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ABSTRACT
Big deep neural network (DNN) models trained on large amounts
of data have recently achieved the best accuracy on hard tasks, such
as image and speech recognition. Training these DNNs using a
cluster of commodity machines is a promising approach since train-
ing is time consuming and compute-intensive. To enable training
of extremely large DNNs, models are partitioned across machines.
To expedite training on very large data sets, multiple model replicas
are trained in parallel on different subsets of the training examples
with a global parameter server maintaining shared weights across
these replicas. The correct choice for model and data partitioning
and overall system provisioning is highly dependent on the DNN
and distributed system hardware characteristics. These decisions
currently require significant domain expertise and time consuming
empirical state space exploration.

This paper develops performance models that quantify the im-
pact of these partitioning and provisioning decisions on overall dis-
tributed system performance and scalability. Also, we use these
performance models to build a scalability optimizer that efficiently
determines the optimal system configuration that minimizes DNN
training time. We evaluate our performance models and scalability
optimizer using a state-of-the-art distributed DNN training frame-
work on two benchmark applications. The results show our per-
formance models estimate DNN training time with high estimation
accuracy and our scalability optimizer correctly chooses the best
configurations, minimizing the training time of distributed DNNs.

1. INTRODUCTION
Deep neural network (DNN) models have recently attracted sig-

nificant research and industrial interest because they achieve state-
of-the-art accuracies on important artificial intelligence tasks, such
as speech recognition [11, 15], image recognition [5, 8, 13, 21, 22],
and text processing [7, 9, 10, 17]. An attractive feature of train-
ing DNNs (i.e., deep learning) is that their deep structure (number
of layers) enables hierarchical feature learning, which is the key to
achieving high accuracy but requires big DNN models trained on
large quantities of data. In addition, task accuracy improves with
increases in model size and amount of training data. This has en-
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Figure 1: Architecture overview of distributed DNN.

abled recent work [5, 13, 22] to achieve world-record accuracies on
image recognition, but it requires training models with billions of
connections using millions of images. Such large models do not fit
on a single machine. Even if they do, training them would require
several months. Moreover, high-accuracy models require good val-
ues for various neural network hyper-parameters and training pa-
rameters (e.g., learning rate, biases, etc.) that can only be deter-
mined empirically. Consequently, DNN training is an iterative pro-
cess where the entire training procedure is repeated multiple times
to tune DNN models to high accuracy. In addition, DNNs need to
be retrained periodically to continuously incorporate new training
data. Thus, faster DNN training is extremely important.

To efficiently train large DNNs (billions of connections) to de-
sired high accuracy using large amounts of data (terabytes) in a rea-
sonable amount of time (several days), researchers have exploited
distributed deep learning systems where the training is distributed
over clusters of commodity machines [5, 13]. The DistBelief [13]
and Adam [5] distributed deep learning systems run on commodity
clusters of 1000 and 120 machines respectively connected by Eth-
ernet. In addition to SIMD (single instruction multiple data) and
thread parallelism on a single machine, these systems also exploit
model parallelism and data parallelism across machines. Model
parallelism partitions DNN across machines that we call workers.
Each worker trains a portion of the DNN concurrently and a collec-
tion of workers that make up a DNN is called a replica. Data par-
allelism partitions training data to enable parallel training of mul-
tiple DNN replicas. To ensure convegence, replicas periodically
exchange weight values through parameter servers, which main-
tains an updated global copy of the weights. Figure 1 shows an
example of a distributed DNN system with 3 model replicas of 4
workers each, and with 4 parameter servers.

It is challenging to decide the appropriate configuration choices
to efficiently train a large DNN using a distributed deep learn-
ing system. There are many different ways, e.g., thread paral-
lelism, model parallelism, data parallelism, number of parameter
servers, to partition and replicate the DNN across distributed hard-
ware resources. Each combination of these parallelism knobs and
their parallelism degrees represents a different system configura-
tion choice, which can potentially produce dramatically different
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Figure 2: Scalability of DNN parallelism techniques. Each plot
reports the speedup when scaling at only one dimension (fix the
other two dimensions). See Section 6.1 for experimental setup.

scalability results. For example, Figure 2 shows how the paral-
lelism techniques scale for training an image recognition DNN:
model parallelism (the number of workers per model replica) is
super-linear because of caching effects, data parallelism (the num-
ber of replicas) is roughly linear, and parameter server is diminish-
ing as its communication bandwidth becomes less of a bottleneck.
It is hard to estimate the performance impact of a system configura-
tion as it depends on characteristics of the DNN (e.g., neuron count
and connectivity) and hardware (e.g., machine count, clock speed,
network latency and bandwidth). Moreover, these configuration
choices lead to a multi-dimensional configuration space, which is
very expensive to empirically explore for optimal solutions.

Configuring distributed hardware for efficient DNN training cur-
rently requires distributed system expertise which many machine
learning researchers may lack, and even for system experts, the
state space exploration is time consuming and they may settle for
suboptimal solutions. Moreover, this expensive configuration pro-
cess must be repeated if the application, DNN architecture, or hard-
ware resources changes. To provide DNN training infrastructure
as a service, an easier and more effective way of determining the
performance impact of a system configuration for a specific DNN
helps in selecting the best configuration that maximizes scalability
and minimizes training time. To address these issues, in this paper,
we develop a performance model for estimating the scalability of
distributed DNN training and use this model to power a scalability
optimizer that determines the optimal distributed system configura-
tion that minimizes training time. We answer two key questions.

How much time does a system configuration take to train a DNN
task? Our performance model takes as inputs the features of DNN
and hardware, as well as the system configuration that maps the
partitioned and replicated training work of the DNN to the avail-
able hardware. As outputs, it identifies scalability bottleneck and
estimates the DNN training time. Our model supports the state-of-
the-art design choices and quantifies the impact of different types
of parallelism on computation and communication. We combine
analytical modeling of the performance-critical components with a
small set of guided system measurements capturing system behav-
iors (e.g., cache effects) that are hard to be modeled accurately.

