
科学研究費助成事業	 基盤研究 (S)	

「１０億並列・エクサスケール 	

スーパーコンピュータの耐故障性基盤 	 」 	

(2011年度採択)	

	

1)	 研究概要	
	 	 スーパーコンピュータはその規模とスピードが指数的に上昇しており、2018	 -‐2020 年ごろには、エ
クサ(1018)フロップス・10 億並列のマシンが登場すると目されているが、多種多様なコンポーネント
も指数的に増加し、故障発生率の増大が危惧されている。そのため、我々はエクサスケール・スーパ

ーコンピュータ実現のための耐故障性基盤を確立する。	

2)	 研究背景	
科学技術分野において、気象予報、地震及び津波伝播予測などのシミュレーションは、理論・実験

に続く「第 3 の手法」として盛んに行われており、大規模なシミュレーションではスーパーコンピュ
ータ (スパコン) が不可欠となっている。近年、計算需要の指数的な増加と共に、年々、スパコンはそ
の規模とスピードが指数的に上昇しており、2018 -2020年ごろには、エクサ(1018)フロップス・10 億
並列のマシンが登場すると目されている。

3)	 研究目的	 	
	 エクサスケールスーパーコンピュータでは、搭載される CPUやメモリなど、多種多様なコンポー
ネントも指数的増加し、仮に各コンポーネントの信頼性が現在の数倍になったとしても、全体の障害
発生率は数十倍近くとなる。これは、全てのコンポーネントが正常に稼動する時間間隔が平均で数十
分以下足らずであることに相当し、エクサスケールシステムでは、マシンが実質的に動作しなくなる
。これを解決するために、様々な耐障害技術が提案されているが、エクサスケールシステムへの適用
は難しい。我々は、TSUBAME2.0/2.5及びその後継として予定されている TSUBAME3.0を利用し、10
億並列・エクサスケールコンピュータの耐障害性基盤の実現を目指す。	

4)	 研究方法	
10 億並列・エクサスケールスパコンの耐故障性基盤を確立する。この目的を実現するために、(1)

エクサスケールシステムに適した耐故障の複合的数理モデルおよびその検証、(2) 超細粒度並列・ヘ
テロジニアス計算環境に適した新しい耐故障手法の確立、(3) 耐故障システムのオーバーヘッドの削
減、(4) エクサスケールシステムに対応しうる障害復旧機構の考案、(5) システム統合と性能評価を行
う。

5)	 これまでの成果	 	
我々は 10億並列・エクサスケールスーパーコンピュータの耐故障生基盤の確立のため、主に研究の
方法(1)〜(3)を行ってきた。

	 本研究の成果として、まずチェックポイントデータのリード・ソロモン符号化と TSUBAME2.0など
に搭載されたローカル・ストレージを活用することにより、スケーラブルなチェックポイントを実現
する FTI	 (Fault	 Tolerance	 Interface)を開発した。実際に、地震伝播アプリケーション SPECFEM3Dを用
いて、東日本大震災を想定したシミュレーションを実際に TSUBAME2.0で実行し、実アプリケーショ
ンに於いてチェックポイントの有効性を検証した[1]。特に、ここでの研究成果は、SC11において、
ベストペーバー賞に相当する Special	 Recognition	 Award	 for	 Perfect	 Scoreを受賞した[7]。また、FTIを

拡張し、メッセージロギング技術と統合した。メッセージロギング時のグループと、チェックポイン
トの冗長符号化時のグループを、ネットワークのトポロジーを考慮して、階層的にグルーピングする
ことにより、従来に比べ、細粒度超並列計算を要する津波シミューレーションコードにおいて、より
効率的なチェックポイントを実現した[2]。ここで開発された FTIは、オープンソスとして公開してい
る[10]。

	

	 一般に並列ファイルシステムは、チェックポイント先として最も信頼性が高い場所であるが、一方
で並列ファイルシステムを用いた階層型チェックポイントでは、数百 GPU実行において、性能向上
が飽和してしまい、エクサフロップに向けてのスケーリングは困難であったが、計算とは非同期的に
並列ファイルシステムへチェックポイントを書き出し、また、複合的数理モデルを用いて、最適な頻
度でチェックポイントを行うことにより、オーバーヘッドを削減した。実際に、津波のシミュレーシ
ョンなど多くの流体計算でみられる等方メッシュの差分法による直接解法を行う Himenoベンチマー
クにおいて、従来型の階層型チェックポイントに比べ最大で 1.1〜1.8倍以上の効率化を実現した[3]。
また、この最適頻度の自動化も行った[4]。

	

Compute node Staging node

Applica'on�

SCR-library�

Staging client

Checkpoint
s

transfer.info

Buffer-1�

R
D

M
A

cl
ie

nt
 RDMA Buffers P
ar

al
le

l f
ile

 s
ys

te
m

s

Staging server R
D

M
A

se
rv

er

RDMA-Read-

Data write threads

1

2

3

4

5

6

7

8

9

10

11

Fig. 4: Non-blocking checkpointing client/server using RDMA

the asynchronous checkpointing system drains a checkpoint
from compute nodes to the PFS while minimizing the impact
on application runtime. Because staging nodes are independent
from compute nodes, we can coordinate between the staging
nodes to throttle the RDMA read rate without impacting the
performance of the running application.

Second, staging nodes can support balancing overall data
center I/O. A PFS is often a shared resource. Ill-timed I/O pat-
terns between two applications accessing the PFS can reduce
the performance of both applications, which is particularly
likely with checkpointing since it is one of the most I/O
intensive operations. Staging nodes write checkpoints to the
PFS independently of compute node activities, which allows
us to throttle I/O to the PFS without directly throttling the
application I/O rate on the compute nodes. This paper focuses
on minimizing CPU usage; we leave I/O throttling techniques
for optimizing overall data center I/O as future work.

B. RDMA Checkpoint Transfers

We implement an RDMA transfer system for asynchronous
checkpointing based on the SCR library [6]. The existing SCR
asynchronous flush implementation executes an extra process
on each compute node, which reads a checkpoint from local
storage and directly writes that checkpoint to the PFS. This
extra process does substantial work on the compute node, and
so it contends with and slows down the application. In contrast,
our staging client process that runs on the compute node does
minimal work, and most of the effort is delegated to the
staging server process on the staging node. Other checkpoint
management, such as versioning, checkpoint location, and
redundancy scheme, relies on the original SCR library.

Figure 4 illustrates the architecture of our design with an
example. First, assume that SCR has cached a checkpoint in
local storage (Step 1). After applying its redundancy scheme
to this checkpoint, SCR writes information into a file called
transfer.info requesting that the checkpoint be copied to the
PFS (Step 2). Among other information, the transfer.info file
includes the source path of the checkpoint files in local storage
as well as the destination paths to which the files should be
written on the PFS.

