SplitNet: Learning to Semantically
Split Deep Networks for Parameter
Reduction and Model Parallelization

JUYONG KIM, YOOKOON PARK, GUNHEE KIM, SUNG JU HWANG

Chosen Paper

* Discussing SplitNet: Learning to Semantically Split Deep Networks for
Parameter Reduction and Model Parallelization by Juyong Kim, Yookoon Park,
Gunhee Kim and Sung Ju Hwang

e Published in ICML 2017

* Research is affiliated with Samsung

Embarrassingly Model-Parallelizable

We propose a novel deep neural network that
is both lightweight and effectively structured for
model parallelization. Our network, which we
name as SplitNet, automatically learns to split
the network weights into either a set or a hier-
archy of multiple groups that use disjoint sets
of features, by learning both the class-to-group
and feature-to-group assignment matrices along
with the network weights. This produces a tree-
structured network that involves no connection
between branched subtrees of semantically dis-
parate class groups. SplitNet thus greatly re-
duces the number of parameters and required
computations, and is also embarrassingly model-
parallelizable at test time, since the evaluation
for each subnetwork is completely independent
except for the shared lower layer weights that
can be duplicated over multiple processors, or
assigned to a separate processor. We validate

Introduction & The Problem

Recently, deep neural networks have shown impressive per-
formances on a multitude of tasks, including visual recog-
nition (Krizhevsky et al., 2012; Szegedy et al., 2015; He
et al., 2016), speech recognition (Hinton et al., 2012), and
natural language processing (Bengio et al., 2003; Sutskever
et al., 2014). However, such remarkable performances are
achieved at the cost of increased computational complexity
at both training and test time compared to traditional ma-
chine learning models including shallow neural networks.
This increased complexity of deep networks can be prob-
lematic if the model and the task size becomes very large
(e.g. classifying tens of thousands of object classes), or the
application is time-critical (e.g. real-time object detection).

Related Work: Parameter Reduction

Parameter reduction for deep neural networks. Achiev-
ing test-time efficiency is an active research topic in deep
learning. One straightforward approach is to remove weak
connections during the training, usually implemented us-
ing the #;-norm (Collins & Kohli, 2014). However, the ¢, -
norm often results in a model that trades-off the accuracy
with the efficiency. Han et al. (2015) presented an iterative
weight pruning technique that repeatedly retrains the net-
work while removing of weak connections, which achieves
a superior performance over {;-regularization. Recently,

Regularization: L2-Norm

By far the most common choice for regularizing the net-
work, thus avoiding overfitting, is to impose a squared £ norm
constraint on the weights:

Ry, (w) 2 ||wlf3 . 3)

In the neural networks’ literature, this is commonly denoted as
‘weight decay’ [33], since in a steepest descent approach, its
net effect is to reduce the weights by a factor proportional
to their magnitude at every iteration. Sometimes it is also
denoted as Tikhonov regularization. However, the only way
to enforce sparsity with weight decay is to artificially force
to zero all weights that are lower, in absolute terms, than a
certain threshold. Even in this way, its sparsity effect might
be negligible.

Scardapane, S. & Comminiello, D. & Hussain, A. & Uncini, A. (2016). “Group Sparse Regularization for Deep Neural Networks”, arXiv preprint arXiv 1607.00485

Regularization: L1-Norm

As we stated in the introduction, the second most common
approach to regularize the network, inspired by the Lasso al-
gorithm, is to penalize the absolute magnitude of the weights:

Q
R, (w) £ [[wlly =) fwsl. @)
k=1

The ¢, formulation is not differentiable at 0, where it is
necessary to resort to a subgradient formulation. Everywhere
else, its gradient is constant, and in a standard minimization
procedure it moves each weight by a constant factor towards
zero (in the next section, we also provide a simple geometrical
intuition on its behavior). While there exists customized algo-
rithms to solve non-convex ¢, regularized problems [34], it is
common in the neural networks’ literature to apply directly
the same first-order procedures (e.g., stochastic descent with
momentum) as for the weight decay formulation. As an exam-

Scardapane, S. & Comminiello, D. & Hussain, A. & Uncini, A. (2016). “Group Sparse Regularization for Deep Neural Networks”, arXiv preprint arXiv 1607.00485