What is the optimal system configuration to minimize DNN train-
ing time? Our scalability optimizer applies the performance mod-
els to explore various system configurations analytically, without
requiring users to conduct exhaustive performance tests. We pro-
pose an efficient search algorithm that finds the optimal system con-
figuration in polynomial time, significantly reducing the complex-
ity from a brute-force search algorithm, whose computational cost
grows exponentially with the number of DNN layers and machines.

We validate our approach by comparing our model’s estimated
training time and scalability for two DNN benchmarks, MNIST [23]
and ImageNet [14] on a commodity cluster of 20 machines con-
nected by 10Gbps Ethernet, with measurements from actual train-
ing runs on the cluster using the Adam distributed deep learning

framework [5] . We show that our performance model estimates
the training time of DNNs with high estimation accuracy. Among
the tested configurations, we correctly identify the relative perfor-
mance — a configuration that is considered faster by our model is
also faster according to the measurements. The absolute training
time estimated by our model is rather close to the measured value,
with less than 25% difference. Moreover, our scalability optimizer
correctly and efficiently finds the optimal configurations for both
benchmarks. The experimental results demonstrate that the gap be-
tween different system configurations is large: an optimal configu-
ration can be more than 20x faster than a reasonable configuration
even when there are only 20 machines. This gap will only increase
for larger-scale systems with more machines, highlighting the im-
portance of our scalability optimizer. Finally, we use our model
to predict how deep learning scales, both with more hardware, and
custom hardware, such as FPGAs, ASICs, and RDMA.

This paper makes the following contributions:

• We develop a novel performance model for scalability esti-
mation of distributed DNNs (Section 4).
• We build a scalability optimizer that efficiently searches and

finds the optimal system configurations for distributed DNN
training over a cluster of hardware resources, minimizing
training time and maximizing system throughput (Section 5).
• We evaluate and validate the estimation accuracy of the per-

formance model and the benefits of the scalability optimizer
on a state-of-the-art deep learning framework with real-world
benchmark applications (Section 6).

2. BACKGROUND
DNNs consist of large numbers of neurons with multiple inputs

and a single output called an activation. Neurons are connected
in a layer-wise manner with the activations of neurons in layer
l − 1 connected as inputs to neurons in layer l. The deep architec-
ture of DNNs enables hierarchical features of the input data to be
learned, making DNNs effective for difficult artificial intelligence
(AI) tasks [3]. DNNs are typically trained using stochastic gradient
descent (SGD) [4], where each input is processed in three steps:
feed-forward evaluation, back-propagation and weight updates.

Feed-forward evaluation. Define ai as the activation of neuron i
in layer l. It is computed as a function of its J inputs from neurons
in the preceding layer l − 1:

ai = f

((
J∑

j=1

wij × aj

)
+ bi

)
, (1)

where wij is the weight associated with the connection between
neurons i at layer l and neuron j at layer l− 1, and bi is a bias term
associated with neuron i. The weights and bias terms constitute the
parameters of the network that must be learned to accomplish the
specified task. The activation function, f , associated with all neu-
rons in the network is a pre-defined non-linear function, typically
sigmoid or hyperbolic tangent.

Back-propagation. Error terms δ are computed for each neuron
i in the output layer L:

δi = (truei − ai)× f ′(ai) , (2)

where true(x) is the true value of the output and f ′(x) is the
derivative of f(x). These error terms are back-propagated to each
neuron i in the layer l from its S connected neurons in layer l + 1:

δi =

(
S∑

s=1

δs × wsi

)
× f ′(ai) . (3)
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Weight updates. These error terms are used to update the weights:

∆wij = α× δi × aj for j = 1...J , (4)

where α is the learning rate and J is the number of neurons of
the layer. This process is repeated for each input until the entire
training data has been processed (i.e., a training epoch). Typically,
training continues for multiple epochs, reprocessing the training
data set each time, until the error converges to a desired (low) value.

Distributed DNNs are trained using asynchronous SGD, where
shared weights are updated asynchronously and stale weights could
be used for computation, to minimize communication costs. Prior
work has shown learning accuracy is robust to asynchrony [5, 28],
making it an important performance optimization. For example,
replicas can run faster by synchronizing at a coarser granularity,
after processing mini-batches of tens of inputs [6, 16].

3. MODELING OBJECTIVE AND USE CASES
In practice, large DNN models are often trained on large amounts

of data through “trial and error” tuning of network hyper-parameters
and training parameters (e.g., biases, learning rate, etc.), a process
which can benefit from distributed hardware for accelerating each
trial. Distributed training, however, poses new challenges and re-
quires tuning an additional set of parameters — distributed system
configurations. Since many machine learning researchers may not
be experts at configuring distributed hardware, our work aims to
help them pick the best configurations of available hardware re-
sources to expedite distributed DNN training. And even for sys-
tem experts, our work helps avoid the time consuming state space
exploration for optimal system configurations for each DNN and
hardware combination.

Our performance model estimates training epoch time for a given
system configuration, and identifies configurations which minimize
epoch time. We do not model the convergence to desired accuracy.
To the best of our knowledge, it is notoriously difficult to model and
bound accuracy for the hard non-convex learning problems [12]
(e.g., image and speech recognition), which benefit the most from
large-scale distributed deep learning and thus are the focus of our
work. We show our performance models help speed up the standard
“trial and error” process of training these hard DNN tasks.

The process of finding good values of hyper-parameters (and
training parameters) typically proceeds as follows. You pick an
initial setting for the hyper-parameters, and then use a distributed
framework to run the training procedure for a fixed amount of time
(e.g., days) on some configurations of the hardware resources. If
the final accuracy is not satisfactory, then choose another set of
parameter values and repeat the process, until desired accuracy is
achieved. Given the iterative nature of this process, system con-
figurations with faster epochs are preferable as they can complete
more epochs within the time budget, and accuracy improves with
more epochs. This is important when training large DNN models
on large amounts of data, where convergence may take too long
(e.g., months) and the goal of each trial is often to achieve maximal
accuracy within a time budget (e.g., a week).