The staging client periodically checks the transfer.info file
for requests, and sleeps for the rest of the time. Thus, our

tc
Time line

: Application computation : L1 checkpoint : L2 checkpoint initialization : L2 checkpoint to PFS

Staging process

L2##
L2##

L2##
L2##

L1

L1

L1

L1

L2#via#staging#nodes##

Process 1

Process 2

Process 3

Process 4

Process 1

Process 2

Process 3

Process 4

tbta

Fig. 5: Non-blocking checkpointing can hide L2 checkpoint overhead

design does minimal work on the compute node (Step 3). If
the staging client detects a new request, it reads the checkpoint
file from the source path and copies the data to a local RDMA
buffer (Step 4). Once the staging client fills the buffer, it calls
an RDMA client function to initiate the data transfer (Step 5).
Since the RDMA client function returns control immediately,
the staging client can read the next chunk to one of the buffer
entries in the buffer pool (Figure 4 shows the double-buffering
case) while the RDMA client transfers checkpoint chunks to
the staging server. The RDMA client sends a short message
containing details about the checkpoint and the RDMA buffer
to the RDMA server (Step 6). When the RDMA server receives
this message, it issues an RDMA read request to read a chunk
of the remote buffer space into a local buffer (Step 7). Then
it sends an acknowledgment message to the RDMA client
(Step 8), and it copies the data to the staging server buffer
(Step 9). This protocol continues until all checkpoint data
has been copied from the staging client to the staging server.
Finally, data writer threads write the checkpoint to the PFS
in parallel with RDMA reads by the RDMA server (Steps 10
and 11).

An RDMA operation can only read or write remote memory
regions of a few MB of data. Thus, we divide a checkpoint
into smaller chunks, which the RDMA server remotely reads
one by one. To reduce the number of staging nodes, a
transfer server can concurrently handle RDMA requests from
multiple transfer clients. However, a large amount of incoming
checkpoint data can cause buffer overflow on a staging node.
Thus, our staging client, which runs on the compute node,
reads a small chunk of data from the compute node storage
to a registered memory region for RDMA. The staging server
then pulls the chunk (incoming) region to its own space and
writes to the PFS (outgoing). If buffered checkpoint data on a
staging node exceeds a specified buffer size limit, the staging
server throttles the RDMA read rate (incoming) to balance
incoming and outgoing checkpoint data. To avoid imbalance
in incoming and outgoing data, we determine the number of
staging nodes according to outgoing PFS throughput.

4

C. Blocking and Non-blocking Checkpointing

Figure 5 shows the difference between blocking and non-
blocking checkpointing. To clarify the differences, we charac-
terize both schemes with two metrics, checkpoint overhead and
checkpoint latency. Checkpoint overhead (C) is the increased
execution time of an application because of checkpointing.
Checkpoint latency (L) is the time to complete a checkpoint.

During blocking checkpointing, each process writes its
checkpoint data to the PFS, and blocks until the checkpoint
operation completes. Thus, the checkpoint overhead is identi-
cal to the checkpoint latency, i.e., Cblk = Lblk = tb − ta. N
iterations of blocking checkpointing increase application run
time by N × Cblk.

With non-blocking checkpointing, each process contin-
ues computation during the PFS checkpoint so checkpoint
overhead (nblk) is generally smaller than checkpoint latency
(Lnblk = tc − ta). Application characteristics determine Cnblk

and Lnblk. If an application is computation or network bound,
Cnblk and Lnblk increase due to resource contention, and
Lnblk can become larger than Lblk. To initiate a non-blocking
checkpoint, the application must write its checkpoint data to
local storage. During the write operations, the application is
blocked so we add this overhead to Cnblk.

Non-blocking checkpointing has advantages over blocking
checkpointing. We can minimize Cnblk by slowly writing
checkpoint data to the PFS, thereby alleviating resource con-
tention. Because lower-level checkpoints can continue to be
cached on the compute nodes during a non-blocking check-
point, the application can take more frequent checkpoints and
increase resiliency with low checkpoint overhead. In contrast,
when an application takes a blocking PFS checkpoint, the
application loses Cblk potential computation time and it is
significantly more vulnerable to failure, as heavy PFS load
increases the likelihood of PFS failures.

Thus, we intuitively expect non-blocking checkpointing to
be more efficient than blocking checkpointing. However, non-
blocking checkpointing has a disadvantage. In Figure 5, the
blocking checkpoint completes at tb while the non-blocking
checkpoint finishes at tc. If a failure that requires a PFS
checkpoint occurs in the period between tb and tc, a non-
blocking checkpointing system incurs a catastrophic rollback
to an older checkpoint. Alternatively, blocking checkpointing
only rollbacks to tb. Therefore, with non-blocking checkpoint-
ing, the checkpoint interval, Cnblk, Lnblk, and the frequency
of each level of checkpoint must be optimized to lower the
risk of the catastrophic rollback.

V. NON-BLOCKING CHECKPOINTING MODEL

As mentioned previously, with non-blocking checkpointing,
several factors are critical to performance: checkpoint interval,
Cnblk, Lnblk, and frequency of each level of checkpoint. To
determine the optimal values, we extend an existing model
of a multi-level checkpointing system [4] to support our non-
blocking checkpointing system.

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Fig. 6: The basic structure of the non-blocking checkpointing model

A. Assumptions

For simplicity, we make several assumptions in our non-
blocking checkpointing model. Because we build on an ex-
isting model, we include that model’s assumptions [4]. We
highlight the important assumptions here.

We assume that failures are independent across components
and occur following a Poisson distribution. Thus, a failure
within a job does not increase the probability of successive
failures. In reality, some failures can be correlated. For exam-
ple, failure of a PSU can take out multiple nodes. However,
topology-aware techniques can provide very low probability
of those failures affecting processes in the same XOR set,
which eliminates the need to restart from the PFS. SCR also
excludes problematic nodes from restarted runs. Thus, the
assumption implies that the average failure rates do not change
and dynamic checkpoint interval adjustment is not required
during application execution.

We also assume that the costs to write and to read check-
points are constant throughout job execution. In reality, I/O
performance can fluctuate because of contention for shared
PFS resources. However, staging nodes serve as a buffer
between the compute nodes and the PFS. Thus, our system
mitigates PFS performance variability.

If a failure occurs during non-blocking checkpointing, we
assume that checkpoints cached on failed nodes have not
been written to the PFS. Thus, we must recover the lost
checkpoint data from redundant stores on the compute nodes,
if possible, and if not, locate an older checkpoint to restart the
application. We can use either an older checkpoint cached on
compute nodes, assuming multiple checkpoints are cached, or
a checkpoint on the PFS.

B. Basic model structure

As in the existing model [4], we use a Markov model
to describe run time states of an application. We construct
the model by combining the basic structures that Figure 6
shows. The basic structure has computation (white circle)
and recovery (blue circle) states labeled by a checkpoint
level. The computation states represent periods of application
computation followed by a checkpoint at the labeled level.
The recovery state represents the period of restoring from a
checkpoint at the labeled level.

