
S-Caffe: Co-designing MPI Runtimes and Caffe for
Scalable Deep Learning on Modern GPU Clusters

Ammar Ahmad Awan
Dept. of Computer Science and

Engg. The Ohio State University
awan.10@osu.edu

Khaled Hamidouche
Dept. of Computer Science and

Engg. The Ohio State University
hamidouc@cse.ohio-state.edu

Jahanzeb Maqbool Hashmi
Dept. of Computer Science and

Engg. The Ohio State University
hashmi.29@osu.edu

Dhabaleswar K. Panda
Dept. of Computer Science and Engg.

The Ohio State University
panda@cse.ohio-state.edu

Abstract
Availability of large data sets like ImageNet and massively
parallel computation support in modern HPC devices like
NVIDIA GPUs have fueled a renewed interest in Deep
Learning (DL) algorithms. This has triggered the develop-
ment of DL frameworks like Caffe, Torch, TensorFlow, and
CNTK. However, most DL frameworks have been limited to
a single node. In order to scale out DL frameworks and bring
HPC capabilities to the DL arena, we propose, S-Caffe; a
scalable and distributed Caffe adaptation for modern multi-
GPU clusters. With an in-depth analysis of new requirements
brought forward by the DL frameworks and limitations of
current communication runtimes, we present a co-design of
the Caffe framework and the MVAPICH2-GDR MPI run-
time. Using the co-design methodology, we modify Caffe’s
workflow to maximize the overlap of computation and com-
munication with multi-stage data propagation and gradient
aggregation schemes. We bring DL-Awareness to the MPI
runtime by proposing a hierarchical reduction design that
benefits from CUDA-Aware features and provides up to a
massive 133x speedup over OpenMPI and 2.6x speedup over
MVAPICH2 for 160 GPUs. S-Caffe successfully scales up to
160 K-80 GPUs for GoogLeNet (ImageNet) with a speedup
of 2.5x over 32 GPUs. To the best of our knowledge, this is
the first framework that scales up to 160 GPUs. Furthermore,
even for single node training, S-Caffe shows an improve-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PPoPP ’17 Feb. 4–8, 2017, Austin, Texas, USA.

c� 2017 ACM. ISBN 978-1-4503-4493-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018743.3018769

ment of 14% and 9% over Nvidia’s optimized Caffe for 8
and 16 GPUs, respectively. In addition, S-Caffe achieves up
to 1395 samples per second for the AlexNet model, which is
comparable to the performance of Microsoft CNTK.

Keywords MPI Reduce; CUDA-Aware MPI; Caffe; Deep
Learning; Distributed Training

1. Introduction
We are witnessing the era of rapid advances in Artificial In-
telligence (AI) fueled by the resurgence of Deep Learning
(DL) algorithms and techniques. With widespread applica-
tions like Image Recognition, Speech Processing, Textual
Analysis, Breast Cancer Detection [49], and Self Driving
cars [11], DL has become one of the hottest topics of inter-
est for both academic research groups as well as prominent
companies like Google, Baidu, Facebook, and Microsoft.
There are two main driving forces behind the momentum
that DL has recently gained; first is the public availability
of versatile training data sets like ImageNet [25] and CI-
FAR [35], and second is the affordability of modern high-
performance and data-parallel hardware like GPUs and ac-
celerators. This has triggered the development and adoption
of DL frameworks like Caffe [33], Torch [21], Theano [17],
TensorFlow [14], and Microsoft CNTK [12]. Research ef-
forts from DL and AI communities have been mostly geared
towards designing better, bigger, and deeper neural networks
(DNN) for improving the accuracy of trained models like
AlexNet [36], CaffeNet [7], GoogLeNet [45], Network in
Network [38], and VGG [44]. While these models differ
in their science and the order of computational layers, they
commonly share the need for faster computation and com-
munication capabilities of the system they run on.

At the heart of the Deep Learning resurgence, accelera-
tors like NVIDIA GPUs have seen a phenomenal adoption

193

by the community to accelerate parallel training. Interest-
ingly, GPUs are increasingly becoming popular in the HPC
community as well. This is evident from the Top500 [40]
supercomputers list where 22% of top 50 systems are GPU
based. Due to their high throughput support and an architec-
ture designed specifically for data parallel workloads, GPUs
are considered a very good match for DL computational
requirements. As a matter of fact, the operations involved
in training a DL model have a very high arithmetic inten-
sity [9, 20] thereby making GPU hardware a great match.
Thus, most of the DL frameworks including Caffe, Tensor-
Flow, CNTK, and various others are being designed to take
advantage of the GPU capabilities. Using NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [43] API, these
frameworks boost their scale-up (single address space) ef-
ficiency using threads to utilize multiple GPUs in a single
node [16]. However, the performance of single-node multi-
GPU training is nearing saturation for large DL data sets
and models as highlighted in Section 3. Thus, scale-out (dis-
tributed address space) efficiency for DL frameworks is an
emerging requirement. The importance of training for DL
frameworks has been stressed by many in the DL commu-
nity. In particular, Jeffrey Dean from Google highlights in
his keynote address [32]: “training time is a key challenge
at the root of the development of new DNN architectures.”

Thus, to develop distributed training support for DL
frameworks, we first need to understand and utilize preva-
lent parallelization approaches for distributed-memory HPC
clusters. We can clearly see that in the HPC world, Mes-
sage Passing Interface (MPI) is perhaps the most popular
and widely used parallel programming model for developing
large-scale applications. Furthermore, MPI runtimes them-
selves have witnessed rapid changes and optimizations with
the advent of GPUs and accelerators. As the CUDA API
matured, several features like Unified Virtual Addressing
(UVA) have led MPI researchers to propose the “CUDA-
Aware” concept. The idea is to transparently provide sup-
port for GPU-based data transfers within and across cluster
nodes. Several MPI implementations like MVAPICH2 [41],
OpenMPI [47], and CrayMPI [22] now provide efficient
CUDA-Aware support. This support includes direct trans-
fer of data from the GPU’s (device) memory to improve
performance of GPU-GPU communication using techniques
like CUDA IPC, GPUDirect RDMA [8], and pipelining.
This achieves better performance and programmability for
hybrid MPI+CUDA applications. In this context, a lot of tra-
ditional HPC applications have been successfully redesigned
to scale-out using a hybrid programming model mixing MPI
and CUDA [15, 18]. In such cases, CUDA is used to offload
computation to the GPU device while MPI is responsible
for inter-processes communication. However, most of the
current DL frameworks have not been designed with such
CUDA-Aware (MPI+CUDA) techniques.

Along with the broad challenge of efficiently scaling-out
a DL framework to take advantage of HPC resources, we
highlight the following design challenges that need to be
addressed in order to provide a scalable and efficient DL
framework:

• What are the performance and portability bottlenecks
when moving from a shared address space DL framework
to a distributed address space environment for a data-
parallel design?

• How to design a scalable and distributed framework that
provides both efficient scale-up performance for a single
node and scale-out performance for multiple nodes in a
distributed manner?

• What are the new requirements that DL frameworks bring
forward for distributed communication runtimes?

• Can co-design of MPI runtimes and DL frameworks be
exploited to boost performance and scalability for mod-
ern multi-GPU HPC systems?

• What are the performance trends and benefits that can
be observed for a distributed and co-designed DL frame-
work like S-Caffe?