Related Work: Parameter Reduction by Grouping

the group sparsity using £, ;-norm has been explored for
learning a compact model. Alvarez & Salzmann (2016)
applied (2,1)-norm regularization at each layer to eliminate
the hidden units that are not shared across upper-level units,
thus automatically deciding how many neurons to use at
each layer. Wen et al. (2016) used the same group spar-
sity to select unimportant channels and spatial features in
a CNN, and let the network to automatically decide how
many layers to use. However, they assume that all classes
share the same set of features, which is restrictive when the
number of classes is very large. On the contrary, our pro-
posed SplitNet enforces feature sharing only within a group
of related classes, and thus semantically reduce the num-
ber of parameters and computations for large-scale prob-
lems. Recently, Shankar et al. (2016) also addressed the
use of symmetrical split at mid-level convolutional layers
in CNN:ss for architecture refinement. However, they did not
learn the splits but predefine them, as opposed to SplitNet
which learns semantic splits along with network weights.

Groups

The basic idea of this paper is to consider group-level spar-
sity, in order to force all outgoing connections from a single
neuron (corresponding to a group) to be either simultaneously
zero, or not. More specifically, we consider three different
groups of variables, corresponding to three different effects of
the group-level sparsity:

1) Input groups G: a single element g; € Gi,,i =
1,...,d is the vector of all outgoing connections from
the 7th input neuron to the network, i.e. it corresponds
to the first row transposed of the matrix W.

2) Hidden groups Gy: in this case, a single element g € Gy,
corresponds to the vector of all outgoing connections
from one of the neurons in the hidden layers of the
network, i.e. one row (transposed) of a matrix Wy, k >
1. There are ZkHz"'gl Ny, such groups, corresponding to
neurons in the internal layers up to the final output one.

3) Bias groups G,: these are one-dimensional groups
(scalars) correspondin§ to the biases on the network, of
which there are Zf:l Ny.. They correspond to a single
element of the vectors {b;,..., by}

Scardapane, S. & Comminiello, D. & Hussain, A. & Uncini, A. (2016). “Group Sparse Regularization for Deep Neural Networks”, arXiv preprint arXiv 1607.00485

(2,1)-Norm

Group sparse regularization can be written as [23]:

R, , (W) 2 Vgl llgll, 5)

geg

where |g| denotes the dimensionality of the vector g, and it
ensures that each group gets weighted uniformly. Note that,
for one-dimensional groups, the expression in (5) simplifies to
the standard Lasso. Similarly to the /; norm, the term in (5)
i1s convex but non-smooth, since its gradient is not defined if
|gll, = 0. The sub-gradient of a single term in (5) is given

Scardapane, S. & Comminiello, D. & Hussain, A. & Uncini, A. (2016). “Group Sparse Regularization for Deep Neural Networks”, arXiv preprint arXiv 1607.00485

Related Work: Parallel and Distributed Deep Learning

Parallel and distributed deep learning. As deep net-
works and training data become increasingly larger, re-
searchers are exploring parallelization and distribution
techniques to speed up the training process. Most par-
allelization techniques exploit either 1) data parallelism,
where the training data is distributed across multiple com-
putational nodes, or 2) model parallelism, where the model
parameters are distributed. Dean et al. (2012) used both
data and model parallelism to train a large-scale deep neu-
ral network on a computing cluster with thousands of ma-

chines. For CNNs, Krizhevsky et al. (2012) used both data

Model Parallelization: Problems

with greatly reduced the communication overheads. How-
ever, all these are systems-based approaches that work un-
der the assumption that the model structure is given and
fixed. Our approach, on the other hand, leverages semantic
knowledge of class relatedness to learn a network structure
that is well-fitted to a distributed machine learning setting.

Related Work: Tree-structured DN

Tree-structured deep networks. There have been some
efforts to exploit hierarchical class structures for improv-
ing the performance of deep networks. To list a few recent
work, Warde-Farley et al. (2014) proposed to group classes
based on their weight similarity, and augmented the orig-
inal deep network with the softmax loss for fine-grained
classification for classifying classes within each group. Yan
et al. (2015) proposed a convolutional network that com-
bines predictions from separate sub-networks for coarse-
and fine-grained category predictions, which share com-
mon lower-layers. Goo et al. (2016) exploited the hierar-
chical structure among the classes to learn common and
discriminative features across classes, by adding in simple
feature pooling layers. Murdock et al. (2016) generalized
dropout to stochastically assign nodes to clusters which re-
sults in obtaining a hierarchical structure. However, all of
these methods focus on improving the model accuracy, at
the expense of increased computational complexity. On the
contrary, SplitNet is focused on improving memory/time
efficiency and parallelization performance of the model.