5

	 Asynchronous	 Checkpointing	 client/server	 using	
RDMA	

The	 basic	 structure	 of	 the	
asynchronous	 checkpointing	 model	

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

2" 4" 8" 16" 32" 64" 128"

XO
X#
en

co
di
ng
#ra

te
#(M

B/
se
co
nd

s)
#

XOR#group#size#

##of#nodes#

2"nodes"

4"nodes"

8"nodes"

16"nodes"

32"nodes"

64"nodes"

128"nodes"

Fig. 12: XOR encoding performance per node

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
ci
en

cy
" PFS"cost"x1"/"NonAblocking"

PFS"cost"x1"/"Blocking"

PFS"cost"x2"/"NonAblocking"

PFS"cost"x2"/"Blocking"

PFS"cost"x10"/"NonAblocking"

PFS"cost"x10"/"Blocking"

Fig. 13: Efficiency of blocking and non-blocking checkpointing

XOR checkpoint, SCR computes the parity of each block as
in RAID-5 [8], [9], which creates S = B + B

N−1 bytes of
encoded checkpoint data from B bytes of original checkpoint
data within N members of an XOR group. Since encoding
time increase linearly with the encoded checkpoint size, the
large XOR group size, NS, saturates the XOR encoding rate.
As Section III showed, most failures affect just one node.
Thus, we use XOR checkpoints only to handle failure cat-
egory 1 in Table I, and we handle the other failure categories
k = 2, 3, 4 . . . 5 by a PFS checkpoint. Thus, we set the XOR
encoding rate as the saturated maximal rate, 400MB/s.

B. Efficiency Comparison
As future systems will be larger and will have larger

memory sizes, failure rates and checkpoint size are expected
to increase. To explore the effects, we increase failure rates
and checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between blocking and non-blocking checkpointing.
We use 29 GB for the checkpoint size per compute node,
which is half of the memory of a TSUBAME2.0 thin. As
Figure 12 shows, an XOR encoding rate is constant regardless
of the number of compute nodes, which means XOR encoding
scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ideal time

expected time . The ideal time is the
run time if the application encounters no failures and take

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"

Effi
ci
en

cy
(

Overhead(factor(α)((

Fx1,"Cx1,"Blocking"

Fx1,"Cx1,"Non:blocking"

Fx2,"Cx2,"Blocking"

Fx2,"Cx2,"Non:blocking"

Fx2,"Cx10,"Blocking"

Fx2,"Cx10,"Non:blocking"

Fx10,"Cx2,"Blocking"

Fx10,"Cx2,"Non:blocking"

Fig. 14: Efficiency under varying the overhead factor: α

no checkpoints, while expected time is the expected run
time computed from our model for a non-blocking method
and the existing model [4] for a blocking one. When we
compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency
gap become more apparent with higher failure rates and
higher checkpoint cost because longer PFS checkpoint time
on a blocking checkpointing often incurs a lower level failure
during the PFS checkpoint, and must rollback to the beginning,
while a non-blocking method can rollback to the recent XOR
checkpoint. Further, since overhead of a blocking checkpoint
is identical to checkpoint latency, which is directly added to
application run time, the efficiency decreases more quickly
than with non-blocking checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost ×2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpointing overlaps with ap-
plication computation, the checkpointing method can impact
the application run time depending on the overhead factor,
α, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F and C denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more ef-
ficient than non-blocking with a larger overhead factor in cur-
rent failure rates and cost. However, in future systems where
the failure rates and cost increase, non-blocking checkpointing
can be effective even with a large overhead factor. With
large failure rates and checkpointing costs, the checkpointing
interval decreases so that checkpointing overhead dominates
the overall run time. Since an application is blocked with
blocking checkpointing, the checkpoint latency impacts ap-
plication run time more than with non-blocking checkpointing

8

Efficiency	 of	 synchronous	 and	 asynchronous	
checkpointing	

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"

100"

0" 2" 4" 6" 8" 10" 12" 14" 16"

Re
qu

ire
d(
PF
S(
th
ro
ug
hp

ut
((G

B/
se
c)
(

Scale(factor(of(failure(rate((

Non/Blocking(90%)"
Non/Blocking(80%)"
Non/Blocking(70%)"
Blocking"(90%)"
Blocking"(80%)"
Blocing(70%)"

Fig. 15: Required PFS throughput at different failure rates

in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would benefit other systems.

C. Building an Efficient and Resilient System
When building a reliable data center or supercomputer, two

major concerns are cost of the PFS and the PFS throughput
required to maintain high efficiency. Generally, we want to
minimize cost, but not sacrifice performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efficiency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to maintain
90%, 80%, and 70% efficiency under increasing failure rates.
The failure rates are scaled from 1× up to 16× today’s rates.
Because blocking checkpointing requires extremely high PFS
bandwidth to achieve 90% efficiency, we omit that line from
the figure. Alternatively, our non-blocking checkpointing sys-
tem achieves 90% efficiency with a mere 10GB/s bandwidth
for failure rates up to 4× today’s rates.

Overall, our checkpointing system outperforms blocking
checkpointing. However, at 90% efficiency, the bandwidth
requirement rises sharply with failure rates larger than 5×
because the time for L1 checkpoints begins to dominate appli-
cation run time due to shortened optimal checkpoint intervals.
Here, increased PFS bandwidth cannot increase efficiency.
However, we found that current levels of PFS throughput are
adequate for maintaining 80% and 70% efficiency.

With blocking checkpointing, systems require higher PFS
throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. RELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Moody et al. [4] modeled a multi-

level checkpointing system and optimized the checkpoint
frequency based on collected failure rates and checkpointing
costs. We extend their model in this work. Bautista-Gomez et
al. [5] proposed multi-level checkpointing using local SSDs
and a PFS. They use Reed-Solomon (RS) encoding for highly
resilient cached checkpoints to reduce PFS usage. Generally,
PFS usage is costly when compared to local storage, and
the PFS is accessed less often in multi-level checkpointing.
However, increasing failure rates require checkpoints to a PFS
more frequently. Thus, even with multi-level checkpointing,
checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]–[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] pre-
sented a comprehensive study of different techniques of over-
lapping I/O, communication, and computation, and showed
the performance benefits of asynchronous I/O. Nawab et
al. [16] asynchronously transfer multiple striped TCP data
streams to increase I/O performance in Grid environments.
An asynchronous staging service using RDMA proposed by
Hasan et al. [11] is the closest research to ours. The authors
achieved high I/O throughput by using additional nodes. As
we observed, optimizing performance requires determination
of the proper number of staging nodes for a given number
of compute nodes. However, the comprehensive study on the
problem is not shown nor do they present their solution. To
deal with bursty I/O requests, Liu et al. [17] proposed a storage
system design that integrates SSD buffers on I/O nodes. The
system achieved high aggregate I/O bandwidth. As Figure 14
showed, if we apply asynchronous I/O to checkpointing, we
must consider the interference with the running application,
i.e., the overhead factor, to acheive high system efficiency.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, called fork checkpoint [19] , and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efficiency [21]. Vaidya’s model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the
slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. CONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution

9

Required	 PFS	 throughput	 at	 different	 failure	
rates	

	

	 将来の高信頼スーパーコンピュータの実現に向けて、バースト・バッファーを備えた、階層型スト
レージの信頼性や Coordinated、Uncoordinatedチェックポイントなどの既存手法の適用性を複数のシ
ステムを対象とした検証実験を行った。これは、[3]の階層型チェックポイントの複合的数理モデルを
ベースとしており、これと制限付き自由文脈文法を用いたストレージ・モデルと組み合わせることで
、より多くのアーキテクチャに対応可能なモデルへと拡張した。このモデルを用いた検証では、バー
スト・バッファーと Uncoordinatedチェックポイントを併用することにより、従来型のストレージ・
アーキテクチャ及びチェックポイント手に比べ、数十倍の効率化が実現できることを定量的に立証し
た[5]。

	

	

	 また、自律的復旧機構のために、多くの科学技術アプリケーションの並列化のために利用されてい
る MPIをベースとした耐障害性・通信ライブラリ FMI	 (Fault	 Tolerant	 Messaging	 Interface)を開発し、
高速かつスケーラブル な自律的復旧を実現した[6]。

Chunk buffers

Compute node 1 Compute node 2 Compute node 3 Compute node 4

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4!
Storage

file3!file2!file1	

3!
fd1

fd2

fd3

fd4

2!

Writer thread

Writer thread

Writer thread

Writer thread

Writer threads

chunk 1!

4!

5!

IBIO	
client	

Fig. 3. IBIO Write: four IBIO clients and one IBIO server

Compute node 1 Compute node 2 Compute node 3 Compute node 4

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4!
Storage

file3!file2!file1!

Chunk buffers

4! 3!

Reader threads

1! 5!

Reader thread

Reader thread

Reader thread

Reader thread

2!
fd1

fd2

fd3

fd4

Fig. 4. IBIO Read: four IBIO clients and one IBIO server

represented as H2 {1, 4}. It has 2 levels of storage: the node-
local storage is not shared, so m1 = 1; however, the PFS
is shared across all compute nodes, so m2 = 4. In the
same manner, the burst buffer system in Figure 2 (b) can be
represented as H2 {2, 2}. The total number of compute nodes
can be calculated as

Q2
i=1 mi = 4 nodes.

TABLE II
TIER i STORAGE (Si) PERFORMANCE PARAMETERS

ri Sequential read throughput from compute nodes (Hi=0)
wi Sequential write throughput from compute nodes (Hi=0)
mi The number of a upper hierarchical entities (Hi�1) sharing Si

In this model, we do not distinguish between node-local
storage and network-attached storage. Instead, we differentiate
the storage levels using performance parameters. We consider
only sequential read/write bandwidth because typically the I/O
pattern of C/R is sequential. Note that the read and write
bandwidth values are not the peak performance of the storage
but the effective throughput between compute nodes and the
storage location. For example, if tier i storage has a read
bandwidth of r, but the network-based file system delivers
a bandwidth of r̂ < r, then the model parameter is set as
ri = r̂. Using these performance parameters, we estimate C/R
time. However, as we show in Section VI, We can minimize
the performance gap between local and remote read/write
accesses with IBIO.

B. Modeling of C/R Strategies
Given the storage performance parameters of each tier, we

model level i checkpoint overhead (Oi), checkpoint latency
(Li), and restart overhead (Ri) in a multilevel checkpointing
library [4]. For simplicity, if multiple compute nodes con-
currently access a single storage location, we assume the
read/write throughput scales down linearly with the number
of concurrent accesses.

Checkpoint overhead Oi is the increased execution time of
an application because of checkpointing. Checkpoint latency
Li and restart overhead Ri are the times to complete a check-
point and restart respectively. If a checkpoint strategy conducts
erasure encoding, such as XOR [7] and Reed-Solomon en-
coding [8], the checkpoint overhead and latency also include

the encoding overhead and latency. We differentiate between
checkpoint overhead and latency to show the differences be-
tween synchronous and asynchronous checkpointing. During
synchronous checkpointing, checkpoint overhead and latency
are equal, i.e., Oi = Li, because each process is blocked until
the checkpoint is completed. Asynchronous checkpointing,
meanwhile, incurs only initialization overhead, so checkpoint
overhead is equal or smaller than checkpoint latency, i.e.,
Oi < Li.

We model level i checkpoint overhead and latency as

Oi =

⇢
Ci + Ei (synchronous checkpointing)

Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes
encoding time, and Ii denotes initialization time for asyn-
chronous checkpointing. If the level i checkpointing does not
encode checkpoints, Ei becomes 0; otherwise we model the
encoding time as Ei = D/ei where D is the checkpoint size
per compute node and ei is encoding throughput. The actual
checkpointing time Ci, i.e., sequential write time, is calculated
as

Ci =

8
><

>:

D ⇥M/wi (i = N)

D ⇥
l

MQN
k=i+1 mk

m
/wi (otherwise)

where M denotes the total number of checkpointing compute
nodes, i.e., M =

QN
i=1 mi. With uncoordinated checkpointing,

we assume the checkpointing time is identical to coordinated
checkpointing time because of indirect global synchronization
as described in Section II-C. Because

QN
k=i+1 mk is the

number of storage locations Si, the quantity
l

MQN
k=i+1 mk

m

represents the max number of compute nodes per storage
location Si.

When restarting with uncoordinated checkpointing, the
restart overhead is different from coordinated checkpointing.
We model the restart overhead Ri, i.e., sequential read time,
as:

Ri =

8
><

>:

D ⇥K/ri (i = N)

D ⇥
l

KQN
k=i+1 mk

m
/ri (otherwise)

IBIO	 Write/Read	 :	 four	 IBIO	 clients	 and	 one	 IBIO	 server	

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 2 4 6 8 10 12 14 16 R
ea

d/
W

ri
te

 th
ro

ug
hp

ut
 (G

B
/s

ec
on

ds
)

of Processes

Read - Peak Read - Local Read - IBIO Read - NFS
Write - Peak Write - Local Write - IBIO Write - NFS

Fig. 6. Sequential read and write throughput
of local I/O, and I/O with IBIO and NFS via
FDR InfiniBand networks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 10 50 100

E
ff

ic
ie

nc
y

Scale factor (xF, xL2)

Coordinated Flat Buffer Uncoordinated Flat Buffer
Coordinated Burst Buffer Uncoordinated Burst Buffer

Fig. 7. Efficiency of multilevel coordinated
and uncoordinated C/R on a flat buffer system
and a burst buffer system

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 5 10 20

E
ff

ic
ie

nc
y

Scale factor (L1/)

Coordinated Flat Buffer Uncoordinated Flat Buffer
Coordinated Burst Buffer Uncoordinated Burst Buffer

Fig. 8. Efficiency in increasing level-1 C/R per-
formance in x100 failure rate: L1 C/R time/scale
factor

we use 16 GB/s for read throughput, and 8.32 GB/s for write
throughput in the burst buffer system.

