
Optimizing Memory Efficiency
for Deep Convolutional Neural

Networks on GPUs
Presenter: Lingqi ZHANG

2018-12-19

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

Convolutional Neural Networks (CNN)

• Visual System[1]
• Simple Receptive Field

• Activation related to location

• Complex Receptive Field

• Activation related to patterns

Architecture of a CNN. — Source: https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-

convolutional-neural-networks--1489512765771.html

The Visual Pathway. — Source: https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg

[1] Hubel DH and Wiesel TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 1962, 160: 106-154 http://jp.physoc.org/content/160/1/106.full.pdf+html
[2] wiki, Convolutional Neural Network, https://en.wikipedia.org/wiki/Convolutional_neural_network

• CNN[2]
• Convolution Layer

• Pooling Layer

• Fully Connected Layer

• Loss Layer

• Softmax

• Sigmoid Cross-Entropy

• Euclidean Loss

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg
http://jp.physoc.org/content/160/1/106.full.pdf+html
https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Layer

Function:
 Extracts features

Features in a trained network
https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neural-networks-on-the-

internet-fbb8b1ad5df8

Different Filters work on Picture
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Outco[Ni][Co][Hi][Wi] =
C

∑
Ci=0

FH

∑
fh=0

FW

∑
fw=0

Inco[Ni][Co][Hi + fh][Wi + fw] * filter[Co][Ci][fh][fw]

Pooling Layer
(subsamplint/ downsampling)

Function:
 Summarize information of features

Examples:
 Max, Ave/Sum

Max Pooling
http://cs231n.github.io/convolutional-networks/

Outpo[Ni][Co][Hi][Wi] =
X

∑
x=0

Y

∑
y=0

Inpo[Ni][Ci][Hi * stride + y][Wi * stride + x]/X /Y

Example of Pooling
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Softmax Layer
Function:
 User the high level features

 provided by “previous layer” to do classification.

This paper Specified ‘Loss Layer’ into ‘Softmax
Layer’

Maxv[Nx] =
X

∑
x=0

Y

∑
y=0

max(In[Nx][Cy])

This paper said that “Before the softmax layer,
there usually exist fully-connected layers”
But neglect the discussion of “fully-connected
layers” in other parts.

Midv1[Nx][Cy] =
X

∑
x=0

Y

∑
y=0

(In[Nx][Cy] − Maxv[Nx])

Sumv[Nx] =
X

∑
x=0

Y

∑
y=0

sum(Midv2[Nx][Cy])

Out[Nx][Cy] =
X

∑
x=0

Y

∑
y=0

(Midv2[Nx][Cy]/Sumv[Nx])

DATA Layout
Definition:
 A data layout is a structure applied to a system that defines how the data
fields are organized.[1] (First search result by Google)

[1]https://help.dsync.com/hc/en-us/articles/115006785467-What-is-a-data-layout-

I think the author means the arrangement of
multidimensional array.

CNN Libraries
Caffe/ cuDNN Cuda-convnet

Layout

Implementation
 for

convolutions

CHWNNCHW HWCN
(tested)

=NHWC
(tested)

<

Matrix Multiplication
(MM) FFT Direct Convolution

N: Batch of image
C: Feature Map
H: Height of image
W: Width of image

C: Feature Map
H: Height of image
W: Width of image
N: Batch of image

Nearby index also physically adjacent

Caffe binds cuDNN in
its implementation as
an improved version

Neural Networks
Name

Dataset used
when first
proposed

Description

LeNet MINIST Handwritten character
recognition (Number)

Cifar CIFAR10 10 categories of
objects

AlexNet

ImageNet 1 million real-word
imagesZFNet

VGG

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

Introduction

• Curent situation

• Success in CNN (e.g. Alex)

• GPU optimizations

• (e.g. Caffe)

• Reducing arithmetic complexity

• Problems

• No one focus on memory efficiency

• 2 issues

• Data Layouts

• Redundant off-chip memory access.

Data Layout

• POINT 1:
• GPU thread organization highly depends on data layout

• Data layout determines the memory access pattern

• EVIDENCE 1 (Fig1):
• Suitable layout lead up to 6.9x layer-level speedup

• Suitable layout even speedup convolutional layer to up 2.3x

• POINT 2: size of each dimension affect performance

• Because, each dimension has distinct memory access patterns

• DEDUCTION 1 (from POINT 2):
• Performance impact from data layout is complex and difficult to reason

about.

• DEDUCTION 2 (from EVIDENCE 1):
• Single data layout cannot deliver the best performance for all the layers.

• CURRENT SITUATION (PROBLEM):
• Current libraries only employ one data layout for all the CNN layers.