Tree-structured DNN

Generalist

Specialist {Specialist [Generalist] Specialist] Specialist]

A

Low-level features Low-level features

Figure 1: A schematic of the augmentation process. Left: the original network. Right: the network after
augmentation.

Warde-Farley, D. & Rabinovich, A. & Anguelov, D. (2014). “Self-informed Neural Network Structure Learning”, arXiv:1412.6563

HD-CNN

coarse prediction

Coarse category 1: 2‘

white shark, numbfish,

f\ammemead. stingray, ... } Coarse component fine . =
independent layers B prediction 1 &

Root Coarse category 2. -)
{toy terrier, greyhound, s final
whippet, basenji, ... } @ Dprediction

j low-level features %

. Image Shared =

O Coarse category K: layers fine |
{mink, cougar, bear, fox prediction K g

o

squirrel, otter, _.. }

(a)
(b)
Figure 1: (a) A two-level category hierarchy where the classes are taken from ImageNet 1000-class dataset. (b) Hierarchical
Deep Convolutional Neural Network (HD-CNN) architecture.

Yan, Z. & Zhang, H. & Jagadeesh, V. & Decoste, D. & Di, W. & Yu, Y. (2015). “HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification”, |ICCV

Taxonomy-Regularized CNN

P 1

Cheetah Jaguar 1 Leopard
T

(c#000J](0c0d00](000d0]

differencetpooling

Base-level Categorization

Cheetah Jaguar Leopard

Specialization

—1t®00

Generalization

Felid

©]

min

Category-specific (@ @ @ @ @] (@00 @0)(00@0 O]

features I I T
T T T

Fig. 1. Concept: Our taxonomy-regularized deep CNN learns grouped and discrimina-
tive features at multiple semantic levels, by introducing additional regularization layers
that abstract and differentiate object categories based on a given class hierarchy. (1)
At the generalization step, our network finds the commonalities between similar object
categories that help recognize the supercategory, by finding the common components
between per-category features. (2) At the specialization step, our network learns sub-
category features as different as possible from the supercategory features, to discover
unique features that help discriminate between sibling subcategories. These generaliza-
tion and specialization layers work as regularizers that help the original network learn
the features focusing on those commonalities and differences.

Deep Convolutional
Neural Network

Test instance

Training instances

Goo, W. & Kim, J. & Kim, G. & Hwang, S. (2016). “Taxonomy-Regularized Semantic Deep Convolutional Neural Networks”, ECCV

SplitNet

Non-
Mammalmammal Plant Interior Outdoor

= EI\ »

(b) Splitting Decp (c) Our Network(SplitNet)

(a) Base Network Neural Network

Figure 1. Concept. Our network automatically learns to split the
classes and associated features into multiple groups at multiple
network layers, obtaining a tree-structured network. Given a base
network in (a), (b) our algorithm optimizes network weights as
well as class-to-group and feature-to-group assignments. Colors
indicate the group assignments of classes and features. (c) Af-
ter learning to split the network, the model can be distributed to
multiple GPUs to accelerate training and inference.

How to split?

Thus, to maximize the utility of this splitting process, we
need to cluster classes together into groups so that each
group uses a subset of features that are completely disjoint
from the ones used by other groups. One straightforward
way to obtain such mutually exclusive groupings of classes
is to leverage a semantic taxonomy, since semantically sim-
ilar classes are likely to share features, whereas dissimilar
classes are unlikely to do so. However, in practice, such
semantic taxonomy may not be available, or may not agree
with actual hierarchical grouping based on what features
each class uses. Another simple approach is to perform (hi-
crarchical) clustering on the weights learned in the original
network, which is also based on actual feature uses. Yet,
this grouping may be still suboptimal since the groups are
highly likely to overlap, and is inefficient since it requires
training the network twice.