In order to address the above challenges, using a co-
design methodology, we propose S-Caffe; a novel and scal-
able DL framework that provides efficient scale-up and
scale-out for distributed training on accelerated HPC sys-
tems. We investigate a co-design approach of S-Caffe and
MPI runtimes to bring the distributed-memory space effi-
ciency and CUDA-Awareness of MPI semantics to the S-
Caffe framework. We redesign and enhance MPI protocols
to satisfy the new requirements pertaining to movement of
very large messages in DL frameworks. Table 1 positions the
S-Caffe framework in the DL framework design and features
space. To the best of our knowledge, this is the first study
that provides an in-depth analysis of fundamental system-
level bottlenecks being faced by DL frameworks like Caffe
and highlights novel co-designed solutions to achieve high
performance and scalability.

We make the following key contributions:

• Analyze and identify new requirements brought forward
by DL frameworks, especially for large message commu-
nication and reductions in MPI runtimes.

• Co-Design, implement, and evaluate S-Caffe; a scalable
and distributed CUDA-Aware MPI enabled DL frame-
work.

• Propose novel exploitation of MPI-3 Non-blocking Col-
lective (NBC) operations via multi-stage data propaga-
tion and helper-thread based gradient aggregation in DL
frameworks.

• Co-design, implement, and evaluate a GPU-kernel based
hierarchical CUDA-Aware reduction primitive (MPI Re-

194

Deep Learning
Frameworks

Framework Features and Platforms Supported
Distributed Address Space Systems Shared Address Space Systems Parallelization Strategy / Implementation

Basic MPI
Support

CUDA-Aware
MPI

Overlapped Designs
(NBC Support)

Co-Designed with
MPI runtimes

Single GPU
Training

Multi-GPU
Training

Model Parallel (MP) /
Data Parallel (DP)

Parameter-Server (PS) /
Reduction-Tree (RT)

Caffe [33] 5 5 5 5 4 4 DP RT
FireCaffe [30] 4 Unknown 5 Unknown 4 4 DP RT

MPI-Caffe [37] 4 5 5 5 4 4 MP N/A
CNTK [12] 4 5 5 5 4 4 MP/DP PS

Inspur-Caffe [31] 4 4 5 5 4 4 DP PS
S-Caffe (proposed) 4 4 4 4 4 4 DP RT

Table 1. Design and Features Space for Modern Deep Learning Frameworks
duce) for supporting large-scale reductions in DL frame-
works like S-Caffe.

• Evaluate and analyze performance of the proposed S-
Caffe with small and large data sets like CIFAR10
and ImageNet using various networks like AlexNet and
GoogLeNet on different GPU Clusters including a Cray
CS-Storm dense multi-GPU system.

The rest of the paper is organized as follows. Section 2
contains important preliminaries including architecture of
DL frameworks like Caffe. In section 3, we highlight the
challenges and requirements for designing scalable DL
frameworks like S-Caffe. In Section 4, we describe at length,
the proposed S-Caffe co-design schemes and design alterna-
tives. The details of the proposed hierarchical multi-level
MPI Reduce are provided in Section 5. In section 6, we
present a comprehensive performance evaluation. Section 7
covers related DL frameworks and research efforts. We con-
clude the paper in Section 8.

2. Preliminaries: DL Frameworks, Caffe,
and CUDA-Aware MPI

In this section, we provide an overview of different DL
frameworks, a detailed description of Caffe’s architecture
followed by a brief discussion of CUDA-Aware MPI run-
times.
2.1 Architecture of Deep Learning Frameworks
DNNs like AlexNet, GoogLeNet, and VGG have several ar-
chitectural variations ranging from the number of layers, fil-
ter dimensions, among others. Single GPU or CPU based
DNN training broadly comprises of iterations over two com-
pute intensive passes; the Forward pass for training the sam-
ple data, and the Backward pass for performing gradient
computation w.r.t the weights and samples used in the for-
ward pass. In general, all the DNN structures try to model
high-level abstractions in a layered manner.
2.2 Caffe: Design and Implementation
We now define major design and implementation compo-
nents of the Caffe framework; the Net (or the Model), the
Layers, the Solvers, and the Forward/Backward computa-
tional passes. We discuss them in the context of this work
but a detailed description of these can be obtained from [6].
Figure 1 highlights different phases of the Solvers and their
interactions with Layers of a Net.

Net, Solvers, and Layers: Caffe’s Net class is the base
that holds important components of computation, commu-

GPU0(Bcast) packed_comm_buff

L1
L2
..
Ln

F

L1
L2
..
Ln

L1
L2
..
Ln

L1
L2
..
Ln

Params

GP
U

0 Params

GP
U

1 Params

GP
U

2 Params

GP
U

3

Gradients

Data	
Propagation

Forward	
Backward	

Pass

Gradient	
Aggregation

B F B F B F B

packed_re
duce_buff

packed_re
duce_buff

packed_re
duce_buff

packed_re
duce_buff

ApplyUpdates

GPU 0(Reduce)

Figure 1. Caffe Architecture: Data Propagation, For-
ward/Backward Computation, and Gradient Aggregation

nication, and I/O. Net is an abstraction for a DL network
like AlexNet or GoogLeNet. Net is sometimes also called
the Model. The heart of the framework that orchestrates the
execution of different computations using layers is called a
Solver. The Solver class is an abstraction that provides an
interface that can be implemented by different solvers e.g.,
a Stochastic Gradient Descent (SGD) solver. Caffe uses a
Solver object for each of the GPU. Each Solver has its own
Net object that operates on the Layer data. Layers are ab-
stractions for a defined set of computations on the data. It
is an interface that can be implemented by DL scientists
for specific functionalities. Examples include Convolution,
Pooling, and Data Layers. Caffe layers contain two impor-
tant data structures for communication between Solvers; the
parameter data used in the Forward pass and the parameter
gradients calculated during the Backward pass.

Major Computation and Communication Phases:
Caffe trains a Net in multiple iterations. Each iteration con-
sists of three main phases; the data propagation phase, the
Forward/Backward computational passes, and the gradient
aggregation phase. Data propagation provides the required
parameters. The packed comm buffer in Figure 1 shows the
combination of data for different layers that is packed onto
a buffer at the root solver (GPU 0). The root solver then
communicates this buffer to all of the other solvers on dif-
ferent GPUs. The Forward pass of layers 1 to n generates
a loss value that is propagated back in the Backward pass
to calculate gradients. The gradients place on the packed re-
duction buffer are reduced back to the root solver during the
gradient aggregation phase. The root solver then calls the
ApplyUpdate() function and updates the parameter data for
the next iteration.

195

2.3 CUDA-Aware MPI
Before the arrival of UVA and GPUDirect, MPI application
developers used explicit copies of data between GPU and
CPU memory. To use the Send primitive, an explicit de-
vice to host copy was required. Similarly, a CPU to GPU
copy was needed after receiving the data using a Receive
primitive. For supporting such kind of operations transpar-
ently, several MPI implementations including MVAPICH2
and OpenMPI provide CUDA-Aware MPI primitives for per-
forming point-to-point, one-sided, and collective operations.
This concept enables applications to perform direct and effi-
cient communication from GPU buffers transparently using
MPI primitives.
3. Challenges and Requirements for

Designing Scalable DL Frameworks
In this section, we elaborate specific challenges, require-
ments, and issues that need to be addressed in order to design
a scalable DL framework on modern GPU systems.
3.1 Parallelization Strategies and Implementation

Styles
DL community has explored at least two parallelization ap-
proaches [34]: data-parallel approach and model-parallel ap-
proach. In this paper, we focus on the data-parallel approach
where the same model is replicated for every processing ele-
ment (a CPU core or a GPU), but is fed with different parts of
the training data. To implement the data-parallel approach,
there are two different design choices; first is called the
parameter-server approach and second is called reduction-
tree approach. As shown in Table 1, one of the most recent
Caffe adaptation [31] by Inspur, Microsoft CNTK [12], and
Intel-Caffe [3] follow the parameter-server design. This is
analogous to a classical master-worker design pattern where
each of the workers operate on a piece of data and each
one of them sends it to a server. The server then aggre-
gates the gradients and sends updated gradients to each of
the workers. Parameter-server has also been implemented
by frameworks like DistBelief [24]. More recently, Project
Adam [19], GeePS [23], and Distributed TensorFlow [14]
have also used variants of the parameter-server paradigm.