Redundant off-chip memory access

• EVIDENCE (from authors’ analysis):
• memory-bounded pooling layers and classifier (softmax) layers is far

from optimal

• DUE TO: overlook on their off-chip memory data access

• PROBLEM 1:
• CNN requires multiple steps to complete (data dependency exists)

• CURRENT SITUATION: use kernel for each step

• PROBLEM: data pass through the bandwidth-limited off-chip memory

• PROBLEM 2:
• Leveraging data locality for high memory performance is an important

optimization

• CURRENT SITUATION (PROBLEM): to optimize locality for different

data layouts has not been addressed in existing CNN libraries.

Contributions
1. Benchmarked performance impact of different layouts in various

CNN layers. Derived a heuristic guide for layout selection.

2. Proposed a layout transformation on GPUs. Integrated automatic
layout selection and transformation into Caffe

3. Benchmarked memory memory behavior of pooling and softmax
layers. Further optimize their memory access efficiency on GPUs.

4. The authors “perform rigorous evaluation and result analysis on
different types of layers and representative networks, and
demonstrate high performance improvements for both single
layers, and complete networks”

I think the authors want to express that they applied their optimizations in
different types of layers and representative networks.

Benchmark 1 and optimization 1

Optimization 2

Benchmark 2

Experiments

Benchmarks
• LAYERS:
• TABLE 1 shows the layers

chosen from famous neural
networks.

• Convolutional layer comes from
this table.

• Pooling layer comes from this
table.

• Softmax layer is benchmarked
by several settings (described in
section VI).

• N: Batch

• C: Feature Map

• H/W: Image size

• Fh/Fw: Filter size

• S: slide

It’s interesting that this paper did
not benchmark convolutional layer
in Alex Nex and pooling layer in
VGG

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

A
Data Layout in Convolutional Layers
• Benchmark:
• Comparison of CHWN and NCHW with their best performance

implementation (cuda-convnet and cuDNN respectively)

• Observations:
• cuda_convnet outperform cuDNN for CV1-5 and CV9

• Because C no larger than 64

128
1
16

128
16
16

128
3
64

128
64
64

64
3
96

64
96
256

64
256
384

64
384
384

32
3

64

32
128
256

32
256
512

32
512
512

N
Ci

Co

LeNet:

Cifar:

ZFNet:

VGG:

I think these authors mean Ci here

I think these authors mean “Direct
Convolution" and “Matrix Multiplication” here

A
Data Layout in Convolutional Layers
• Benchmark:
• To further identify the sensitivities of data layouts on each dimension,

the researchers collect the results with one varying dimension size (N or
C) and the other three being fixed

Again, Ci here

• Analysis:
• if N<128 :

• Cuda-convnet could not achieve
top performance
(implementation related)

• If C < 32:

• Overhead of unrolling matrix (in

cuDNN) is more evidence

• Heuristic Layout Selection:

• if C<Ct or N>Nt :

• Better to choose CHWN

• Else

• Better to choose NCHW

Significant?

Varies depends
one system.
Titan Black:
(Ct=32, Nt=128)
Titan X:
(Ct=128, Nt=64)

If batch size N is 128, cuda-convnet enables
each thread to handle 4 images.
If batch size is less, the reuse for images
per thread would be reduces

A
Data Layout in Convolutional Layers
• Benchmark:
• Performance of various convolutional layers using FFT, FFT-Tiling and

Matrix Multiplication with the NCHW layout compared to cuda-
convenet with the CHWN data layout.

• Observation:
• If {N is large}||{filter kernel is large}||{C is large}

• FFT is better than MM

• REASON:
• overhead in forward and backword FFT.

•
FFT & FFT-T failed
because of OOM• Heuristic Layout

selection still works

B
Data Layout in Pooling Layers

• Benchmark:
• Performance of pooling layers with different data layouts

• Cuda-convnet (CHWN) vs Caffe & cuDNN (NCHW)

• Conclusion:
• CHWN always better than NCHW

• REASON:
• NCHW layout cannot ensure coalesced memory access.

Theoretical Peak: 235GB/s

C
A Fast Data Layout
Transformation for

CNNs
Optimizations:
1. Change 4D

transform to 2D
transform

2. Shared memory tiling

3. Vectorization to use

8 byte access
I think vectorization increase the performance by increase bandwidth of global memory here

In fact CHWN->NCHW

Solve Band Conflict

<16/32,32>,<H,W>
According to the
result of C%32

Iterate to all Batches

D
Wrap Up: Automatic CNN Data Layout Support

• Code Modification:

• add a new field in each convolutional and pooling layer to indicate the

data layout choice.