For a given set of hyper-parameters, different system configu-
rations can also result in different efficiency and accuracy values.
Figure 3 shows the training efficiency and accuracy of 66 different
sets of system configurations of using 20 machines for ImageNet-
100, the 100 categories image classification task of the ImageNet
benchmark [14]. The hardware and benchmark details are provided
in Section 6.1. The x-axis depicts the epoch time, where the val-
ues are normalized against the epoch time of the fastest configu-
ration. The Y-axis depicts the accuracy after each configuration

Figure 3: Accuracy and time of different system configurations.

runs for 10 epochs1, where the values are normalized against the
highest accuracy among all configurations. Each point in the figure
represents the efficiency and accuracy results of one system con-
figuration. Figure 3 shows that, the epoch time of the fastest and
the slowest configuration differs by 6.7X; while the accuracy of the
configurations differs by 8.7X. Very importantly, among different
configurations, it is hard to pinpoint any correlation between the
efficiency and accuracy of a system. In other words, there are sys-
tems both efficient and accurate, both inefficient and inaccurate,
either efficient or accurate. The accuracy of a system configuration
can only be evaluated empirically.

To find a system configuration achieving high accuracy using
less time, a sensible approach is to try out the more efficient sys-
tems, if they provide accurate results, the system is both efficient
and accurate, and even if some of them do not achieve high accu-
racy, we spent less time to find the right set of configuration choices
than starting from a random or inefficient system. To illustrate this,
we present a case study using the example in Figure 3. Assume
the desired accuracy is 0.9. The typical trial and error method ran-
domly picks up a system configuration to test whether it achieves
the desired accuracy. Since the time to find a proper configuration
of such method depends on how the configurations are selected,
we present here the expected time by average over 10 different
training runs of using uniformly-random selection. The expected
normalized time to achieve the desired accuracy is 353.56. In com-
parison, searching from the configuration with the smallest epoch
time only takes 129.80 normalized time to find a configuration that
meets the desired accuracy, which is about 1/3 of the time by us-
ing random selection. These usage cases motivate our study: build
performance models to estimate system efficiency for given config-
uration choices (Section 4), and develop optimization procedures to
find the most efficient configurations (Section 5).

4. PERFORMANCE MODEL
This section presents the performance models of distributed DNNs.

We cover the state-of-the-art design and configuration choices sup-
ported by distributed DNN infrastructures [5, 13]. We quantify the
impact of these choices on the DNN training time. Section 4.1 fo-
cuses on model parallelism, where we estimate the training time of
a single input with partitioned neural networks across multiple ma-
chines. Section 4.2 models three forms of data parallelism, where
multiple inputs are trained concurrently. We integrate model and
data parallelism into a complete performance model for estimating
the epoch time of DNNs with any given system configurations. The
appendix of the tech-report [31] summarizes the key notations used
in the performance model and the rest of the paper.

1ImageNet-100 converges after 10 epochs, so the accuracy reported
here is the final accuracy.
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4.1 Model Parallelism
Model parallelism partitions a DNN layer across multiple ma-

chines2 so that each partition can be trained independently, with
activations of neural connections that cross machine boundaries be-
ing exchanged as network messages. The number of partitions is a
configuration choice: a larger value increases aggregate cache ca-
pacity and bandwidth, but incurs additional communication from
cross-machine neural connections. This section quantifies the im-
pact of model parallelism: we estimate the training time of a single
sample under different numbers of neural network partitions. Here
we call each piece of inputs as a sample, e.g., at an image recogni-
tion task, a sample is an input image and its label.

As DNN consists of different types of layers with varying con-
nectivity, an appropriate number of partitions could vary across dif-
ferent layers of one DNN task. For example, DNNs for image pro-
cessing often comprises convolutional layers (possibly interleaved
with pooling layers) at the bottom followed by fully connected lay-
ers. Convolutional layers are only connected to spatially local neu-
rons in the lower layer, modeling the visual cortex [18]; pooling
layers summarize the salient features learned by convolutional lay-
ers; whereas neurons in fully connected layers are connected to all
neurons in the previous layer. Therefore, it could be beneficial to
partition convolutional and pooling layers (more aggressively) as
the number of cross-machine connections is smaller, while parti-
tioning a fully connected layer could generate more communica-
tion cross machines, which may not speed up the training time.
Although prior work applies the same number of partitions for an
entire neural network [5], our work supports a more general model
that allows different number of partitions at different layers to fully
exploit model parallelism.

Figure 4 visualizes DNN partitions for model parallelism. The
DNN has L layers. Each layer l ∈ [1, ..., L] is partitioned into P (l)
segments, and each segment is denoted by p and p ∈ [1...P (l)]3.
The segments of a layer are processed in parallel, thus the layer
execution time is decided by the slowest segment. To reduce train-
ing time and improve system utilization, the segments of the same
layer are often evenly partitioned, i.e., each segment has roughly
the same number of neurons and connections to balance the com-
putation and communication among the identically configured ma-
chines (our model considers homogeneous hardware). Therefore,
the time spent on a layer l can be estimated using any of its segment
p. We calculate the training time of DNN of a sample as the sum-
mation of its time spent in each layer. The total time in each layer
is composed of the time spent on feed-forward evaluation, back-
propagation, and weight updates, each of which is further divided
into computation and communication time.

4.1.1 Feed-forward Evaluation
For each segment p at layer l, the feed-forward evaluation time

Tf (l, p) is equal to the time spent in computing the output acti-
vations of the neurons in the segment (denoted as Uf (l, p)) and
communicating activations from the connected segments in layer
l − 1 (denoted as Mf (l, p)), i.e., Tf (l, p) = Uf (l, p) +Mf (l, p).

Computation. Feed-forward evaluation computes the output ac-
tivations of the neurons in each layer. As shown in Eq. 1, the output
activation of neuron i in layer l is the result of a nonlinear function
f(x), where the input x is the dot product of the input activations of

2Our performance model can also handle model parallelism using
chip-level multiprocessing, but is not discussed due to space limits.
3Layers can be partitioned in different ways (e.g., stripes, fixed-size
squares, etc.) which impacts the computation and communication
load per partition. Our approach applies to any partitioning scheme,
but for clarity we assume stripe partitioning in the rest of this paper.