However, we argue that this design paradigm provides
limited scalability. Using a single GPU as the master to
perform the aggregation of very large buffers (order of
megabytes) for every iteration renders the server to be the
bottleneck. Using multiple servers may take away the GPUs
from performing the actual training operation especially in
the case of GPU-based parameter servers like GeePS [23].
Multiple servers may also pose additional overheads due
to the second layer of synchronization between servers.
Further, limited GPU memory may pose additional restric-
tions on the scalability of this approach. Inspur-Caffe, for
instance, has only been able to work up to 16 processes.
On the other hand, researchers have shown clear benefits of
the reduction-tree approach [30]. The original Caffe main-
tained by BVLC as well as the Nvidia’s fork, despite being

multi-threaded (non-MPI) implementation, use a symmet-
ric parallelization approach where all GPUs (solvers) com-
municate using a tree-like pattern. Hence, for the proposed
S-Caffe, we investigate the data-parallel approach and its
implementation using symmetric SPMD-style solvers where
each GPU performs the same amount of work and the com-
munication is performed in a collective fashion before the
start and end of each iteration.
3.2 Distributed Address-Space Design and Parallel

Data Reading
While GPU systems with multiple GPUs per node are very
popular in HPC centers, the number of GPUs in a node is
limited and it is common to have 2 or 4 GPUs per node.
Hence, in order to satisfy the computing requirement of DL
models, distributed frameworks are needed. Indeed, Caffe
has been designed primarily for a single address space sys-
tem where a single process can use multiple threads to take
advantage of multiple GPUs in a node. This approach is lim-
ited by design to only work for an intra-node scale-up sys-
tem.

On the other hand, HPC systems usually use a parallel
file system (PFS) and storage nodes. In order to limit the I/O
overhead in reading large size datasets available in the DL
field, frameworks need to be redesigned with parallel read-
ing capabilities to take advantage of PFS like Lustre [39].
Indeed, one of the challenges in developing a distributed sys-
tem is feeding the training data efficiently to all the solvers.
For Caffe, the training data is image files maintained in an
LMDB [10] database. Caffe uses a Data Reader thread to
constantly bring data from disk to memory queues. A sin-
gle reader can share the data with the different solvers using
a shared queue in Caffe. However, for a distributed frame-
work, we need to design an efficient parallel data reading
mechanism.
3.3 Exploiting Overlap of Computation and

Communication
DL frameworks like Caffe are both computation and com-
munication intensive. Hence, in order to scale out such
frameworks, it is mandatory to overlap the computation with
the communication. Indeed, Caffe orchestrates the train-
ing process in clearly marked phases like data propaga-
tion, forward/backward passes, and gradient aggregation.
The issue with marked phases that block for the comple-
tion of the previous phase is the sequential nature of work-
flow. Such separation of computation and communication
phases severely limits the system efficiency and scalability.
In order to alleviate such limitations, a total redesign of the
workflow to bring overlap between the different phases is
required. Such a redesign requires: 1) an in-depth analy-
sis of the workflow and its different phases, 2) a fine-grain
restructuring of the coarse-grain phases to multiple fine-
grain phases thereby exposing potential for overlap, and 3)
exploitation of new communication semantics to perform
computation/communication overlap.

196

3.4 Designing DL-Aware Communication Runtimes
MPI, as the defacto programming model for distributed sys-
tem, has been optimized for HPC workloads. MPI com-
munication protocols and runtimes including the CUDA-
Aware ones, are optimized for small and large message sizes
up to 4 MB. However, DL frameworks, with their exten-
sively large message sizes (256 MB), bring forward new
requirements and entail designing new DL-Aware commu-
nication runtimes and protocols. Further, as hinted earlier,
DL frameworks are targeting GPU systems. Hence, the new
runtime should be GPU/CUDA-Aware in addition to being
DL-Aware. For instance, in most of HPC applications, a Re-
duce operation is performed on 16-64 byte buffer so MPI
runtimes can use the CPU to perform such small reductions.
However, for DL frameworks, where the aggregation phase
requires a reduction on a 256 MB buffer, new algorithms,
and runtime-level communication infrastructure are needed
that can take advantage of GPU computing capabilities and
features like GDR and IPC.

4. S-Caffe: Proposed Architecture and
Co-designs

We now describe how we tackled the above challenges
in designing S-Caffe. Figure 2 illustrates the architectural
overview of the proposed S-Caffe framework at an abstract
level. First, we illustrate our experiences in designing a ba-
sic CUDA-Aware MPI version. Then, we describe how to
push the performance frontiers of such a framework via
a co-design approach of the different computational lay-
ers (Caffe) and the communication runtime (MPI). Our ap-
proach includes: 1) re-designing S-Caffe workflow to max-
imize the overlap potential by taking advantage of MPI-3
semantics and features including non-blocking collective
(NBC) operations in a multi-staged fashion to overlap the
computation and communication; and 2) a new CUDA-
Aware MPI parallel reduction design that combines GPUDi-
rect RDMA and GPU kernels to efficiently support large-
size GPU based reduction operations.

S-Caffe

CUDA-Aware	NBC

Middleware	(MPI	Runtime)

Forward	Backward

HPC	Platforms
Lustre InfiniBand GPUs

Point-to-Point
Chunked	Reduce

Data	Propagation Gradient	Aggregation

Collectives

21 Co-design	(SC-OBR)Co
-d
es
ig
n	
(S
C-
OB

)

Figure 2. Architectural Overview of S-Caffe
4.1 Basic CUDA-Aware MPI Design (SC-B)
As mentioned earlier, Caffe has been designed using the
single-process multi-threaded programming paradigm. Mov-
ing from a single address space to a distributed address
space is a challenging process that requires a significant code
analysis and reorganization effort due to the complexity of
Caffe’s layered architecture. Further, re-designing an object

oriented code where threads share objects across heteroge-
neous CPU and GPU memory spaces increases the complex-
ity of the work. Below, we highlight how we tackled these
challenges. We note that this design is called S-Caffe Basic
(SC-B) in the results section.

Explicit Data Movement Operations: To move from the
shared data access pattern with Parent-Child relationship be-
tween the solvers to a distributed system, an explicit commu-
nication between different processes (solvers) is required. A
naive implementation can serialize the different C++ objects
and exchange them with MPI operations. This can introduce
a significant overhead. To avoid this, we identify minimal
data exchange that is required, utilize existing GPU-based
communication buffers, and communicate them across pro-
cesses in a CUDA-Aware fashion. This avoids unnecessary
copies between the CPU and GPUs.

Parallel Readers: The second design goal for S-Caffe is
to optimize file access operations. To make it possible, we
investigated two alternative design choices; first is to use a
single data reader thread and communicate the data to other
processes, and second is to use parallel data reader threads
for each of the processes and maintain separate distributed
queues. We chose the second option because it can be op-
timized for parallel file systems like Lustre where parallel
reads from disk can be faster than exchanging images using
MPI-level communication. The proposed design is presented
in Figure 3. In addition, the parallel reader design can readily
be used with both LMDB and ImageDataLayer of Caffe. It
is pertinent to mention that even-though LMDB allows par-
allel accesses, its scalability is very limited. Indeed as dis-
cussed later in Section 6, LMDB does not scale for more
than 64 parallel readers. On the other hand, ImageDataLayer
allows reading image files directly from Lustre storage and
can scale to any number of processes. The results section
(Figure 8) highlights how our proposed parallel data read-
ing combined with ImageDataLayer achieves scalability up
to 160 GPUs.