• Use the heuristic method proposed to set layout.

• At the completion time of layer, an additional check is needed, to
determine the overhead of data layout transformation over the
performance improvement obtained from the suitable data layout.

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

A
Memory Analysis and Optimization on Pooling Layers

• ANOTHER PROBLEM:
• Redundant data access

•
Theoretical Peak: 235GB/s

• SOLUTION:
• THREAD FUSING

• Cache the input data in Register

File for reuse

B
Memory Analysis and

Optimization on Softmax
Layers

• PROBLEM:
• The highest bandwidth achieved

for the softmax layers (BL_Best)
is far from optimization

• ANALYSIS:
• There are 5 kernels to compute

softmax layers step by step,
which involves redundancy in
using global memory.

• Not enough parallelism in inner
loop

• SOLUTION:
• Kernel fusing

• Inter-step communication with

share memory

• Parallel inner loop

Theoretical Peak: 235GB/s

Ma x v[Nx] =
X

∑
x=0

Y

∑
y=0

ma x(In[Nx][Cy])

Midv1[Nx][Cy] =
X

∑
x=0

Y

∑
y=0

(In[Nx][Cy] − Ma x v[Nx])

Sumv[Nx] =
X

∑
x=0

Y

∑
y=0

sum(Midv2[Nx][Cy])

Out[Nx][Cy] =
X

∑
x=0

Y

∑
y=0

(Midv2[Nx][Cy]/Sumv[Nx])

I guess here means the computation of
a window with size X x Y

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

A
Results on Data Layout

Optimization
• Experiment:

• Performance of transformation

• overhead of transformation when

ensemble it into Convolutional Layer

• CONCLUSION:

• Data layout has significant
performance impact

• Optimizations in transformation
works

• By considering the data layout
transformation overhead, Most of
layers still gain performance by doing
transformation in layout. REF

Speedup of a layout over an alternative one

SM+vectorSM

with an average of 7.5x speedup

Theoretical Peak: 235GB/s

Memory overhead: 73.5MB

B
Results on Off-chip Memory Access Optimization

• Experiments:
• Performance comparison of

different pooling layers

• Memory bandwidth comparison

between optimized and original
best alternative implementation.

reduced 9.1% global memory transactions
36% DRAM accesses

Achieve higher performance with an average of 14.3%

?

Communication: 2.81x speedup average
Parallel inner loop: 5.13x speedup average

Theoretical Peak: 235GB/s

B
Results on Whole Networks

• Experiments:

• Integrate optimizations into cuDNN

and compare.

• detailed performance comparison of

different layers in AlexNet.

• Conclusion:

• Flexible data layout: 72% improvement

• Off-chip memory access optimization

contributes 28%

5.61x speed up

ImageNet group

16% speed up

• Pooling layers:

• speedup by 27.8%

• Softmax layers:

• 20.1x over cuDNN

• 8.2x over cuda-convnet

• Overall

• 16% over cuda-convnet

• 46% over cuDNN-Best

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

CONCLUSION(cite)
• “Our detailed study unveils the impact of data layouts on different types of

CNN layers and their performance implications.”

• “We propose efficient data layout support as our solution.”

• “We further look into the memory access patterns of the memory-bounded

layers, and propose effective optimizations to substantially reduce their
off-chip memory requests and inter-kernel communication.”

Outline
• Background: Convolutional Neural Networks

• Introduction

• Memory Issue A: Data layout

• Memory issue B: off-chip memory accesses

• Results

• Conclusion

• Discussion

Discussion
• Things I considered as big issues.

• Experiment setting without carefully control variable

• Changing Concepts several times

• Neglect the fact that Pooling layers (better to use NCHW) are nearly always inserted into two Convolutional Layers
(CHWN). (Lack experiments)

• Over-exaggerate

• Things I considered as misses.

• Inconsistance

• Neglect ReLU Layer and Fully Connected Layer.

• CODEs not present well

• Never mention time consumption

• Things could be done better.

• Further experiment to compare the performance difference between different convolutional implementations (with same
layout)

• Provide analysis of Cache Miss in Pooling Layers.

• Explain why specific Layer is chosen while others not

Change Concepts
• NCHW = best implementation in NCHW layout =

cuDNN MM

• CHWN = CHWN with cuda-convnet

• BL_Best (highest bandwidth achieved in existing
libraries) = cuDNN

• While in fact according to (the experiment result of)
the paper, it should be cuda-convnet

• Choose Layout = Choose implementations

Inconsistance

Inconsistance
(Not sure) talk about
something that is not
directly relate to their
work.