The Goal

Given a dataset D = {x;,y;}Y.,, where &; € R is an
input data instance and y; € {1,..., K} is a class label for
K classes, our goal is to learn a network whose weight at
each layer [, W is a block-diagonal matrix, where each

block Wg(l) is associated with a class group g € G, where
G is the set of all groups. Such a block-diagonal W) en-
sures that each disjoint group of classes has exclusive fea-
tures associated with it, such that no other groups use those
features; this allows the network to be split across multiple
class groups, for faster computation and parallelization.

Group Assignment

We assume that the number of groups G, is given. Let pg;
be a binary variable indicating whether feature 7 is assigned
to group g (1 < g < G), and g,; be a binary variable in-
dicating whether class j is assigned to group g. We define
Py € Z¥ as a feature group assignment vector for group
g, where Z, = {0,1} and D is the dimension of features.
Similarly, g, € ZX denotes a class group assignment vec-
tor for group g. That is, p, and g, define a group g together,
where p, represents features associated with the group and
g, indicates a set of classes assigned to the group.

Constraint

We assume that there is no overlap between groups, either
in features or classes, ie. >, p, = Ip and) g, =
1y, where 1 and 1 are the vectors with all-one el-
ements. While this assumption imposes hard regulariza-
tions on group assignments, it enables the weight matrix
W € RP*K to be sorted into a block-diagonal matrix,
since each class 1s assigned to a group and each group de-
pends on a disjoint subset of features. This greatly reduces
the number of parameters, and at the same time, the multi-
plication W Tx can be decomposed into smaller and faster
block matrix multiplications.

Objective function

The objective for training our SplitNet is then defined as:

L L
min Lw, X, 9)+ > AW+ ow®, PY,QY),

o =1 =8
(D

where L(W, X, y) is the cross entropy loss on the training
data,w = {WW, ... W)} is the set of network weights
at all layers, |W |2 is the weight decay regularizer with
a hyperparameter A, S is the layer where splitting starts,
Q(W, P, Q) is the regularizer for splitting the network,
and P") and Q") are the set of feature-to-group and class-
to-group assignment vectors respectively, for each layer /.

Splitting regularization

Our regularization assigns features and classes into disjoint
groups; it consists of three objectives as follows:

QW,P,Q) =mRw(W,P,Q)

+ 712 Rp(P,Q) +v3Re(P,Q) ®

where 7, y2,7v3 controls the strength of each regulariza-
tion, which will be discussed in following subsections.

Q(Ws Pa Q) = 71RW(Wa P’ Q)
+72Rp(P,Q) +v3Re(P,Q)

Group Weight Regularization

Let P, = diag(p,) and Q, = diag(qg,) be the feature
and class group assignment matrix for group g respectively.
Then P,W Q, represents the weight parameters associated
with group g, i.e. intra-group connections between features
and classes. Since our goal is to prune out inter-group con-
nections to obtain block-diagonal weight matrices, we min-
imize off block-diagonal entries as follows:

R (W, P,Q) =3 3 II((= P)W Q)

)
+ 2D (B W (I = Q)i

where (M), and (M).; denote i-th row and j-th column
of M. Eq.(4) imposes row/column-wise #5 ;-norm on the
inter-group connections. Figure 2 illustrates this regular-
ization, where the portions of the weights to which the reg-
ularization is applied are colored differently.

Q(Ws Pa Q) = 71RW(Wa P’ Q)
+72Rp(P,Q) +73Re(P, Q)

Visualization

K
[Cooimo] Q € ROXK = la,
K (0000 | i
] werP*¥ |
D OOCOCOCOC)
b e e == = =1 P = RG x D —

P, W ||(I-Py)WQ,).ll2

Figurc 2. Group Assignment and Group Weight Regulariza-
tion. (Left) An example of group assignment with G = 3. Col-
ors indicate groups. Each row of matrix P, Q is group assign-
ment vectors for group g: p,, q,. (Right) Visualization of matrix

(I — P,)WQ,. The group assignment vectors work as soft in-
dicators for inter-group connections. As the groupings converge,

£, 1-norm is concentrated on inter-group connections.

Q(Ws Pa Q) = 71RW(Wa P’ Q)
+ 72 Rp(P,Q) +v3Re(P,Q)

Disjoint Group Assignment

For the group assignment vectors to be completely mutu-
ally exclusive, they should be orthogonal; i.e. they should
satisfy the condition p; - p; = O and q; - g; = 0,V i # j.
We introduce an additional orthogonal regularization term:

RD(PaQ)=EPi'Pj+ZQz"Qj-)
i<j i<j
where the inequalities avoid the duplicative dot products.