P0

P0

P1

.

P1 P2

P2

Solver Solver Solver

……

DB

…

Parallel
Readers

Figure 3. S-Caffe: Proposed Parallel Data Reader Design
with Distributed Queues

Collective Operation Patterns for Data Propagation and
Aggregation: After extracting the different memory access
patterns to shared buffers and changing them to explicit
MPI point-point communication as described earlier, with
extra analysis of the MPI communication pattern, we noticed
an opportunity for improvement. Thus, we enhanced the
on start() data propagation phase to use the MPI broadcast
primitive (MPI Bcast). It is worth mentioning that we use the
CUDA-Aware version of this operation. In a similar fashion,

197

for the gradient aggregation part, we use an MPI Reduce
operation. Even-though such designs can be efficient for
small scale and especially for small data sets like MNIST
and CIFAR, to push the scalability and efficiency for large
DL models, a co-design approach is required as discussed in
the next section.

4.2 Multi-stage Non-blocking Collectives for Maximal
Overlap (SC-OB)

The CUDA-Aware MPI design presented in the previous
section provides reasonable performance for small and
medium scale data sets like MNIST and CIFAR10. How-
ever, as the data set sizes and communication parame-
ters increase with scale, the basic design (SC-B) becomes
communication-bound where communication overhead gets
significant. To minimize the overhead of this communica-
tion, we re-designed S-Caffe workflow to provide opportu-
nities for overlap and co-designing with MPI runtimes.

Figure 1 shows how Caffe performs communication and
computation in clearly marked phases that proceed after the
completion of one another. This phase based computation
and communication is intuitive but limits the efficiency of
the system. On the other hand, MPI-3 has introduced Non-
Blocking Collective (NBC) operations that provide support
for overlapping computation and communication. Naively
using NBC may result in performance degradation if the
computation/communication overlap ratio is small. In or-
der to efficiently co-design the communication and compu-
tation using NBCs, we did a deeper investigation of the data
structures and re-designed the core workflow. First, we have
moved from a coarse-grain workflow with mainly three suc-
cessive phases to a fine-grain workflow with multiple phases.
We proposed a new workflow which maximizes the overlap
of computation and communication phases. The proposed S-
Caffe workflow communicates the model parameters and the
gradient data in an on-demand fashion instead of a coarse-
grained approach that performs communication of the entire
data in a single operation.

The new workflow overlaps the data propagation with the
Forward pass using MPI Ibcast() calls to send the required
data before starting the Forward pass. An Ibcast call is a non-
blocking call that returns immediately and MPI runtimes
typically progress the communication in the background us-
ing different strategies [28, 29]. An MPI Wait() call is made
to complete the operation. Wait call blocks until the progres-
sion and completion of the corresponding request. The chal-
lenge is to find the best place to use the MPI Wait() opera-
tion. Calling this operation too soon will lead to poor com-
putation/communication overlap as the communication will
be mainly progressed during this call. On the other hand,
calling it too late might lead to degradation as it limits the
potential of overlapping future computation phases. To over-
lap the propagation with the forward layers, we investigated
two designs. As shown in Figure 4, a naive design tries to
overlap the communication of layer i+ 1 with the computa-

tion phase of layer i. However, this limits the asynchronous
progress and hence the overlap potential. To maximize the
overlap potential, as shown in Figure 5, we propose a multi-
stage on-demand design. It starts all Ibcast operations at the
beginning and posts the appropriate Wait operation of ith

Ibcast just before the ith Forward pass of a layer that actu-
ally needs the corresponding data. This co-design approach
is called S-Caffe Optimized Broadcast (SC-OB) in the results
section.

L1

L2

Lk

L1

..

Lk

Communication Computation

iBcast
Wait

Layer(s) Data

iBcast
Wait

iBcast

Wait

iBcastLk+1 ..

..

D (L1) D (L2) D (L3) D (L4)

Forward
Pass

Figure 4. Naive NBC Design for Data Propagation

Loop {
iBcast(i)

}

Wait(Li, Ri)

Li

...

Wait(Li+1,Ri+1)

Wait(Ln,Rn)

Layer(s) Data

Li+1

Ln

...

Communication Computation

D (L1) D (L2) D (L3) D (L4)

Forward
Pass

Figure 5. Overlapped Data Propagation with Forward
Taking such overlapped design one step further, we inves-

tigated schemes to overlap the gradient aggregation opera-
tion with the Backward pass. However, this is not straightfor-
ward and cannot exploit an Ibcast-like design proposed ear-
lier that can use MPI Ireduce operations. Such an approach
is limited by the fact that MPI runtimes do not provide effi-
cient NBC reduction primitives as they require the CPU to
progress and perform the computation, which clearly nulli-
fies the overlap potential. Further, falling back to a blocking
reduce operation and trying to take advantage of a multi-
stage scheme to split the reduce operation to multiple re-
duce operations interleaved between the different backward
phases will not provide any overlap as: 1) the number of
steps in performing N medium sized reductions are equiv-
alent to a single big reduction, and 2) Even-though the CPU
is free, each reduce call is required to wait for the comple-

198

tion of the GPU based backward layer before performing the
reduce operation.

To overcome these bottlenecks, we propose a different
co-design approach to overlap the gradient aggregation with
the backward passes. Our approach includes two main parts:
1) a helper thread to separate the kernel completion and
wait for communication progress in order to achieve overlap,
and 2) A novel DL-Aware MPI Reduce design that exploits
multi-level communicators and kernel-based computation to
efficiently reduce large size buffers. Helper-thread co-design
is discussed in the next sub-section while the DL-Aware
Reduce Design is presented at length in Section 5.
4.3 Co-design Gradient Aggregation for Maximal

Overlap and Performance: Helper control thread
(SC-OBR)

To split the control flow between the communication and
computation phases, we have offloaded the invocation of a
layers’ backward pass to a helper thread. The helper thread
signals the main thread to invoke the reductions in a multi-
stage fashion. In this layered design, the n

0
th layer’s reduce

requires the completion of the n

0
th layer’s computation. We

have designed the two threads to synchronize using a C++
condition flag. This design ensures the overlap of n0

th re-
duce with the layer n�10s compute. While this scheme gives
an opportunity for an overlap, however, in order to maximize
its efficiency, the reduce operation needs to be optimized as
well. Figure 6 shows how the overlapped gradient aggrega-
tion hides the latency of reductions under the large compu-
tation of layers in the Backward pass.

Computation

Ln

Ln-1

…

Ln-1

Ln

L1L1

L2 L2

Overlap

Backward
Pass

Helper-thread

Communication

…
Main-thread

Reduce (Ln)

Reduce (Ln-1)

Reduce (L2)

Reduce (L1)

Figure 6. Overlapped Gradient Aggregation with Backward
5. Efficient DL-Aware Hierarchical Reduce

(HR):
In modern MPI runtimes like MVAPICH2 and OpenMPI,
we typically observe that large-scale collective communica-
tion and reduction primitives are implemented using a flat
single algorithm like Binomial Tree (and many others), or a
hierarchical algorithm with intra-node and inter-node com-
munication. However, this simple intra- and inter-node hi-
erarchical scheme is not sufficient in the context of GPU-
based communication and large-scale reductions, especially
on systems that contains only 2-4 GPUs per node. Thus, we
need to design a hierarchical mechanism for MPI commu-
nicators such that a lower level communicator can also span

multiple nodes. Detailed discussion about multi-level com-
municators and their implementation is beyond the scope of
this paper. Thus, we present the relevant details for Hierar-
chical Reduce (HR) and S-Caffe co-design only. Figure 7
presents a two-level design where the lower level communi-
cator spans two nodes and each node has four GPUs. Thus,
a total of eight GPUs are in the lower level communicator.
We call the number of GPUs in the communicator as the
chain-size. We note that chain-size is a runtime parameter
that can be dynamically tuned for different systems and con-
figurations. The upper level communicator, in this case, uses
a binomial tree algorithm. The selection of algorithms for
both upper and lower level communicators can be controlled
using runtime parameters.