Figure 4: DNN partitions for model parallelism.

i from layer l − 1 and the weight values of the connections. Thus,
the computation time per neuron is equal toCmuladd×|Si| +Cact,
where Si represents the set of neurons at layer l − 1 connected to
neuron i of layer l, Cmuladd denotes the time of one multiply-add
operation, andCact denotes the time to compute f(x). We estimate
the computation time of segment p as:

Uf (l, p) = Cmuladd ×W (l, p) + Cact ×Nneuron(l, p) , (5)

where Nneuron(l, p) denote the number of neurons in segment p,
and W (l, p) denote the number of weights connected from layer
l − 1 to all neurons in segment p.

A first-order estimation of Cmuladd and Cact that captures the
cache effects of model parallelism can be obtained through profil-
ing a micro benchmark that emulates feed-forward evaluation us-
ing these basic operations (i.e., canonical computation) on a worker
machine. Figure 5 shows an example of a simple canonical feed-
forward evaluation. Estimation accuracy of the canonical code can
be improved by incorporating optimizations from real-world DNN
implementations (e.g., loop tiling and SIMD arithmetic).

for (i = 0; i < Nneuron(l, p); i + +) {
foreach (j ∈ Si){

yi+ = wij ∗ aj // cost: Cmuladd

}
ai = f(yi) // cost: Cact

}

Figure 5: Canonical feed-forward evaluation.

Communication. Since activations can be sent asynchronously,
we assume the communication time of feed-forward evaluation is
dominated by the delay in receiving cross-machine activations from
previous layer. Thus, the communication time Mf (l, p) is a func-
tion of the data size received by p and the network performance:

Mf (l, p) = Cncost +
A(l, p)× Cbits

Cnbw
, (6)

whereCncost is network latency of sending one bit of data between
two workers, Cnbw is the bandwidth of the machine’s NIC, A(l, p)
is the number of remote activations that the segment p receives from
layer l− 1, and Cbits is the size of each activation. A(l, p)×Cbits

is the number of data bits received by p.

4.1.2 Back-propagation
Computation. Back-propagation computes the error terms of

neurons. The error term of neuron i in segment p of layer l is com-
puted from the input error terms of i in layer l + 1, the connection
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weights, and the error function f
′
(x), as shown in Eq. 3. We esti-

mate the computation time of segment p as:

Ub(l, p) = Cmuladd ×W
′
(l, p) +Nneuron(l, p)× Cerr , (7)

where Cerr is the basic cost of the error function, and W
′
(l, p) is

the number of connections from layer l + 1 to segment p of layer
l. We estimate the cost of the basic operations through canonical
computations, similar to Figure 5.

Communication. We assume the back-propagation time of seg-
ment p in layer l, Mb(l, p), to be the delay in receiving remote
error terms from layer l+1. Thus,Mb(l, p) can be estimated using
a similar equation to Eq. 6, but with A(l, p) replaced by E(l, p),
the number of remote error terms:

Mb(l, p) = Cncost +
E(l, p)× Cbits

Cnbw
.

4.1.3 Weight Updates
Error terms are propagated through the neural network to update

the weight values in each layer. As shown in Eq. 4, the delta weight
∆wij for the connection between neuron i in layer l+1 and neuron
j in layer l is computed from the error term δi and the activation
aj . The weight value wij is then updated using ∆wij . Thus, the
computation time for weight updates is estimated as

Uw(l, p) = Cmuladd ×W (l, p) . (8)

Note that weights are not communicated in model parallelism, thus
communication time, Mw(l, p), is zero.

From the estimated time for feed-forward evaluation, back-prop-
agation, and weight updates, we obtain the training time for each
layer, and thus the total time to train on an example with model
parallelism. Our models are applicable to layers of different types,
such as pooling, convolutional, and fully connected layers4, by es-
timating computation time using appropriate canonical forms, and
communication time using the size of remote activation/error terms.

4.2 Data Parallelism
Rather than processing training samples one by one, data paral-

lelism accelerates training through concurrent processing of multi-
ple samples. We model 3 forms of data parallelism through CMP
(chip-level multiprocessing), by layer replication, and using model
replicas with parameter servers. This section presents a complete
performance model that builds these 3 forms of data parallelism on
top of the model parallelism.

4.2.1 Chip-level Multiprocessing
Exploiting the modern multi-core processors, the cores of a CMP

system process different samples concurrently(e.g., a 16 core pro-
cessing 16 samples at a time), while asynchronously sharing weights
through shared memory. The number of concurrent threads is a
configuration choice: a higher value increases concurrency but also
increases the potential interference among the threads. Figure 6
extends our model to support data parallelism using CMP. We add
one more dimension h (h ∈ [1, H(l)]) to the base model, where
H(l) represents the number of threads training in parallel in layer
l. This extends our index of each segment from (layer ID, partition
ID) pair to a triple of (layer ID, partition ID, thread ID).

Computation. Concurrent training of multiple samples may in-
terfere with each other, competing for memory bandwidth, and thus
affecting per-sample computation time. We define a performance
interference factorCinterf (H(l)) to model the interference among
4Recurrent neural networks [25] can be viewed as a DNN unfold-
ing over time, so our performance model is easily applicable to it.

Figure 6: Data Parallelism using CMP.

H(l) threads. We estimate Cinterf (H(l)) by running a multi-
threaded version of the canonical form such that each thread pro-
cesses the same code segment using different cores: Cinterf (H(l))
is estimated as the ratio of the H(l)-thread execution time and the
single-thread execution time. Thus, the computation time of a seg-
ment using CMP of H(l) threads is:

Ui={F,B,W}(l, p, h) = Cinterf (H(l))× Ui(l, p) , (9)

where Ui(l, p) is the computation time of having one thread per
layer, as shown in Eq. 5, Eq. 7 and Eq. 8.

Eq. 9 shows data parallelism may not reduce the computation
time of an example, on the contrary, it may increase the time due to
the potential interference among threads. However, running mul-
tiple samples concurrently can still reduce the epoch time Tepoch

of training the entire sample set once (total of Nsample samples).
Thus, we define data parallelism degree Q(l) as the concurrency
degree of training multiple samples in parallel at layer l. WithH(l)
concurrent threads that each runs a sample, we have Q(l) = H(l)
at layer l. Per-sample execution time and data parallelism degree
together define the epoch time and system throughput.