Q(Ws Pa Q) = 71RW(Wa P’ Q)
+72Rp(P,Q) +v3Re(P,Q)

Balanced Group Assignment

The disjoint group assignment objective in Eq.(5) alone
may drive one group to dominate over all other groups; that
is, one group includes all features and classes, while other
groups do not. Therefore, we also constrain the group as-
signments to be balanced, by regularizing the squared sum
of elements in each group assignment vector.

Rp(P,Q) = Z(Zpgz +(qu,)) (6)

Splitting DNNSs

Our weight-splitting method in section 3.2 can be applied
to deep neural networks (DNN), which has two types of
layers: 1) the input and hidden layers that produce a feature
vector for a given input, and 2) the output fully-connected
(FC) layer on which the softmax classifier produces class
probabilities. The output FC layer can be split by directly
applying our method in section 3.2 on the output FC weight
matrix W), Our splitting framework can be further ex-
tended into deep splits, involving either multiple consecu-
tive layers or recursive hierarchical group assignments. Al-
gorithm 1 describes the deep splitting process.

Algorithm for splitting DNNSs

Algorithm 1 Splitting Deep Neural Networks

Input: Number of groups G, layers to split S < L and hyper-
paramarters i, yz2, Y3
Initialize weights and group assignments
while groupings have not converged do
Optimize the objective using SGD with a learning rate 7

L L
Lw, X, Y)+AS WO +5 3 Rw(WOH, PO QW)
=1 =8

L L
0 ¥ Bo(PY,Q0) 47 35 Re(PY, Q)
=5 =85

end while
Split the network using the obtained group assignments and
weight matrices
while validation accuracy improves do
Optimize L(w, X,Y) + A, [|[W®||2 using SGD
end while

Lavers to split

The lower layers of a DNN learn low-level, generic repre-
sentations, which are likely to be shared across all classes.
The higher level representations, on the contrary, are more
likely to be specific to the classes in a particular group.
Therefore we do not split all layers but split layers down to
S-th layer (S < L), while maintaining lower layers (I < S)
to be shared across class groups.

Deep Split

Each layer consists of input and output nodes with the

weights W) that connects between them, and Pg(l), g)
for input-to-group and output-to-group assignments. Since
the output nodes of each layer correspond to the input
nodes of the next layer, the grouping assignment are shared
as qél) = pf,““l). This enforces that no signal is passed
across different groups of layers, so that forward and back-
ward propagation in each group is independent from the
processes in other groups. This allows the computations for
each group to be parallelized, except for the softmax layer.
The softmax layer includes a normalizing operation over
all classes which requires aggregating logits over groups;
however, during inference it suffices to identify the class
with the maximum logit, which can be simply obtained
by first identifying the class with maximum logit in each
group, and then selecting the class with maximum logit
among the identified group-specific maximums. This re-
quires minimal communication overhead.

Application to CNNs

When applied to CNNs, the proposed group splitting pro-
cess can be performed in the same manner on the con-
volutional filters. Suppose that a weight of a convolu-
tional layer is a 4-D tensor W, € RMXNXDxK ' where
M, N denote height and width of receptive fields and D, K
denote the number of input and output convolutional fil-
ters. We reduce the 4-D weight tensor W, into a 2-D
matrix W, € RP*¥ by taking the root sum squared of
elements over height and width dimensions of W, i.e.

W! = {w).} = {\/Zm,nwfnndk}. Then the weight

regularization objective for the convolutional weight is ob-
tained by Eq.(4), using W/ instead.

Rw(W,P,Q) =) Z (T = Py) W Qy))ixll2

C))
+2_ D (B W (I = Q)2

Hierarchical Grouping

Assume that the grouping branches at the [-th layer and the
output nodes of the [-th layer are grouped by G supergroup

assignment vectors g () with Z q = 1p. Suppose
that in the next layer for each supergroup g € {1,...,G}
there are corresponding S subgroup assignment vectors

pg‘;“” with . p(l“) 1p. As aforementioned, the
input nodes to the [+1-th layer corresponds to the output
nodes of [-th layer. By defining p(1) = =), p(“’l),

can map subgroup assignments into corresponding super-
group assignments. This allows us to impose the constraint

g') = pI*D a5 in Deep Split.