4

3
2

Upper	Level	Communicator	(Binomial)

Lower	Level	Communicator	(Spans	Two	Nodes)

CPU

3 4

PLX

1 2

PLX

CPU

7 8

PLX

5 6

PLX

1

Node	1 Node	2

Figure 7. Hierarchical DL-Aware Reduction Design with a
Chain-Binomial Combination

To reinforce the need for multi-level communicator de-
sign, we now present a mathematical model that governs and
verifies the performance benefits of our proposed reduce de-
sign alternatives.

Let,
P = number of processes
n = number of chunks
t(b) = time to reduce buffer of size b

t(c) = time to reduce buffer of size c [c = b/n]
And,

T (CC) = Total Time for Chunked Chain Algorithm
T (Bin) = Total Time for Binomial Tree Algorithm

Then, the total time for reducing a buffer of size b for P

processes for both approaches can be understood by the
following equations:

T (Bin) = log(P) * t(b) (1)
T (CC) = (P � 1) * t(c) + (n� 1) * t(c)
T (CC) = (n+ P � 2) * t(c) (2)

Analyzing equations (1) and (2) for different number of
processes P and buffer size b, we observe:

for small P and large b, T (CC) <<T (Bin)
But,

for large P and small b, T (CC) >>T (Bin)

199

Thus, the ideal choice is a trade-off between the two algo-
rithms as we can clearly see that P becomes a significant fac-
tor in the time of reduction for a chunked chain (CC) while
t(b) becomes the dominant time factor for the binomial tree
reduction (Bin) as we move towards larger b. Hence, we need
a hybrid of the two approaches where the final design is both
skew-tolerant (process count) as well as size-tolerant (buffer
size).

To implement the above schemes in an efficient manner
that provides best performance for all cases, we experimen-
tally determine the ideal P and b for each of the cases and
then apply the aforementioned two-level communicator de-
sign to realize an efficient and skew-tolerant reduction de-
sign. The chunked-chain algorithm is essentially a single-
sided pipeline that transfers and overlaps the communica-
tion and reduction of successive chunks of a large buffer.
The last process in the chain divides the buffer into n chunks
and sends the chunk to the process on the left. The receiving
process reduces this chunk with its own chunk and forwards
it to its left neighbor. This process continues till the chunk
reaches the root process. Hence, the entire chain is a directed
chain of chunks starting from the last process and terminat-
ing at the root process.

For buffer sizes greater than eight megabytes (8M), we
observed that chunked chain (CC) performs much better than
the binomial tree (Bin) regardless of the number of chunks.
However, the performance of CC degrades as we increase
the number of processes (P) in the chain. Experimental eval-
uation for our platform also suggests that eight is the ideal
P for CC approach. The benefits start to decrease beyond
P >8. Thus, we resort to a two-level design that can scale
beyond 8 GPUs. The addition of two-level communicator
allows us to scale well beyond 8 GPUs even if we apply a
chain of chain approach, i.e., both the upper level commu-
nicator and lower level communicator use CC as the desired
algorithm. However, as expected, the two-level chains can
only scale to a process count of 64 (eight being the ideal size
of one chain). For larger process counts, we utilize a hybrid
of the two approaches where the upper level communicator
uses a binomial tree based reduction while the lower level
communicator uses the chunked-chain algorithm as shown
in Figure 7. We note that, we have tuned the selection of the
appropriate combination, chain-of-chain or chain-binomial
depending on the system size. Further, it is worth noting
that the proposed design is very extensible. Thus, in future,
we can exploit multi-level combinations like chain-of-chain
combined with a top level binomial for very large scale re-
ductions. The hierarchical reduction designs have been made
publicly available with the MVAPICH2-GDR 2.2 [41] re-
lease. Detailed performance evaluation is presented in Sec-
tion 6.5.

6. Performance Evaluation
6.1 Computational Testbed and Environment
We have used a Cray CS-Storm based GPU cluster called
KESCH [2] located at the Swiss National Supercomputing
Center. This a dense GPU cluster consisting of 12 hybrid
nodes each containing 8 NVIDIA K-80 GK210GL GPUs.
This makes a total of 192 GPUs for the 12 nodes and just
24 conventional CPUs. Please note that each K-80 is a dual-
GPU card which means that a total of 16 CUDA devices
are available in one node. The nodes are connected with
the InfiniBand Connect-IB dual-port network cards (HCAs).
We refer to this cluster as Cluster-A. To illustrate that the
proposed designs are generic and applicable for different
types of GPU clusters, we have also used a small 20 nodes
GPU cluster containing one K-80 GPU per node. The total
number of GPUs we can utilize are 40 for this cluster. The
nodes are connected to each other using InfiniBand EDR
HCAs. This cluster is henceforth referred as Cluster-B.

6.2 Evaluation Metrics and Data Sets
In DL community, scientists and DL model designers strive
for achieving the best accuracy and minimum loss. To
achieve this, various hyper-parameters like base learning rate
(lr), weight decay, momentum, and learning policy are tuned
for the best accuracy. However, training time is one of most
crucial metrics for comparing performance of DL frame-
works. Large-scale DL networks like AlexNet and CaffeNet
can take several days of training to reach the desired accu-
racy. Thus, training time becomes a decisive factor in using
a DL framework. In this paper, we present the parallel train-
ing time trend observed for a fixed number of iterations. This
can help DL scientists to tweak and tune hyper-parameters.
We note that challenges associated with Hyper-parameter
Search (HS) are at a different level of granularity compared
to S-Caffe. HS parallelization is performed at the SGD algo-
rithm’s level while the focus of S-Caffe is on synchronizing
parallel SGD solvers for distributed training.

In order to cover a wide variety of networks and data sets,
we have used GoogLeNet and AlexNet for comparing per-
formance of parallel training on the ImageNet dataset. We
use the term ImageNet in this paper to refer to the widely
used ILSVRC 2012 [5] data set. ImageNet contains over a
million images spread across 1,000 categories. For smaller
scale, we present results using the CIFAR10 network as well.
We present strong scaling results, where the batch-size is di-
vided by the number of GPUs (or solvers). E.g. if we specify
a batch-size of 1,024 for 32 GPUs, the effective batch-size
for a single GPU becomes 32 (as 1,024/32 = 32). For weak
scaling, the batch-size of 1,024 remains constant for each
of the GPUs. These results are not presented but can be ob-
tained using the public version of S-Caffe [46] by specify-
ing -scal weak command line option. We have used default
hyper-parameters (lr, momentum, etc.) provided by the refer-
ence Caffe and CNTK models for all the experiments. Caffe
reports accuracy during the Testing phase only. Therefore,

200

we obtained accuracy for CIFAR10 only as it is possible to
train and test fairly quickly. We observed no difference in ac-
curacy between Caffe and S-Caffe. Similarly, the decrease in
loss (reported every iteration) for AlexNet and GoogLeNet
was similar to the multi-GPU training of Caffe. This vali-
dates that S-Caffe’s distributed training indeed works as ex-
pected.