Communication. When training multiple samples with multiple
threads, the network bandwidth is shared among threads, i.e., each
thread gets Cnbw(H(l)) = 1/H(l) of the bandwidth. We model
the network latency Cncost(H(l)) as a function of H(l) as this la-
tency may increase when both sender and receivers establish H(l)
concurrent connections. The communication time is estimated as:

Mf (l, p, h) = Cncost(H(l)) +
A(l, p, h)× Cbits

Cnbw(H(l))
,

Mb(l, p, h) = Cncost(H(l)) +
E(l, p, h)× Cbits

Cnbw(H(l))
.

4.2.2 Layer Replication
Replicating a layer across the worker machines of a model replica

can reduce the network overheads of cross-machine activations.
Since a fully connected layer can be expensive to partition, a faster
alternative is to replicate it among several machines where each ma-
chine processes a subset of training data. We add a new dimension
r to represent replication. This extends our index of each segment
to a quadruplet of (layer ID, partition ID, thread ID, replication ID).
The computation time is the same as that in Section 4.2.1, but the
data parallelism degree is extended to Q(l) = H(l)×R(l), where
R(l) denotes the number of replications for layer l. The communi-
cation is calculated similarly as that in Section 4.2.1. We show an
example of output layer replication in Section 6.4.

4.2.3 Multiple Model Replicas
The third form of data parallelism is partitioning the training

data to train the model replicas in parallel, where the replicas share
weights through a parameter server (Figure 1). To improve param-
eter server throughput, the weights are partitioned across multiple
servers for more network bandwidth. The number of model replicas
and parameter server machines are critical configuration choices to
balance computation and communication, weight communication
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load scales with model replica count. But, an optimal ratio between
them is task specific, depending on both the DNN and hardware.

Computation. The computation time per sample does not change.
The data parallelism degree is extended to Q(l) = H(l)×R(l)×
Nmr , where Nmr denotes the number of model replicas.

Communication. The difference in communication comes from
introducing the parameter servers. Writing weights to parameter
servers can be done asynchronously and does not affect training
time on the replicas. However, reading weights is synchronous and
can stall training until the read is complete. Therefore, the reading
time should be considered in the model. We useNread to represent
the read frequency, i.e., each replica reads weights from parameter
servers after training Nread samples.

The communication time between replicas and parameter servers
varies depending on their communication patterns of the actual im-
plementation. The worst case is when all replicas read weights
from the same parameter server simultaneously: the bandwidth of
the parameter server to each replica becomes minimum. The time
to read weights from parameter servers is:

Mmax
w =

L∑
l=1

(Cncost(H(l)) +
Nmr ×W (l)

Cnbw(H(l))
) , (10)

where W (l) =
∑

1≤p≤P (l) W (l, p) is the data size of all weights
for layer l. The best case occurs when (1) a single replica uses all
its Nwr workers and reads from all parameter servers in parallel
using their accumulated bandwidth; and (2) there is no overlapped
time among multiple replicas while reading weights.

Mmin
w =

L∑
l=1

(Cncost(H(l))+
W (l)

Cnbw(H(l))×min(Nps, Nwr)
) .

(11)
In practice, the weight reading time Mw is somewhere in between
depending on the implementation. There are optimization opportu-
nities to improve the reading time to be closer to the best case. For
example, the reading time for different replicas can be scheduled
so that there is minimal overlap.

We estimate the epoch time of the complete model by consider-
ing the worst case where the computation of model replicas does
not overlap with their communication to parameter servers:

Tepoch =
Mw ×Nsample

Nread
+

L∑
l=1

{[ Uf (l, p, h, r) +Mf (l, p, h, r)

+Ub(l, p, h, r) +Mb(l, p, h, r) + Uw(l, p, h, r) ]×Nsample/Q(l)} .

5. SCALABILITY OPTIMIZATION
In this section, we develop a scalability optimizer that enumer-

ates different system configurations, uses the proposed performance
model to estimate their training time, and finds an optimal system
configuration with minimum epoch training time. Compared with
a brute-force search algorithm whose complexity is exponential,
our algorithm finds optimal configuration efficiently in polynomial
time, making the solution computationally trackable in practice.

5.1 Problem Formulation
We define the constrained optimization problem: for a DNN,

its training data, and a given cluster of N machines, find an opti-
mal system configuration such that the epoch training time is min-
imized. Figure 7 presents the formal problem definition.

Defining a system configuration requires three sets of parame-
ters: (1) the parameters defining resources, including the number of
parameter servers Nps, model replicas Nmr , and workers Nwr per

Variables to define a configuration Φ
•Nps: number of parameter servers
•Nmr : number of model replicas
•Nwr : number of workers per model replica; SW={1, ..., Nwr}
For each layer 1 ≤ l ≤ L,
• Pl: number of partitions; SPl={1, ..., Pl}
•Hl: number of threads; SHl={1, ..., Hl}
• Rl: number of replicas; SRl={1, ..., Rl}
• mapping function fl: SPl × SHl × SRl → SW

Objective:
minimize{Φ}Tepoch(Φ)

Subject to:
C1: Nps + Nmr ×Nwr ≤ N
C2: Hl ≤ K, for all 1 ≤ l ≤ L (K is total number of cores of a machine)
C3: fl(p, h, r) 6= fl(p

′, h′, r′), if p 6= p′ or r 6= r′, for all
1 ≤ l ≤ L, p, p′ ∈ SPl, r, r′ ∈ SRl and h, h′ ∈ SHl

C4: fl(p, h, r) = fl(p, h
′, r), for all 1 ≤ l ≤ L,

p ∈ SPl, r ∈ SRl and h, h′ ∈ SHl

Calculate Tepoch(Φ) for any given Φ using models in Section 4.1 and 4.2

Figure 7: Problem Formulation.

model replica; (2) the parameters defining the number of partitions,
threads and replications at each layer of DNN5; and (3) the map-
ping function f between the resources and the segments of DNN,
in particular, between the workers of each model replica and its
partitioned and replicated segments.