For uncoordinated checkpointing, we use 16 nodes for the
cluster size (K). Earlier studies showed that the optimal cluster
size is from 32 to 128 processes, i.e., 4 to 16 nodes for a 8-core
Coastal compute node, to provide a good trade-off between
the size of the clusters and the amount of messages to log for
most applications [11], [24]. Because the cluster size is small
enough to assign a compute node to a single burst buffer node,l

KQ2
k=2 mk

m
is computed as 1 compute node for uncoordinated

restart.
We use asynchronous checkpointing for PFS, and syn-

chronous checkpointing for XOR. For the encoding rate, we
only provide an encoding rate (e1) for level 1 (XOR) because
PFS does not need encoding.

2) Failure Rate Estimation: Failure rates (F) are based on
a failure analysis study using a multilevel C/R library called
the Scalable C/R (SCR) Library [7]. SCR provides several
checkpoint options: LOCAL, XOR, and PFS. With LOCAL, SCR
simply writes the checkpoint data to node-local storage. In
this case, if one of the checkpoints is lost due to a failure,
an application would not be able to restart its execution. So,
SCR provides XOR, which is a RAID-5 strategy that computes
XOR parity across subgroups of processes so that SCR can
restore the lost checkpoint data. SCR also provides PFS to keep
checkpoint data on the most reliable storage level, the PFS.
The failure analysis study shows that the average failure rate (#
of failures/second) per a single compute node requiring LOCAL
is 1.96⇥10

�10, XOR is 1.77⇥10

�9, and PFS is 3.93⇥10

�10.
In a flat buffer system, each failure rate is calculated

by simply multiplying the failure rate by the number of
compute nodes, 1088 nodes. This leads to failure rates of
2.14⇥10

�7 (= 1.96⇥10

�10⇥1, 088) for LOCAL, 1.92⇥10

�6

(= 1.77 ⇥ 10

�9 ⇥ 1, 088) for XOR, and 4.28 ⇥ 10

�7 (=
3.93⇥ 10

�10⇥ 1, 088) for PFS. The failure rates are identical
to the measured ones of the LLNL Coastal cluster. Actually,
if the level-i failure rate is lower than the level-i + 1 rate,
the optimal level i checkpoint count is zero because a level i
failure can be recovered with a level i + 1 checkpoint, which
is written more frequently than level i [21] . Thus, we do not
consider LOCAL checkpointing for the simulation. We evaluate

the two level C/R case where level 1 is XOR, and level 2 is PFS,
with failure rates of {F1, F2} = {2.14⇥ 10

�6, 4.28⇥ 10

�7}
(See Table IV).

In a burst buffer system, we use 34 burst buffer nodes, and
assume the failure rate of a burst buffer node is identical to
a compute node. On a compute node failure, an application
does not lose checkpoint data because the checkpoint data is
not in compute nodes. However, if a burst buffer node fails,
checkpoint data on the failed burst buffer nodes is lost. Thus,
we also use two level C/R where level 1 is XOR, and level 2 is
PFS. Because the total number of nodes increases, failure rate
requiring level 1 checkpoint increases according to the number
of burst buffer nodes. For 34 burst buffer nodes, the level 1
failure rate is calculated as 6.67 ⇥ 10

�8 (= (1.96 ⇥ 10

�10
+

1.77⇥ 10

�9
)⇥ 34). Meanwhile, checkpoint data is stored on

fewer nodes, which decreases the failure rate requiring PFS for
recovery. The level 2 failure is 1.33 ⇥ 10

�8 (See Table IV).
On compute node failures, application can restart from level 1
checkpoint regardless of the number of failed compute nodes
in a burst buffer system. Thus, the failure rate of each level is
{F1, F2} = {2.63⇥ 10

�6, 1.33⇥ 10

�8} for the burst buffer
system. Because the burst buffer system uses more nodes for
burst buffers, the overall failure rate of the burst buffer system
(2.64 ⇥ 10

�6) is higher than one of the flat buffer system
(2.57⇥ 10

�6).

B. Efficiency with Increasing Failure Rates and Level 2 C/R
Costs

We expect the failure rates and aggregate checkpoint sizes
to increase on future extreme scale systems. To explore the
effects, we increase failure rates and level 2 (PFS) C/R costs
by factors of 1, 2, 10, 50 and 100 from the base configuration
in Table III, and compare the efficiencies of multilevel coor-
dinated and uncoordinated C/R on a flat buffer system and
on a burst buffer system. We do not change the level 1 (XOR)
checkpoint cost; because the total performance of node-local
storage and burst buffer will scale with increasing system size.
For uncoordinated C/R, we assume that the message logging
overhead is 0. We discuss the allowable message logging
overhead in Section VII-C.

Figure 7 shows application efficiency under increasing
failure rates (xF) and level 2 C/R costs (xL2). When we

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 2 4 6 8 10 12 14 16 R
ea

d/
W

ri
te

 th
ro

ug
hp

ut
 (G

B
/s

ec
on

ds
)

of Processes

Read - Peak Read - Local Read - IBIO Read - NFS
Write - Peak Write - Local Write - IBIO Write - NFS

Fig. 6. Sequential read and write throughput
of local I/O, and I/O with IBIO and NFS via
FDR InfiniBand networks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 10 50 100

E
ff

ic
ie

nc
y

Scale factor (xF, xL2)

Coordinated Flat Buffer Uncoordinated Flat Buffer
Coordinated Burst Buffer Uncoordinated Burst Buffer

Fig. 7. Efficiency of multilevel coordinated
and uncoordinated C/R on a flat buffer system
and a burst buffer system

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 5 10 20

E
ff

ic
ie

nc
y

Scale factor (L1/)

Coordinated Flat Buffer Uncoordinated Flat Buffer
Coordinated Burst Buffer Uncoordinated Burst Buffer

Fig. 8. Efficiency in increasing level-1 C/R per-
formance in x100 failure rate: L1 C/R time/scale
factor

we use 16 GB/s for read throughput, and 8.32 GB/s for write
throughput in the burst buffer system.