6.3 S-Caffe: Primary Highlights
GoogLeNet: We first present the primary benefits observed
for the proposed S-Caffe co-designs for the GoogLeNet
model. In Figure 8, we present strong scaling results for
GoogLeNet network up to 160 GPUs. The numbers pre-
sented in this figure compare the performance of Caffe with
different configurations of S-Caffe. S-Caffe-L means that
we have utilized LMDB database to access the ImageNet
data set. S-Caffe, on the other hand, exploits the paral-
lelism in Lustre file system and directly accesses image files
through the ImageDataLayer. Caffe, being a single process
code, has been run with LMDB as it does not require parallel
access. In fact, ImageDataLayer with Caffe suffers degrada-
tion, so we have omitted those results. We report speedups of
3.3x over 16 GPUs and 2.5x over 32 GPUs for GoogLeNet
training with 128 and 160 GPUs, respectively. We note that
this scaling, unlike conventional HPC applications, is con-
sidered very promising as large DL models are notoriously
hard to scale. This has been a major problem for the DL
community as highlighted in [1, 9].

The numbers presented are with different batch sizes
written in parentheses. We ran the training for 100 itera-
tions. Beyond 64 GPUs, we experienced severe degradation
or race conditions for LMDB. Thus, we present ImageData-
Layer based results for process counts larger than 64. Miss-
ing data points are for the cases where solvers ran out of
memory. It is important to note that a larger batch divided
over a smaller number of solvers renders the effective batch-
size to be too large to fit inside a GPU’s memory. Thus, an
added motivation to develop multi-process frameworks like
the proposed S-Caffe is to enable training using very large
batch-sizes for current as well as upcoming DL models that
are expected to deal with much larger data sets and networks.

CIFAR10 Quick Solver: Figure 9 highlights the perfor-
mance of CIFAR10 Quick Solver, provided as a reference
solver for CIFAR10 dataset in the Caffe repository. We note
that Caffe numbers are only available for 1 node (up to 16
GPUs). Since S-Caffe can scale beyond one node, the re-
sults presented here are for a total of 64 GPUs on 4 nodes.
We observed a decent scale-out performance considering the
size of CIFAR10 dataset. We run the solver for 1,000 itera-
tions and the batch-size is for 8,192. It is pertinent to men-
tion that this is a dense GPU system, so the results presented
are for 4 nodes only. On a conventional GPU cluster, 64
GPUs can mean anywhere between 32 and 64 nodes. We
observed similar speedup for CIFAR10 on Cluster-B as well
but we have omitted the graph to save space. The overall

Figure 8. GoogLeNet: Comparison of S-Caffe (up to 160
GPUs) and Caffe (up to 16 GPUs) on Cluster-A

speedup S-Caffe has achieved is 32x over single GPU train-
ing. We note that S-Caffe and Caffe perform very similar
up to 16 GPUs as CIFAR-10 is a compute-intensive model
with small-scale communication between solvers. Thus, it
is an encouraging highlight that S-Caffe does not suffer any
overhead. This trend was reversed and we saw benefits for
S-Caffe over Caffe when training GoogLeNet because it is a
communication-intensive model.

Figure 9. CIFAR10: Comparison of S-Caffe (up to 64
GPUs) and Caffe (up to 16 GPUs) on Cluster-A

Discussion: We note that the results presented above are
on the fastest Tesla GPUs available i.e. Kepler K-80, which
provides at least 3X faster performance than the K-20x [13]
cards. It is pertinent to mention that the largest state-of-
the-art scaling presented in [30] is for 128 K-20x GPUs.
Thus, the scaling we present here is different and not directly
comparable to K-20x level scaling because of the much
faster GPUs used for parallel training. As Fire-Caffe [30] is
not publicly available for download, we are currently unable
to compare our results with them. We plan to do so when the
software becomes available.
6.4 Performance Comparison of S-Caffe, CNTK, and

Inspur-Caffe
In order to provide a comparison of S-Caffe with different
DL frameworks that support distributed training, we have
identified three main frameworks: 1) Inspur-Caffe, which is
an MPI-based parameter-server implementation, 2) Tensor-
Flow, which is a gRPC based distributed training framework,

201

and 3) Microsoft CNTK, which is also an MPI-based frame-
work. Due to some technical difficulties [27], we were not
able to run TensorFlow on our cluster. Therefore, we only
compare S-Caffe with Inspur-Caffe and CNTK. We have
used the AlexNet network and Cluster-B for this compar-
ison. Results are presented in Figure 10. We note that we
present this result in Samples Per Second (SPS) instead of
the training time. A higher SPS denotes better performance.
For Inspur-Caffe and S-Caffe, we have used LMDB for file
reading while default file reading mechanism was used for
CNTK. Inspur-Caffe results are shown only for 2 and 4
GPUs as it didn’t run for less than 2 GPUs and more than
16 GPUs. For other cases, we were not able to report num-
bers because the execution hangs after completing a few it-
erations. We plan to report this to Inspur-Caffe developers.
For CNTK, we used their 32-bit SGD design that uses MPI-
based communication among workers. A detailed discussion
of differences between CNTK, TensorFlow, and S-Caffe can
be seen in Section 7.

Figure 10. AlexNet: Comparison of S-Caffe, CNTK, and
Inspur-Caffe (up to 16 GPUs) on Cluster-B

6.5 Performance of Hierarchical Reductions
We now present the performance evaluation of Hierarchi-
cal Reduce (HR) designs. These have been tuned for best
performance for all message sizes and process counts. The
results are labeled with appropriate design/implementation
category. Lower level chain communicator (C) combined
with upper level binomial (B) is labeled as CB. Upper level
chain combined with lower level chain is called CC. MV2 is
used for existing MVAPICH2 reduce implementation. HR
(Tuned) is the new tuned design that builds on top of the
tuning infrastructure in MVAPICH2 and efficiently uses the
fastest combination for the desired message size and process
count range. The numbers in the legend e.g. (-4) represent
the size of the chain used. For instance, CC-4 means that
Chain algorithm is applied for both upper and lower level
communicators. This micro-benchmark level evaluation has
been performed using the OMB [42] suite and is presented
in Figure 11.

In addition, we separately present the performance com-
parison for our proposed design (HR) versus MVAPICH2
and OpenMPI using a log scale for the sake of clarity. Fig-

Figure 11. Performance for 160 Processes (GPUs): MVA-
PICH2, Chain-Binomial, Chain-Chain, and Proposed HR
(Tuned) on Cluster-A

ure 12 shows this comparison. It worth noting that we use
OpenMPI v1.10.2 and MVAPICH2 2.2RC1 with their per-
formance features enabled including GDR and IPC (and
GDRCOPY for MVAPICH2). As can be seen from the fig-
ure, our proposed design is almost 3X faster than MVA-
PICH2 and up to 133X faster than OpenMPI.

Figure 12. Performance Comparison: MVAPICH2, Open-
MPI, and Proposed on Cluster-A

6.6 Impact of Various S-Caffe Co-designs
We now provide further insights on the performance and
scalability of the proposed S-Caffe framework and its dif-
ferent co-designs. We compare CUDA-Aware MPI design
(SC-B), the overlapped data propagation design (SC-OB),
and the overlapped gradient aggregation (SC-OBR) + hier-
archical reduce (HR) co-design. We note that numbers pre-
sented in this section are not comparable to the overall num-
bers presented in Section 6.3 as the configuration, batch-size,
and number of iterations are different for these runs.
Overlapped Data Propagation (SC-OB): Benefits of SC-
OB are shown in Figure 13 by comparing the time required
for data propagation and F/B compute passes. We can see
that SC-OB co-design provides an excellent overlap of the
communication and hides the large latency behind compute
intensive Forward pass of layers. Time taken by the reduce
phase is not shown as it does not have any effect on the SC-
OB design. We report up to 15% improvement for SC-OB
design.