Parallelization of SplitNet

Our learning algorithm produces a tree-structured network
whose subnetworks have no inter-group connections. This
results in an embarrassingly model-parallel network where

we can simply assign the obtained subnetworks to each
processor, or a machine. In our implementation, we con-

sider two approaches for model parallelization: 1) Assign-
ing both the lower-layers and group-specific upper lay-
ers to each node. At the test time the lower layers are
not changed; thus this approach is acceptable, although it
causes unnecessary redundant computations across the pro-
cessors. 2) Assigning the lower layer to a separate proces-
sor. This eliminates redundancies in the lower layer but in-
curs communication overhead between the lower layer and
the upper layers.

Unfortunately...

Training-time parallelization is currently done only at the
finetuning step, after group assignments have been decided.
We leave the parallelization from the initial network train-
ing stage as future work.

Comparison: Baseline

1) Base Network. Base networks with full network
weights. For experiments on the CIFAR-100, we use Wide

Residual Network (WRN) (Zagoruyko & Komodakis,
2016), which is one of the state-of-the-art networks of the

dataset. We use AlexNet (Krizhevsky et al., 2012) and
ResNet-18 (He et al., 2016) variants as the base network

for the ILSVRC2012.

Comparison: SplitNet Variants

2) SplitNet-Semantic. A variant of our SplitNet that ob-
tains class grouping from a provided semantic taxonomy.
Before training, we split the networks according to the tax-
onomy, evenly splitting layers and assigning subnetworks
to each group, and train it from scratch. We use the same
approach for SplitNet-Clustering and SplitNet-Random.

3) SplitNet-Clustering. A variant of our SplitNet, where
classes are split (hierarchical) performing spectral cluster-
ing of the pre-trained base network weights.

4) SplitNet-Random. SplitNet using random class splits.

Performance for WRN

Table 1. Comparison of Test Errors According to Depths of Splitting (row) and Splitting Methods (column) on CIFAR-100.
Postfix S, C and R denote SplitNet variants — Semantic, Clustering and Random, respectively.

WRN-16-8 (BASELINE) 24.28
WRN-16-8 (DROPOUT) 24.52
METHOD SPLIT DEPTH G SPLITNET-S SPLITNET-C SPLITNET-R SPLITNET
FC SpLIT 1 4 23.80 23.72 24.30 24.26
SHALLOW SPLIT 6 2 24.46 24.54 25.46 23.96
DEEP SPLIT (DROPOUT) 11 2 25.04 26.04 27.12 24.62
HIER. SPLIT (DROPOUT) 11 2-4 24.92 25.98 26.78 24.80

Reduced Parameters/Computations

Table 2. Comparison of Parameter/Computation Reduction and Test Errors on CIFAR-100.

NETWORK PARAMS(10°) % REDUCED | FLOPS(10°) % REDUCED | TEST ERROR(%)
WRN-16-8 (BASELINE) 11.0 0.0 3.10 0.0 24.28
FC SpLIT 11.0 0.35 3.10 0.0 24.26
SHALLOW SPLIT 7.42 32.54 2.64 14.63 23.96
DEEP SPLIT (DROPOUT) 5.90 46.39 2.11 31.97 24.66
HIER. SPLIT (DROPOUT) 4.12 62.58 1.88 39.29 24.80

Performance for AlexNet

Table 3. Comparison of Parameter/Computation Reduction and Test Errors of AlexNet variants on ILSVRC2012. The number
of splits indicates the split in fc6, fc7 and fc8 layer, respectively. In 2x5 split, we split from conv4 to fc8 with G = 2.

NETWORK SpLITS | PARAMS(10°) % REDUCED | FLOPS(10°) 9% REDUCED | TEST ERROR(%)
ALEXNET(BASELINE) 0 62.37 0 2.278 0 41.72
1-1-3 59.64 438 2.273 0.21 42.07
1-2-5 50.69 18.72 2.256 1.00 42.21
SPLITNET 2-4-8 27.34 56.17 2.209 3.05 43.02
2%5 31.96 48.76 1.847 18.95 44.60
1-1-3 59.64 4.38 2.273 0.21 42.20
1-2-5 50.70 18.70 2.256 0.99 43.20
SPLITNET-R 2-4-8 27.34 56.17 2.209 3.05 43.35
2x5 31.94 48.79 1.846 18.93 44.99

Performance for ResNet

Table 4. Comparison of Parameter/Computation Reduction and Test Errors of ResNet-18 variants(ResNet-18x2) on
ILSVRC2012. The number of splits indicates the split in conv4-1&2, conv5-1&2 and the last fc layer, respectively.