There are 4 sets of constraints. C1 bounds the total number of
machines used by the DNN task. We assume all machines are the
same in terms of computing and communication performance. C2
bounds the total number of concurrent threads per machine by the
total number of cores of the machine to avoid cache contention and
context switch among threads. C3 ensures that, at each layer, two
segments of different partitions or replications are NOT mapped to
the same worker. C4 ensures that the segments exploiting chip-
level multiprocessing (with the same partition and replication IDs)
are mapped to the same worker. Given a system configuration Φ,
we can then calculate the training epoch time of the DNN using
the performance model proposed in Section 4. The optimization
objective is to find the configuration with minimum epoch time.

5.2 Challenges
To solve this optimization problem, a simple way is to do a brute-

force search on all combinations of configurations. However, the
search space is very large as shown below.

Considering different selection of the resource parameters (Nps,
Nmr, Nwr), there are at most N3 combinations. For each com-
bination, inside a model replica, we explore system configurations
along two directions:

Segment-worker mapping. There are different ways to assign
segments to workers in each layer. This mapping becomes more
complex as different layers may require a different number of seg-
ments and workers. To find the assignment that minimizes the re-
mote communications is a permutation of segments and workers,
which results in O(N !) combinations.

Multi-layer composition. DNN often consists of multiple lay-
ers and each layer can make different decisions. At each layer, there
are up to N2 combinations on the selection of the number of parti-
tions and the number of replications, and K choices on the number

5We assume the number of threads, replications, and partitions are
the same for all layers to balance layer training time among work-
ers: the slowest worker determines layer time. However, the num-
ber of partitions, replications and threads can differ across layers.
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of threads per worker. Adding the possible mapping of workers to
segments, there are K × N2 × (N !) combinations for each layer.
For a DNN with L layers, the entire search cost is

O(N3[ K ×N2 × (N !) ]L) ,

which is exponential with respect to the number of machines and
the number of layers. This brute force search is too computationally
expensive to be useful in practice.

5.3 Efficient Search Algorithm
Our optimal polynomial-time search algorithm is based on two

insights: (1) a greedy approach that decides the best worker for
each segment, reducing the cost of segment-working mapping, and
(2) constructing optimal solution using optimal subproblems via
dynamic programming, reducing multi-layer composition costs.

Optimizing segment-worker mapping. Finding an optimal map-
ping of all segments to workers per layer by exhaustively trying all
combinations is an expensive permutation problem. However, our
key observation is that, a greedy approach that decides the best
worker for each segment represents the optimal global mapping.
More precisely, for each segment, we find a worker that minimizes
the remote connection of the segment from previous layer, which
can be done efficiently with time complexity of O(N). Therefore,
to compute the best workers for all the segments, the complexity
is O(N2). This optimization reduces the search complexity to
O(N3[ K × N4 ]L). Because of the symmetric and flat struc-
ture of DNNs, the case where two segments have the same best
worker is very unlikely to happen. And when it happens, we can
break the tie easily by comparing which mapping choice results in
overall smaller number of remote connections. Even in the worst
case that we assume the special property of DNN does not help re-
duce the likelihood of ties, we can map the problem to a general
maximum weighted bipartite matching problem, where the optimal
solution can be computed in polynomial time with complexity of
O(N4) [30]. Due to interest of space, we defer the detailed analy-
sis and example to our tech-report [31].

Optimizing multi-layer composition. We apply dynamic pro-
gramming to find optimal solution while reducing the computa-
tional cost. Our key observation is that an optimal solution for up
to l layers can be constructed using the optimal of sub-problems
for up to layer l − 1 6. To ease the presentation, we first con-
sider the case with partition only. Let’s denote Tepoch([1, l], pl)
as the optimal accumulated training time from layer 1 to layer l
where the layer l has pl partitions. If we know the optimal solution
Tepoch([1, l − 1], pl−1) of the subproblems at layer l − 1, we can
compute the optimal of up to layer l by selecting among the config-
urations at layer l − 1 that minimizes the sum of the computation
time at layer l, the communication time between layer l − 1 and l,
and the accumulated training time up to l − 1, as follows:

Tepoch([1, l], pl) = min
1≤pl−1≤N

[Tepoch([1, l − 1], pl−1)

+U(l, pl) +M(l, l − 1, pl, pl−1)] ,

where U(l, pl) is the computation time of layer l with pl partitions,
andM(l, l − 1, pl, pl−1) is the communication time between layer
l−1 and l when there are pl partitions in layer l and pl−1 partitions
in layer l − 1.

6Note that a greedy approach that minimizes the cost of each layer
is suboptimal: the number of partitions at layer l is affected by
that at layer l − 1 and affects layer l + 1. Minimizing the cost of
one layer greedily may increase the costs of other layers, rendering
suboptimal decisions for the entire network.

The base case is the first layer, which has no communication
from previous layer, i.e., Tepoch([1, 1], p1) = U(1, p1). The opti-
mal epoch time of the entire system is computed as

T ∗epoch = min
1≤pl≤N

Tepoch([1, L], pl) .

If we solve this problem recursively, the cost is exponential. We
apply dynamic programming technique to reduce the computation
cost. More specifically, we compute and store the optimal solution
for subproblems, starting from layer 1, and going upward to layer
L. At each layer l, we compute Tepoch([1, l], pl) from pl = 1 up
to pl = N . To get each Tepoch([1, l], pl), the cost is N times the
corresponding segment-worker mapping cost, i.e., N3. If we also
consider replication, the cost per layer becomes O(N4) and the
total cost of L layers is O(L × N4). To sum up, the entire cost
after applying these two techniques is:

O(L×K ×N7) .

This complexity can be further reduced toO(L×K×N5 log2 N).
Combining the two techniques, we effectively reduce the com-

plexity of computing optimal solution from exponential time to
polynomial time, making it computationally feasible in practice.

6. EVALUATION
We now evaluate our proposed performance models and scala-

bility optimizer for distributed DNN training on a commodity com-
puting cluster. Our experiments validate the estimation accuracy of
the models and illustrate the benefits of the optimizer. We also use
our models to predict DNN training time with larger commodity
clusters and custom hardware, such as FPGAs and ASICs.