202

0
5
10
15
20
25
30
35

SC-B	(5120) SC-OB	(5120) SC-B	(2560) SC-OB	(2560)

Ti
m
e	
(s
ec
on
ds
)

Computation Propagation

Figure 13. Comparison of SC-B with SC-OB

Overlapped Gradient Aggregation (SC-OBR) and HR:
To further illustrate the benefits we achieved by using

HR co-designs, we present a comparison of SC-B vs. SC-
B (+HR) in Table 2. SC-B (+HR) means that the hierar-
chical reduction co-design has been applied to improve per-
formance. Furthermore, the configuration of communicator
and chain-size has been varied to illustrate the details. We
achieve a 2.3x speedup for SC-B (+HR) with optimal chain-
size and communicator selection (CB-8). For SC-OBR, we
saw a 20% improvement over SC-B for CaffeNet on 8 GPUs
and 12% improvement for 16 GPUs.

Algorithm /
Communicator

SC-B
SC-B (+HR)

Aggregation
Time

Total
Time

Speedup for
Aggregation

Overall
Speedup

N/A SC-B 40.6 113.6 1 1
CC-8 SC-B (+HR) 28.6 101.6 1.47 1.11
CB-4 SC-B (+HR) 19.8 92.8 2.04 1.22
CB-8 SC-B (+HR) 17.6 90.6 2.3 1.25

Table 2. Comparison of SC-B vs. SC-B with HR

7. Related Work
We now compare S-Caffe with prevalent research and devel-
opment efforts. FireCaffe [30] is one of the most recent ef-
forts in scaling out Caffe using MPI. It discusses scaling of
DL models to multi-GPU clusters with prime focus being on
observing the behavior of model parameters e.g., batch-size
in conjunction with training accuracy for large-scale runs.
However, S-Caffe provides a systems’ perspective of new
co-designs and highlights strategies to accelerate and better
scale communication phases in Caffe. Inspur-Caffe [31] is
an MPI-based Caffe fork that exploits parameter-server ap-
proach with stale asynchronous gradient updates. S-Caffe,
on the other hand, uses synchronous gradient aggregation
using a reduction-tree. Microsoft CNTK [12] uses MPI to
provide distributed training support as well. CNTK, how-
ever, does not take advantage of CUDA-Aware MPI and/or
co-designed DL-Aware collectives like the proposed reduce
(HR). As reported in Section 6, CNTK and S-Caffe achieve
comparable performance.

Distributed frameworks can also exploit task-based pro-
gramming models and scheduling frameworks. StarPU [4] is
one such framework to schedule tasks on heterogeneous sys-
tems where some tasks are scheduled on GPUs and some on
the CPU. However, in S-Caffe, all the computation (solver)
is performed on the GPUs in a deterministic fashion. Hence,
StarPU will always provide the same configuration with lit-
tle benefits. In addition, StarPU may still require the MPI

communication to be defined. Google TensorFlow is another
widely used DL framework that uses a task-based model
where computation can be performed on either a CPU or a
GPU using the tf.device abstraction. The initial release of TF
only supported single node training but recent versions (0.8
and onwards) provide distributed training support using the
Google RPC [26] library. An MPI version of TensorFlow has
recently been proposed in [48] but the current version only
supports CPU-based training. Thus, the design challenges
for S-Caffe and [48] are different because the primary con-
tribution and focus of S-Caffe is on GPU-based training and
that too for large DL models like AlexNet.

Designs presented in GeePS [23] focus on DL models
that don’t fit well in a GPU’s memory as they used K20
GPUs with limited memory (5 GB). However, recent GPUs
by Nvidia, like the K-80 and P100 have 12 and 16 GB mem-
ory, respectively. Thus, the memory problem is being solved
at a hardware level as well. In contrast, we are focusing
on scaling distributed training for models that ‘do fit’ on a
GPU’s memory.
8. Conclusion
With an increasing interest in accelerating Deep Learning
frameworks through GPU-based systems, in this paper, we
tackled the challenge of designing a scalable and distributed
DL framework called S-Caffe. Using a co-design approach,
we fully exploit the resources available in modern GPU clus-
ters to accelerate training of both medium and large scale
DL networks. S-Caffe is a culmination of an extensive co-
design process that addresses bottlenecks in the sequen-
tial phase-based workflow of Caffe. Through data propaga-
tion co-design (SC-OB) that provides maximal overlap us-
ing MPI-3 Non-blocking Collectives, we reported 15% im-
provement over the basic CUDA-Aware MPI design (SC-
B). We pushed the envelope of performance further with ag-
gressive co-design of gradient aggregation through a helper-
thread based overlap of communication and computation
(SC-OBR) and an MPI runtime level hierarchical reduction
design (HR). Exploiting SC-OBR and HR, we achieve 20%
improvement for GoogLeNet-based training on 160 GPUs.
We report encouraging speedups for two different solvers;
33X speedup over 1 GPU training for CIFAR10 quick solver
utilizing 64 GPUs and 3.3X speedup over 32 GPU training
for CaffeNet solver using 128 GPUs. S-Caffe provides com-
parable performance to Microsoft CNTK for the AlexNet
model. S-Caffe has been made publicly available under the
OSU HiDL project [46].
Acknowledgments
We would like to thank the anonymous reviewers for the
invaluable feedback that helped us in improving this paper.
We also extend thanks to our colleague Hari Subramoni for
his significant efforts in making the public release of S-
Caffe possible. This research is supported in part by National
Science Foundation grants #ACI-1450440, #CNS-1513120,
and #CCF-1565414.

203

References
[1] Caffe: Multi-GPU Usage and Performance. https://github.

com/yahoo/caffe/blob/master/docs/multigpu.md.

[2] KESCH: Cray CS-Storm System. http://www.cscs.ch/
computers/kesch escha/index.html.

[3] Intel Caffe. https://github.com/intelcaffe.

[4] A Unified Runtime System for Heterogeneous Multicore
Architectures. http://starpu.gforge.inria.fr.

[5] ILSVRC2012 Dataset. http://image-net.org/challenges/
LSVRC/2012/index, 2012. [Online; accessed Dec-2016].

[6] Caffe Website. http://caffe.berkeleyvision.org/, 2015. [On-
line; accessed Dec-2016].

[7] CaffeNet. http://papers.nips.cc/book/advances-in-neural-
information-processing-systems-25-2012, 2015. [Online;
accessed Dec-2016].

[8] GPU Direct RDMA. http://docs.nvidia.com/cuda/gpudirect-
rdma/, 2015. [Online; accessed Dec-2016].

[9] HPC: Powering Deep Learning. http://computing.ornl.
gov/workshops/SMC15/docs/bcatanzaro smcc.pdf, 2015.
[Online; accessed Dec-2016].

[10] LMDB. http://symas.com/mdb/, 2015. [Online; accessed
Dec-2016].

[11] Nvidia Development Platform for Autonomous Cars. http:
//www.nvidia.com/object/drive-px.html, 2016. [Online;
accessed Dec-2016].

[12] CNTK. http://www.cntk.ai/, 2016. [Online; accessed Dec-
2016].

[13] Nvidia GPUs Comparison. http://www.extremetech.com/
computing/194391-nvidias-new-tesla-k80-doubles-up-on-
gpu-horsepower, 2016. [Online; accessed Dec-2016].