NETWORK SPLITS SPLIT DEPTH | PARAMS(10°) % REDUCED | FLOPS(10”) % REDUCED | TEST ERROR(%)
RESNET-18x2 0 0 45.67 0 14.04 0 25.58
1-1-3 1 44.99 1.49 14.04 0.01 24.90
SPLITNET 1-2-2 6 28.39 37.84 12.39 11.72 25.48
2-2-2 11 24.21 47.00 10.75 23.42 26.45
1-1-3 1 44.99 1.49 14.03 0.01 25.86
SPLITNET-R 1-2-2 6 28.38 37.86 12.39 11.72 26.41
2-2-2 11 24.14 47.14 10.75 23.46 28.61

Model Parallelization

Non-
Mammalmammal Plant Interior Outdoor

tion. We test two approaches: 1) Redundant assignment of
lower layers (Deep and Hier. Split), and 2) assignment of
lower layers to a separate GPU (Deep Split 3-way). With
redundant assignment, the speedup becomes larger with

Test time performance

Table 5. Model Parallelization Benchmark of SplitNet on Mul-
tiple GPUs. We measure evaluation time performance of our
SplitNet over 50,000 CIFAR-100 images with batch size 100 on
TITAN X Pascal. Baseline implements layer-wise parallelization
where sequential blocks of layers are distributed on GPUs.

NETWORK GPUs TIME(S) | SPEEDUP(X)
BASELINE 1| 24.27 +0.35 1.00
BASELINE-HORZ. 2 | 46.70 £+ 0.48 0.52
BASELINE-VERT. 2 | 20.15 £+ 0.67 1.20
BASELINE-VERT. 312245+0.77 1.08
SHALLOW SPLIT 2 | 17.78 +0.23 1.37
DEEP SPLIT 2| 14.03 +0.13 1.73
HIER. SPLIT 2 | 14.22 +0.05 1.71
DEEP SPLIT 3-WAY 310.92+0.44 2.22

Effect of regularization

Q(fcﬁ)

e

plice) pyifes) plen e plUs) s

Figure 3. Learned Groups and Block-diagonal Weight Matri-
ces. Visualization of the weight matrices along with correspond-
ing group assignments learned in in AlexNet 2-4-8 split. Obtained
block-diagonal weights are split for faster multiplication. Note the
hierarchical grouping structure.

Group 1

Group 2 Ay = -4
Group 3 !2 10

0 200 400 600 800 1000
Group 1 .
Group 2 Ay = -2
Group 3 2 10

o 200 400 G600 8OO 1000
Group 1 6
Group 2 o = 10_ g

Yo =

Group 3 12

o 200 400 600 BOO 1000

Figure 4. Effect of Balanced Group Regularization Rz (P, Q).
The above figures show group-to-class assignment matrix QY/**’
for different values of 3 on ImageNet-1K with G = 3

Learned Groups

o = N w - w

Figure 5. Learned Groups. Visualization of grouping learned in
FC SplitNet on CIFAR-100. Rows denote learned groups, while
columns denote semantic groups provided by CIFAR-100 dataset,
each of which includes 5 classes. The brightness of a cell shows
the agreement between learned groups and semantic groups.

Learned Groups

Figure 5 compares the learned group assignments in FC
SplitNet (G = 4) with supercategories provided by the
CIFAR-100. Each supercategory (column) includes five
classes. For example, supercategory people includes baby,
boy, girl, man and woman, which are grouped together by
our algorithm into Group 2. Note that we have at least three
classes from the same supercategory in each group. This
shows that groupings learned by our method bear some re-
semblance to semantic categories even when no external
semantic information is given.

Ending Notes

e Parallelization on the initial training stage

* Overall, well-written paper, convincing experiments

* Possible applications might be running DNNs on mobile devices, embedded
computers, loT?

* Splitting for RNNs?