For uncoordinated checkpointing, we use 16 nodes for the
cluster size (K). Earlier studies showed that the optimal cluster
size is from 32 to 128 processes, i.e., 4 to 16 nodes for a 8-core
Coastal compute node, to provide a good trade-off between
the size of the clusters and the amount of messages to log for
most applications [11], [24]. Because the cluster size is small
enough to assign a compute node to a single burst buffer node,l

KQ2
k=2 mk

m
is computed as 1 compute node for uncoordinated

restart.
We use asynchronous checkpointing for PFS, and syn-

chronous checkpointing for XOR. For the encoding rate, we
only provide an encoding rate (e1) for level 1 (XOR) because
PFS does not need encoding.

2) Failure Rate Estimation: Failure rates (F) are based on
a failure analysis study using a multilevel C/R library called
the Scalable C/R (SCR) Library [7]. SCR provides several
checkpoint options: LOCAL, XOR, and PFS. With LOCAL, SCR
simply writes the checkpoint data to node-local storage. In
this case, if one of the checkpoints is lost due to a failure,
an application would not be able to restart its execution. So,
SCR provides XOR, which is a RAID-5 strategy that computes
XOR parity across subgroups of processes so that SCR can
restore the lost checkpoint data. SCR also provides PFS to keep
checkpoint data on the most reliable storage level, the PFS.
The failure analysis study shows that the average failure rate (#
of failures/second) per a single compute node requiring LOCAL
is 1.96⇥10

�10, XOR is 1.77⇥10

�9, and PFS is 3.93⇥10

�10.
In a flat buffer system, each failure rate is calculated

by simply multiplying the failure rate by the number of
compute nodes, 1088 nodes. This leads to failure rates of
2.14⇥10

�7 (= 1.96⇥10

�10⇥1, 088) for LOCAL, 1.92⇥10

�6

(= 1.77 ⇥ 10

�9 ⇥ 1, 088) for XOR, and 4.28 ⇥ 10

�7 (=
3.93⇥ 10

�10⇥ 1, 088) for PFS. The failure rates are identical
to the measured ones of the LLNL Coastal cluster. Actually,
if the level-i failure rate is lower than the level-i + 1 rate,
the optimal level i checkpoint count is zero because a level i
failure can be recovered with a level i + 1 checkpoint, which
is written more frequently than level i [21] . Thus, we do not
consider LOCAL checkpointing for the simulation. We evaluate

the two level C/R case where level 1 is XOR, and level 2 is PFS,
with failure rates of {F1, F2} = {2.14⇥ 10

�6, 4.28⇥ 10

�7}
(See Table IV).

In a burst buffer system, we use 34 burst buffer nodes, and
assume the failure rate of a burst buffer node is identical to
a compute node. On a compute node failure, an application
does not lose checkpoint data because the checkpoint data is
not in compute nodes. However, if a burst buffer node fails,
checkpoint data on the failed burst buffer nodes is lost. Thus,
we also use two level C/R where level 1 is XOR, and level 2 is
PFS. Because the total number of nodes increases, failure rate
requiring level 1 checkpoint increases according to the number
of burst buffer nodes. For 34 burst buffer nodes, the level 1
failure rate is calculated as 6.67 ⇥ 10

�8 (= (1.96 ⇥ 10

�10
+

1.77⇥ 10

�9
)⇥ 34). Meanwhile, checkpoint data is stored on

fewer nodes, which decreases the failure rate requiring PFS for
recovery. The level 2 failure is 1.33 ⇥ 10

�8 (See Table IV).
On compute node failures, application can restart from level 1
checkpoint regardless of the number of failed compute nodes
in a burst buffer system. Thus, the failure rate of each level is
{F1, F2} = {2.63⇥ 10

�6, 1.33⇥ 10

�8} for the burst buffer
system. Because the burst buffer system uses more nodes for
burst buffers, the overall failure rate of the burst buffer system
(2.64 ⇥ 10

�6) is higher than one of the flat buffer system
(2.57⇥ 10

�6).

B. Efficiency with Increasing Failure Rates and Level 2 C/R
Costs

We expect the failure rates and aggregate checkpoint sizes
to increase on future extreme scale systems. To explore the
effects, we increase failure rates and level 2 (PFS) C/R costs
by factors of 1, 2, 10, 50 and 100 from the base configuration
in Table III, and compare the efficiencies of multilevel coor-
dinated and uncoordinated C/R on a flat buffer system and
on a burst buffer system. We do not change the level 1 (XOR)
checkpoint cost; because the total performance of node-local
storage and burst buffer will scale with increasing system size.
For uncoordinated C/R, we assume that the message logging
overhead is 0. We discuss the allowable message logging
overhead in Section VII-C.

Figure 7 shows application efficiency under increasing
failure rates (xF) and level 2 C/R costs (xL2). When we

Sequencial	 read	 and	 write	 throughput	 of	 local	 I/O,	
and	 I/O	 with	 IBIO	 and	 NFS	 via	 FDR	 InfiniBand	
networks	

Efficiency	 of	 multilevel	 coordinated	 and	
uncoordinated	 checkpoint/restart	 ona	 flat	 buffer	
system	 and	 a	 burst	 buffer	 system	

	
	 Overview	 of	 FMI	

	

	

	

	

	

	

	

	

	

	

	

	

6)	 発表論文	
	 [1]	 L.	 Bautista-‐Gomez,	 N.	 Maruyama,	 D.	 Komatitsch,	 S.	 Tsuboi,	 F.	 Cappello,	 S.	 Matsuoka	 and	 T.	 Nakamura,	
“FTI:	 High	 Performance	 Fault	 Tolerance	 Interface	 for	 Hybrid	 Systems”,	 International	 Conference	 for	 High	
Performance	 Computing,	 Networking,	 Storage,	 and	 Analysis	 (SC11),	 pp.32:1-‐32:32,	 2011	 	

[2]	 L.	 Bautista-‐Gomez,	 T.	 Ropars,	 N.	 Maruyama,	 F.	 Cappello	 and	 S.	 Matsuoka,	 “Hierarchical	 Clustering	
Strategies	 for	 Fault	 Tolerance	 in	 Large	 Scale	 HPC	 Systems”,	 International	 Conference	 on	 Cluster	
Computing	 2012	 (Cluster'12),	 pp.355-‐363,	 2012	

[3]	 K.	 Sato,	 A.	 Moody,	 K.	 Mohror,	 T.	 Gamblin,	 B.	 R.	 de	 Supinski,	 N.	 Maruyama	 and	 S.	 Matsuoka,	 "Design	 and	
Modeling	 of	 a	 Non-‐blocking	 Checkpointing	 System",	 International	 Conference	 on	 High	 Performance	
Computing,	 Networking,	 Storage	 and	 Analysis	 2012	 (SC12),	 pp.19:1-‐19:10,	 2012	

[4] 實本 英之, 鴨志田良和, "適切なチェックポイント周期を与えるアプリケーションレベルチェックポ
イントライブラリ",情報処理学会研究報告 2013-HPC-139(10),pp.1-7, 2013.	