6.1 Methodology
We now describe the distributed deep learning framework, bench-

mark applications, and computing cluster used in our experiments.
Distributed deep learning system. Adam is a state-of-the-art

framework for distributed training of large DNNs (billions of con-
nections) using vast amounts of training examples on a cluster of
commodity machines [5]. We use measured results from Adam to
validate the estimation accuracy of our performance models.

Benchmarks. We use two popular benchmarks, MNIST [23] and
ImageNet [14], with corresponding DNNs [5] that achieve state-of-
the-art task accuracy. The MNIST task is to classify 28x28 images
of handwritten digits into 10 categories using 60000 training exam-
ples [23]. The MNIST DNN is relatively small, containing about
2.5 million connections in 5 layers: 2 convolutional layers, 2 linear
layers, and a 10-way softmax output layer. The ImageNet task is to
classify 256x256 images from a dataset of over 15 million images
into 22, 000 categories (a.k.a., ImageNet-22K). The ImageNet-22K
DNN is extremely large, containing over 2 billion connections in
8 layers: 5 convolutional layers, 2 linear layers, and a 22000-way
softmax output layer. These DNNs represent 2 extremes of the size
spectrum and provide insights on the generality of our models.

Computing Cluster. We use a cluster of 20 identically config-
ured commodity servers, connected by Ethernet. The servers run a
64-bit Windows Server 2012 DataCenter OS, with the benchmark
datasets preloaded on local disk. Each server is a dual-socket Intel
Xeon E5-2450 system with 16 cores running at 2.1GHz, 64 GB of
memory, 268.8 GFLOP/s SIMD FPU, and a single 10Gbps (bidi-
rectional) NIC. 16 training threads are enabled per server.

6.2 Performance Model Validation
We validated our performance models by measuring the estima-

tion accuracy of the scalability (training speedup) of model paral-
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Figure 8: Scalability results of MNIST.

Figure 9: Scalability results of ImageNet-22K.

lelism7, data parallelism using replicas, and parameter server paral-
lelism, and the relative performance of system configurations aris-
ing from different combinations of these parallelism modes. Unless
specified otherwise (Section 6.3), a model replica writes and reads
the parameter servers after processing 40 and 70 images respec-
tively. We compare estimations from our performance model (la-
belled Estimate) to measurements from Adam (labelled Measure).

6.2.1 Estimating Scalability
We configure distributed training scenarios that correspond to 1,

2, and 4 parallelism degrees for one mode and a parallelism setting
of 4 for the others. The training speedup results are summarized in
Figures 8 and 9. The results show that the 3 parallelism techniques
scale differently for a given workload, and a given technique can
scale differently across workloads. For MNIST, model parallelism
speedup is linear from 1 to 2 workers and sub-linear from 2 to 4
workers, data parallelism speedup is always linear, while parameter
server parallelism provides no speedup. For ImageNet-22K, model
parallelism speedup is super-linear, while data and parameter server
parallelism speedups are roughly linear.

These results lead to 3 observations. (1) Model parallelism ben-
efits ImageNet-22K more than MNIST because partitioning makes
the ImageNet-22K model fit into L3 cache, while the smaller MNIST
model fits in L3 without partitioning. (2) Data parallelism scales
linearly as long as the parameter server is not a bottleneck. (3)
The benefits of parameter server scaling depends on the amount
of bottleneck caused by replica synchronization, which is a func-
tion of DNN size. For MNIST with 4 workers and 4 replicas, 1
parameter server is sufficient, and thus parameter server scaling
gives little speedup to replica synchronization. For ImageNet-22K,
the extra network bandwidth of a second parameter server linearly
speeds up replica synchronization, but more servers give diminish-
ing speedups. The results show that our performance model accu-
rately estimates the different scalability behaviors of training tasks.

6.2.2 Estimating Relative Training Speed
We measured the estimation accuracy of our performance mod-

els in the relative training speed for different system configurations,
7The DNN architectures restricted us to model-parallelism of ≤ 4.

MNIST
Configuration Rank
#W/#R/#PS Measure Estimate

2/9/2 1 1
2/8/4 2 2
2/6/8 3 3
4/4/4 4 4
1/19/1 5 5
1/18/2 6 6
1/16/4 7 7
1/12/8 8 8

(a)

ImageNet-22K
Configuration Rank
#W/#R/#PS Measure Estimate

4/4/4 1 1
4/4/2 2 2
2/9/2 3 3
4/3/6 4 4
4/3/4 5 5
2/8/4 6 6
2/6/6 7 7
2/6/4 8 8

(b)

Table 1: Training speed ranking (1 is the fastest). W, R, and PS
stand for worker, replica, and parameter server respectively.

which is useful for head-to-head comparison of competing config-
urations. For each benchmark we studied 8 configurations which
use as much of the available 20 machines as possible, and are in-
teresting from a scalability perspective based on Section 6.2.1.

Tables 1 presents results of the 8 configurations for MNIST and
ImageNet-22K. We see that our performance model provides highly
accurate estimations: the relative rankings of the 8 configurations
from our models exactly match the measured results for both bench-
marks. Moreover, the best configurations for the benchmarks are
different: the best for MNIST is <2 workers, 9 replicas, 2 parame-
ter servers>, and for ImageNet-22K is <4 workers, 4 replicas, 4 pa-
rameter servers>. Our models successfully quantify the difference
in the computation and communication patterns of these workloads,
and thus identify the respective best configurations.

A closer examination of Table 1 brings interesting observations:
why is <2 workers, 9 replicas, 2 parameter servers> faster than <1
workers, 18 replicas, 2 parameter servers>? Intuitively, given lin-
ear scaling of model parallelism (from 1 to 2) and linear scaling of
data parallelism in Figure 8, should these two configurations have
the same performance? It turns out that their communication times
with parameter servers differ. In particular, a single-worker repli-
cas does not effectively leverage the extra parameter server band-
width (as shown in Eq. 11, the available bandwidth is bounded by
the smaller of the parameter server bandwidth and model replica
bandwidth). This is also reflected by the configurations with 12
or more replicas of 1 worker: performance degrades by increasing
the number of parameter servers at the expense of replicas. Such
factors might be neglected if we simply estimate training time with
a sketch, however, our models capture them nicely, showing the
benefits of a comprehensive performance model.