[14] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, 2015. Software available from
tensorflow. org.

[15] J. A. Anderson, C. D. Lorenz, and A. Travesset. General
Purpose Molecular Dynamics Simulations Fully Implemented
on Graphics Processing Units. Journal of Computational
Physics, 227(10):5342–5359, 2008.

[16] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah.
Comparative Study of Caffe, Neon, Theano, and Torch for
Deep Learning. CoRR, abs/1511.06435, 2016.

[17] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow,
A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio.
Theano: New Features and Speed Improvements. arXiv
preprint arXiv:1211.5590, 2012.

[18] D. Case, J. Berryman, R. Betz, D. Cerutti, T. Cheatham III,
T. Darden, R. Duke, T. Giese, H. Gohlke, A. Goetz, et al.
AMBER 2015. University of California, San Francisco,
2015.

[19] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep
learning training system. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 571–582, Berkeley, CA,
USA, 2014. USENIX Association. ISBN 978-1-931971-16-
4. URL http://dl.acm.org/citation.cfm?id=2685048.2685094.

[20] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep Learning with COTS HPC Systems. In
Proceedings of the 30th international conference on machine
learning, pages 1337–1345, 2013.

[21] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: A Modular
Machine Learning Software Library. Technical report, IDIAP,
2002.

[22] Cray. http://docs.cray.com/books/004-3689-001/html-004-
3689-001/004-3689-001-toc.html, 2016. [Online; accessed
Dec-2016].

[23] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16,
pages 4:1–4:16, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4240-7. doi: 10.1145/2901318.2901323. URL
http://doi.acm.org/10.1145/2901318.2901323.

[24] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large
Scale Distributed Deep Networks. In Advances in Neural
Information Processing Systems, pages 1223–1231, 2012.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A Large-Scale Hierarchical Image Database. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[26] Google. Google’s Remote Procedure Call Library (gRPC).
http://www.grpc.io, .

[27] Google. Distributed TensorFlow: Github Issues. https:
//github.com/tensorflow/models/issues/698, .

[28] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch,
H. Chapman, M. Kagan, A. Shahar, I. Rabinovitz, and
G. Shainer. Overlapping Computation and Communication:
Barrier Algorithms and ConnectX-2 CORE-Direct Capabil-
ities. In Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium
on, pages 1–8. IEEE, 2010.

[29] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and
Performance Analysis of Non-Blocking Collective Operations
for MPI. In Supercomputing, 2007. SC’07. Proceedings of the
2007 ACM/IEEE Conference on, pages 1–10. IEEE, 2007.

[30] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer.
FireCaffe: Near-Linear Acceleration of Deep Neural Net-
work Training on Compute Clusters. arXiv preprint
arXiv:1511.00175, 2015.

[31] Inspur. https://github.com/Caffe-MPI/Caffe-MPI.github.io,
2016.

[32] J. Dean. Keynote: Large Scale Deep Learning.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014.

204

https://github.com/yahoo/caffe/blob/master/docs/multigpu.md
https://github.com/yahoo/caffe/blob/master/docs/multigpu.md
http://www.cscs.ch/computers/kesch_escha/index.html
http://www.cscs.ch/computers/kesch_escha/index.html
https://github.com/intelcaffe
http://starpu.gforge.inria.fr
http://image-net.org/challenges/LSVRC/2012/index
http://image-net.org/challenges/LSVRC/2012/index
http://caffe.berkeleyvision.org/
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
http://docs.nvidia.com/cuda/gpudirect-rdma/
http://docs.nvidia.com/cuda/gpudirect-rdma/
http://computing.ornl.gov/workshops/SMC15/docs/bcatanzaro_smcc.pdf
http://computing.ornl.gov/workshops/SMC15/docs/bcatanzaro_smcc.pdf
http://symas.com/mdb/
http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html
http://www.cntk.ai/
http://www.extremetech.com/computing/194391-nvidias-new-tesla-k80-doubles-up-on-gpu-horsepower
http://www.extremetech.com/computing/194391-nvidias-new-tesla-k80-doubles-up-on-gpu-horsepower
http://www.extremetech.com/computing/194391-nvidias-new-tesla-k80-doubles-up-on-gpu-horsepower
http://dl.acm.org/citation.cfm?id=2685048.2685094
http://docs.cray.com/books/004-3689-001/html-004-3689-001/004-3689-001-toc.html
http://docs.cray.com/books/004-3689-001/html-004-3689-001/004-3689-001-toc.html
http://doi.acm.org/10.1145/2901318.2901323
http://www.grpc.io
https://github.com/tensorflow/models/issues/698
https://github.com/tensorflow/models/issues/698
https://github.com/Caffe-MPI/Caffe-MPI.github.io

[34] A. Krizhevsky. One weird trick for parallelizing convolutional
neural networks. CoRR, abs/1404.5997, 2014.

[35] A. Krizhevsky and G. Hinton. Learning Multiple Layers of
Features from Tiny Images, 2009.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

[37] S. Lee, S. Purushwalkam, M. Cogswell, D. J. Crandall, and
D. Batra. Why M Heads are Better than One: Training a
Diverse Ensemble of Deep Networks. arXiv, 2015. URL
http://arxiv.org/abs/1511.06314.

[38] M. Lin, Q. Chen, and S. Yan. Network in Network. arXiv
preprint arXiv:1312.4400, 2013.

[39] Lustre. Parallel File System. http://lustre.org.
[40] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. TOP

500 Supercomputer Sites. http://www.top500.org.
[41] MVAPICH2: MPI over InfiniBand, 10GigE/iWARP and

RoCE. https://mvapich.cse.ohio-state.edu/.

[42] Network Based Computing Laboratory. OSU Micro-
Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/,
2016.

[43] C. Nvidia. Programming Guide, 2008.
[44] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556, 2014.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper
with Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2015.

[46] The HiDL Team. High Performance Deep Learning (HiDL)
Project. http://hidl.cse.ohio-state.edu.

[47] The Open MPI Development Team. Open MPI : Open Source
High Performance Computing. http://www.open-mpi.org.

[48] A. Vishnu, C. Siegel, and J. Daily. Distributed TensorFlow
with MPI. arXiv preprint arXiv:1603.02339, 2016.

[49] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck.
Deep Learning for Identifying Metastatic Breast Cancer.
ArXiv e-prints, June 2016.

205

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1511.06314
http://lustre.org
http://hidl.cse.ohio-state.edu

	Introduction
	Preliminaries: DL Frameworks, Caffe, and CUDA-Aware MPI
	Architecture of Deep Learning Frameworks
	Caffe: Design and Implementation
	CUDA-Aware MPI

	Challenges and Requirements for Designing Scalable DL Frameworks
	Parallelization Strategies and Implementation Styles
	Distributed Address-Space Design and Parallel Data Reading
	Exploiting Overlap of Computation and Communication
	Designing DL-Aware Communication Runtimes

	S-Caffe: Proposed Architecture and Co-designs
	Basic CUDA-Aware MPI Design (SC-B)
	Multi-stage Non-blocking Collectives for Maximal Overlap (SC-OB)
	Co-design Gradient Aggregation for Maximal Overlap and Performance: Helper control thread (SC-OBR)

	Efficient DL-Aware Hierarchical Reduce (HR):
	Performance Evaluation
	Computational Testbed and Environment
	Evaluation Metrics and Data Sets
	S-Caffe: Primary Highlights
	Performance Comparison of S-Caffe, CNTK, and Inspur-Caffe
	Performance of Hierarchical Reductions
	Impact of Various S-Caffe Co-designs

	Related Work
	Conclusion