[5]	 K.	 Sato,	 K.	 Mohror,	 A.	 Moody,	 T.	 Gamblin,	 B.	 R.	 de	 Supinski,	 N.	 Maruyama	 and	 S.	 Matsuoka,	 "A	 User-‐level	
Infiniband-‐based	 File	 System	 and	 Checkpoint	 Strategy	 for	 Burst	 Buffers",	 International	 Symposium	 on	
Cluster,	 Cloud	 and	 Grid	 Computing	 (CCGrid2014),	 2014	 (to	 appear)	

1 0 3 2 5 4 7 6

FMI

Leave Join

FMI rank (virtual rank)

User’s view

FMI’s view

P1 P0 P3 P2 P5 P4 P7 P6 P9 P8

Node 0 (failed) Node 1 Node 2 Node 3 Node 4

Fig. 2: Overview of FMI

is correctly estimating the number of spare nodes needed by
a job, which requires knowledge of the failure characteristics
of the machine and the behavior of the application. Another
solution is to request compute nodes from the resource man-
ager. This method may incur a high overhead if the job has
to wait for spare nodes to become available. This overhead
is reduced if the resource manager keeps a reserve of spare
nodes specifically for fault tolerance. Either way, to support
fast restart, it is critical to have access to spare resources.

Finally, one needs a fast, scalable mechanism to detect and
react to failures. All of the above mechanisms matter little
if the time to detect a failure overwhelms the cost to restart
the job. Thus, we take these properties as required capabilities
for our design of FMI: a survivable messaging runtime, fast
C/R, scalable failure detection, notification, and spare node
allocation.

III. FMI PROGRAMMING MODEL

In this section, we describe the FMI programming model
with an overview and then with an example.

A. Overview
With FMI, an application developer writes an application

with MPI semantics, and FMI ensures that the application is
agnostic to failure. The FMI runtime software handles the fault
tolerance activities, including fast checkpointing of application
state, restarting failed processes on failure, restoring applica-
tion state, and allocating additional nodes when needed.

In Figure 2, we give an overview of FMI. Each process in an
FMI application has an FMI rank as in MPI. But unlike MPI,
an FMI rank is virtual and not bound to a particular process
(Px) on a physical node. FMI may change the mapping of
FMI ranks to processes to hide underlying hardware failures,
transparently to the application. FMI also provides a capability
for compute nodes to join or leave the job dynamically,
primarily to replace failed nodes with spare nodes. Although
our current prototype of FMI has limitations (See Section
VIII), FMI transparently intercepts MPI calls, so that existing
MPI applications can run on top of FMI with minimal code
changes or without any code changes if users want to run their
application with the fault tolerance capabilities disabled.

B. Writing an FMI Application
Writing a fault tolerant application is usually a complex

ordeal, especially if there are a large number of dependencies
across processes. With FMI, application developers simply

1: int main(int *argc, char *argv[]) {
2: FMI_Init(&argc, &argv);
3: while ((n = FMI_Loop(...)) < numloop) {
4: /*user program*/
5: }
6: FMI_Finalize();
7: }

Fig. 3: FMI example code

1 0 3 2 5 4 7 6

0 = FMI_Loop(…): checkpoint 	

1 = FMI_Loop(…): checkpoint	

FMI_Init(…)	

1 0 3 2 5 4 7 6

FMI_Init(…)	

1 0

1 = FMI_Loop(…): restart	

1 0 3 2 5 4 7 6

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9

1 0

state
H1, 2

H3

H3

H3

H3

H1, 2

H3

H3 3 2 5 4 7 6

2 = FMI_Loop(…): checkpoint	 H3

H3

H3

Fig. 4: Example: P0(rank=0) and P1(rank=1) fail after loop id=1. P8 and P9 start from
loop id=1 as rank 0 and 1 each, and the other processes retry loop id=1

write their code with MPI semantics and fault tolerance is
provided by FMI. Figure 3 shows an example main loop
for a code using FMI. The primary difference between the
FMI and MPI programming models is that FMI provides the
function FMI Loop that synchronizes the application, writes
checkpoints, or rolls back and restarts as needed. This single
function call makes an application fault tolerant:

int FMI Loop(void∗∗ ckpts, size t∗ sizes, int len).

The parameter ckpts is an array of pointers to variables that
contain data that needs to be checkpointed. If a failure occurred
during the previous loop iteration, the last good values of
the variables replace the values in ckpts to roll back to the
last checkpoint. The parameter sizes is an array of sizes
of each checkpointed variable, and len is the length of the
arrays. FMI Loop returns the loop iteration count (loop id)
incremented from 0 regardless of whether a checkpoint was
written during this loop or not. However, if FMI Loop rolls
back and restores the last checkpoint, it returns the loop id
during which the last checkpoint was written.

When FMI Loop is called the first time at the beginning of
the execution, it writes checkpoints in memory using memcpy
to minimize checkpoint time, and applies erasure encoding to
the checkpoints using XOR encoding for level-1 checkpointing
(See Section V). When completed, FMI Loop guarantees that
an application can continue to run even on a failure within
the loop as long as any failures that occur are recoverable by
the level-1 checkpoint. After the first call, FMI Loop writes
checkpoints at an interval specified by an interval environ-
mental variable. Alternatively, if a user specifies an MTBF

TABLE II: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24 GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

FMI with an MPI implementation. For those experiments, we
used MVAPICH2 version 1.2 running on top of SLURM [17].

A. FMI Performance

TABLE III: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication perfor-
mance on Sierra, and compare FMI to MVAPICH2. Table
III shows the ping-pong communication latency for 1-byte
messages, and bandwidth for a message size of 8 MB. Because
FMI can intercept MPI calls, we compiled the same ping-pong
source for both MPI and FMI. The results show that FMI
has very similar performance compared to MPI for both the
latency and the bandwidth. The overhead for providing fault
tolerance in FMI is negligibly small for messaging.

Because failure rates are expected to increase at extreme
scale, C/R for failure recovery must be fast and scalable. To
evaluate the scalability of C/R in FMI, we ran a benchmark
which writes checkpoints (6 GB/node), and then recovers
using the checkpoints. Figure 12 shows the C/R throughput
including XOR encoding and decoding. The checkpoint time
of FMI is fairly scalable because the checkpointing and
encoding times are constant regardless of the total number
of nodes. Also, because FMI writes and reads checkpoints to
and from memory, the throughputs are high. FMI achieves 2.4
GB/sec checkpointing throughput per node, and 1.3 GB/sec
restart throughput per node. On a restart, newly launched
processes gather the restored checkpoint chunks from the other
processes in the XOR group after the decoding as in Figure 11,
so the restart throughput is lower than that of checkpointing.