6.3 Training Time Estimation Zoom In
We now use ImageNet-22K for a more detailed evaluation of the

estimation accuracy of our performance model in terms of absolute
training speed and the effect of varying the rate of replica synchro-
nization. MNIST results are similar and skipped for space.

Absolute Training Time and Breakdown. The absolute epoch
training times of ImageNet-22K for different system configurations
are presented in Figure 10 . We can see that our performance model
estimates training time fairly accurately (< 25% estimation error).
Figure 11 presents a detailed breakdown of the estimation errors
for each computation and communication component in the feed-
forward evaluation, back propagation, and weight update steps. We
observe that we estimate computation rather accurately, but the
communication time, due to complex system behaviors on network,
is hard to model accurately. For example, the communication time
Mw between a model replica and parameter servers is bounded by
Mmax

w (Eq. 10) and Mmin
w ((Eq. 11). However, the actual time

depends on weights distribution across the parameter servers, the
scheduling of model replicas to read weights, and probability of
collisions, which are hard to estimate exactly. Nevertheless, our
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Figure 10: Estimated and measured epoch training time in different scenarios of ImageNet-22K.

models accurately estimate the relative speed of different configu-
rations, which is more crucial to our design goals.

Figure 11: Epoch training time breakdown of ImageNet-22K.

Effect of Replica Synchronization. The impact of varying the
rate of reading and writing parameters from the parameter server is
illustrated by Figure 12. The results are shown in terms of time to
complete a training epoch. As expected, faster training and better
scalability is achieved with less frequent synchronization (e.g., <80,
150> read/write ratio yields the shortest time). Our performance
model captures the correlation between synchronization rates and
training time, and estimates the scalability accurately.

Figure 12: Effect of replica synchronization rate on ImageNet-22K.

While performance improves with less synchronization (less time
per epoch), the learning rate (i.e., accuracy improvement per epoch)
may decrease (more epochs to achieve a target accuracy) [5]. Ex-
ploiting the tradeoff between the performance and accuracy with
varying degree of asynchrony could be an interesting future work.

6.4 Optimization
We illustrate the benefits of the optimizer with two experiments.
Partitioned vs Replicated Fully Connected Layer. To show

how our performance models can guide micro-level optimizations
of distributed training, we consider the design choice of partition-
ing or replicating fully connected layers. Both designs are illus-
trated in Figure 13 with a 2-worker replica for training a 3-layer
DNN with partitioned and replicated fully-connected output layer.
With partitioning, each worker performs half the computations and
activation communications of the ouput layer for each image. With

Figure 13: Example of partitioned and replicated output layer.

Figure 14: Partitioned and replicated output layer time.

replication, each worker performs all the computations and acti-
vation communications of the output layer for half of the images.
Thus, partitioning incurs twice the activation communication over-
heads, while replication incurs twice the weights communications
overheads since each worker maintains a copy of the weights.

We measured the impact of partitioning and replicating the out-
put layer of the ImageNet-22K model on Adam with 4-workers
(other settings follow the first configuration in Table 1). Figure 14
reports the total time and breakdown of the output layer. The results
are consistent with our analysis: partitioning incurs higher commu-
nication costs for activations, but lower for weights. Thus, the supe-
rior design depends on the DNN and hardware characteristics. For
our evaluation environment, our performance model choses repli-
cation as the better option, consistent with the measurement results.

Training Time Across the Search Space. Figure 15 presents
the training time of ImageNet-22K on different configurations (i.e.,
parameter servers, replicas and workers) across the search space of
using a total of 20 servers in a scatter plot. Each point represents
one configuration, and the size of the point indicates the range of its
epoch time. The figure shows that (1) there are many configurations
choices even with 20 servers only, and without considering differ-
ent combinations of layer compositions, (2) the training time differ-
ence between the best configuration (11.88 min) and the worst con-
figuration (218.08 min) is significant, more than 10x. This gap will
grow further with more resources. (3) The optimal solution is sur-
rounded by many suboptimal ones, and not easy to identify. These
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results demonstrate the importance of our performance models on
designing and configuring distributed DNN systems. The results of
MNIST confirm these findings as shown in the tech-report [31].

Figure 15: Epoch time across the search space (use 20 machines in
total) using ImageNet-22K.

6.5 Scalability on More & Custom Hardware
Another usage scenario of our performance models is to provide

scalability estimation for different hardware. We demonstrate it us-
ing two cases: (i) scaling out ImageNet-22K on more machines,
and (ii) scaling up the worker nodes through custom hardware ac-
celerators of computation, e.g., ASIC and FPGA, and communica-
tion, e.g., Infiniband and RDMA. The results are presented in our
tech-report [31] in the interest of space, and are consistent with [5].

7. RELATED WORK
Prior work on using parallelism and distributed systems to scale

up machine learning algorithms have mostly focused on linear con-
vex problems [1, 26, 27]. Distributed approaches for training large
DNNs include using GPU [8] or commodity server [5, 13] clus-
ters. The GPU approach exploits model parallelism to partition
the DNN across 16 GPUs connected by Infiniband, while the com-
modity server approach exploits both data and model parallelism
to partition the training data and DNN across 100s of machines
connected by Ethernet. Our models cover all the design choices
supported by these prior studies. Our scalability analysis and opti-
mization tool efficiently configures distributed hardware resources
for different learning tasks, improving system scalability, without
the human and computational costs of manual system tuning.

Modeling the performance of parallel computing and distributed
systems for scalability analysis, resource allocation, and capacity
planning is not a new topic; there is a large amount of work in
the literature [2, 19, 20, 24, 29]. However, each work is targeted
on specific distributed software, hardware systems or applications,
such as MapReduce, search engine, stream processing. They ap-
ply domain specific information and techniques to achieve desired
modeling accuracy and optimization objective. Our work exploits
the distinct features and optimization techniques of the distributed
DNN systems, which none of the prior work does.

8. CONCLUSION
This paper develops performance models for estimating the scal-

ability of distributed deep learning training, and for driving a scala-
bility optimizer that efficiently determines the optimal system con-
figurations to minimize DNN training time. Experimental results
on benchmark DNN tasks validate the estimation accuracy of our
models and the effectiveness of the scalability optimizer.
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