systolic matrix multipliers over 32-bit floating-
point datapaths of a K8O GPU to pack 25 times as many MACs and
3.5 times the on-chip memory (28 MiB vs. 8 MiB) while using less
than half the power of the K80 in a relatively small die.

=Inference applications have serious response-time bounds because
they are often part of user facing applications, thus NN
architectures need to perform well when coping with 99th-
percentile latency deadlines.



Conclusion(cont.)

=The TPU die leverages its advantage in MACs and on-chip memory to
run short programs written using the domain specific TensorFlow

framework 15 times as fast as the K80 GPU die, resultingina
performance/Watt advantage of 29 times, which is correlated with
Eerformance/total cost of ovvnershg). Compared to the Haswell CPU die,
he corresponding ratios are 29 and 83

=The TPU succeeded because of
= the large—Dbut not too large—matrix multiply unit
= reduce dependence on host CPU

a single-threaded, deterministic execution model that proved to be a good
match to 99th-percentile response time limits

enough flexibility to match the NNs of 2017 as well as of 2013

the omission of general-purpose features that enabled a small and low
power die despite the larger data path and memory

the use of 8-bit integers by the quantized applications

applications were written using TensorFlow, which made it easy to port them
to the TPU at high-performance rather than them having to be rewritten to
run well on the very different TPU hardware.