Fast and scalable failure detection time and reinitialization
time (H1 and H2 states) are critical in environments with high
failure rates. Figure 13 shows the time for all processes to be
notified of failure with the log-ring overlay. In this experiment,
we inject a failure by sending a signal to kill a process in
between two checkpoints to measure averaged performance.
For example, if we write checkpoints after 10, 20, 30 seconds,
we inject failures after 15, 25, 35 seconds. later. As shown, the
global detection is scalable because the log-ring propagates the
notification in logarithmic time. When a process terminates,
ibverbs waits approximately 0.2 seconds before closing the
connection to the terminated process. Therefore there is a
constant overhead of 0.2 seconds before the notification starts
to propagate in the log-ring.

FMI establishes the log-ring overlay network (H2 states) on
the recovery. The initialization must be fast and scalable for
fast recovery. In Figure 14, we show the initialization time
for MVAPICH2 and FMI. For FMI, this is time spent in the
H1 and H2 states. We compare the time in FMI Init with
that in MVAPICH2’s MPI Init. We see that the time to build
the log-ring (H2 state) is small and scalable, because each
process only connects to log2 n other processes. The FMI
bootsrapping time (H1 state) is about two times faster than
that of MVAPICH2. The current prototype of FMI has limited
capabilities compared to MPI. A smaller number of messages
are exchanged in FMI initialization than in MVAPICH2, which
results in faster bootstrapping. However, we expect that if FMI
evolves to support more capabilities, it will also exchange
more messages and its initialization time will approach that
of MVAPICH2.

B. Application Performance with FMI

To investigate the impact of FMI on the performance of
an actual application run, we used a Poisson equation solver,
the Himeno benchmark [18]. Himeno is a stencil application
in which each grid point is iteratively updated using only
neighbor points. The computational pattern frequently appears
in numerical simulation codes for solving partial differential
equations. Himeno uses point-to-point communications and
one Allreduce at the end of each iteration.

Figure 15 shows the performance of Himeno compared with
MPI using SCR [4]. The FLOPS metric is computed based
on time spent in application code making useful progress.
For example, if an application fails at time t1, and rolls
back to time t0, the FLOPS metric does not include the lost
computation done to restore the application back to the state
at t1. We configured SCR to write checkpoints to tmpfs and
optimize the checkpoint interval of both SCR and FMI with
Vaidya’s model [13] based on configured MTBF of 1 minute,
and measured checkpointing time.

Because the point-to-point communication performance of
FMI and MVAPICH2 are nearly the same (Table III), the
performance of Himeno is nearly the same for FMI and MPI if
we do not write any checkpoints during the execution (FMI &
MPI in Figure 15). For checkpointing, SCR writes to memory
via a file system (MPI + C), while FMI writes checkpoints
directly to memory using memcpy (FMI + C). Thus, FMI
exhibits higher performance by 10.3 % with the same memory
consumption as MPI when checkpointing is enabled. We also
injected failures into Himeno to see the impact of killing a
process with a MTBF of 1 minute during the execution. Even
with the very high failure rate, we found that Himeno incurred
only a 28% overhead with FMI. Because the FMI C/R time is
constant regardless of the total number of nodes according to
performance model in Section V-B, we expect FMI to scale
to a much larger number of nodes.

C. Resiliency with FMI

FMI applications can continue to run as long as all failures
are recoverable. To investigate how long an application can

0

50

100

150

200

250

300

350

0 500 1000 1500

C
/R

 T
hr

ou
gh

pu
t (

G
B

/s
ec

on
ds

)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

48 96 192 384 768 1536

G
lo

ba
l f

ai
lu

re
 n

ot
if

ic
at

io
n

ti
m

e
(S

ec
on

ds
)

of Processes

Fig. 13: Failure notification time with log-ring overlay
network

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

48 96 192 384 768 1536

E
la

ps
ed

 ti
m

e
(S

ec
on

ds
)

of Processes

Bootstrapping
Log-ring overlay
SLURM (MVAPICH2)

Fig. 14: MPI Init vs. FMI Init

0

500

1000

1500

2000

2500

0 500 1000 1500

P
er

fo
rm

an
ce

 (G
F

lo
ps

)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

li
ty

 t
o

ru
n

fo
r

24
 h

ou
rs

Scale factor (Current failure rate = 1)

Coastal (w/ FMI)

Coastal (w/o FMI)

Fig. 16: Probability to continuously run for 24 hours

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

E
ff

ic
ie

nc
y

Scale factor

L1 - 1 GB/node
L1 - 10 GB/node
L1 & 2 - 1 GB/node
L1 & 2 - 10 GB/node

Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

0

50

100

150

200

250

300

350

0 500 1000 1500

C
/R

 T
hr

ou
gh

pu
t (

G
B

/s
ec

on
ds

)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

48 96 192 384 768 1536

G
lo

ba
l f

ai
lu

re
 n

ot
if

ic
at

io
n

ti
m

e
(S

ec
on

ds
)

of Processes

Fig. 13: Failure notification time with log-ring overlay
network

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

48 96 192 384 768 1536

E
la

ps
ed

 ti
m

e
(S

ec
on

ds
)

of Processes

Bootstrapping
Log-ring overlay
SLURM (MVAPICH2)

Fig. 14: MPI Init vs. FMI Init

0

500

1000

1500

2000

2500

0 500 1000 1500

P
er

fo
rm

an
ce

 (G
F

lo
ps

)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

li
ty

 t
o

ru
n

fo
r

24
 h

ou
rs

Scale factor (Current failure rate = 1)

Coastal (w/ FMI)

Coastal (w/o FMI)

Fig. 16: Probability to continuously run for 24 hours

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

E
ff

ic
ie

nc
y

Scale factor

L1 - 1 GB/node
L1 - 10 GB/node
L1 & 2 - 1 GB/node
L1 & 2 - 10 GB/node

Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

Failure	 notification	 time	 with	 log-‐ring	
overlay	 network	

Himeno	 benchmark	 (Checkpoint	 size	 :	
821MB/node,	 MTBF	 :	 1	 minute)	

[6]	 K.	 Sato,	 A.	 Moody,	 K.	 Mohror,	 T.	 Gamblin,	 B.	 R.	 de	 Supinski,	 N.	 Maruyama	 and	 S.	 Matsuoka,	 "FMI:	 Fault	
Tolerant	 Messaging	 Interface	 for	 Fast	 and	 Transparent	 Recovery",	 International	 Conference	 on	 Parallel	
and	 Distributed	 Processing	 Symposium	 2014	 (IPDPS2014),	 2014	 (to	 appear)	

	

7)	 受賞	 	
[7]	 Special	 Certificate	 of	 Recognition	 for	 achieving	 a	 perfect	 score	 at	 the	 Supercomputing	 Conference	 2011	
(SC11)	 for	 the	 paper	

[8]	 Best	 Paper	 Award	 at	 CCGrid2014,	 Kento	 Sato	

	

	

	

	

	

	

	

	

8)	 その他	 	
	 [9]	 http://matsu-‐www.is.titech.ac.jp/	

[10]	 https://gforge.inria.fr/projects/fti/	

	

Best	 paper	 award	 at	 CCGrid2014	

