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Fig. 4: Non-blocking checkpointing client/server using RDMA

the asynchronous checkpointing system drains a checkpoint
from compute nodes to the PFS while minimizing the impact
on application runtime. Because staging nodes are independent
from compute nodes, we can coordinate between the staging
nodes to throttle the RDMA read rate without impacting the
performance of the running application.

Second, staging nodes can support balancing overall data
center I/O. A PFS is often a shared resource. Ill-timed I/O pat-
terns between two applications accessing the PFS can reduce
the performance of both applications, which is particularly
likely with checkpointing since it is one of the most I/O
intensive operations. Staging nodes write checkpoints to the
PFS independently of compute node activities, which allows
us to throttle I/O to the PFS without directly throttling the
application I/O rate on the compute nodes. This paper focuses
on minimizing CPU usage; we leave I/O throttling techniques
for optimizing overall data center I/O as future work.

B. RDMA Checkpoint Transfers

We implement an RDMA transfer system for asynchronous
checkpointing based on the SCR library [6]. The existing SCR
asynchronous flush implementation executes an extra process
on each compute node, which reads a checkpoint from local
storage and directly writes that checkpoint to the PFS. This
extra process does substantial work on the compute node, and
so it contends with and slows down the application. In contrast,
our staging client process that runs on the compute node does
minimal work, and most of the effort is delegated to the
staging server process on the staging node. Other checkpoint
management, such as versioning, checkpoint location, and
redundancy scheme, relies on the original SCR library.

Figure 4 illustrates the architecture of our design with an
example. First, assume that SCR has cached a checkpoint in
local storage (Step 1). After applying its redundancy scheme
to this checkpoint, SCR writes information into a file called
transfer.info requesting that the checkpoint be copied to the
PFS (Step 2). Among other information, the transfer.info file
includes the source path of the checkpoint files in local storage
as well as the destination paths to which the files should be
written on the PFS.

The staging client periodically checks the transfer.info file
for requests, and sleeps for the rest of the time. Thus, our
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Fig. 5: Non-blocking checkpointing can hide L2 checkpoint overhead

design does minimal work on the compute node (Step 3). If
the staging client detects a new request, it reads the checkpoint
file from the source path and copies the data to a local RDMA
buffer (Step 4). Once the staging client fills the buffer, it calls
an RDMA client function to initiate the data transfer (Step 5).
Since the RDMA client function returns control immediately,
the staging client can read the next chunk to one of the buffer
entries in the buffer pool (Figure 4 shows the double-buffering
case) while the RDMA client transfers checkpoint chunks to
the staging server. The RDMA client sends a short message
containing details about the checkpoint and the RDMA buffer
to the RDMA server (Step 6). When the RDMA server receives
this message, it issues an RDMA read request to read a chunk
of the remote buffer space into a local buffer (Step 7). Then
it sends an acknowledgment message to the RDMA client
(Step 8), and it copies the data to the staging server buffer
(Step 9). This protocol continues until all checkpoint data
has been copied from the staging client to the staging server.
Finally, data writer threads write the checkpoint to the PFS
in parallel with RDMA reads by the RDMA server (Steps 10
and 11).

An RDMA operation can only read or write remote memory
regions of a few MB of data. Thus, we divide a checkpoint
into smaller chunks, which the RDMA server remotely reads
one by one. To reduce the number of staging nodes, a
transfer server can concurrently handle RDMA requests from
multiple transfer clients. However, a large amount of incoming
checkpoint data can cause buffer overflow on a staging node.
Thus, our staging client, which runs on the compute node,
reads a small chunk of data from the compute node storage
to a registered memory region for RDMA. The staging server
then pulls the chunk (incoming) region to its own space and
writes to the PFS (outgoing). If buffered checkpoint data on a
staging node exceeds a specified buffer size limit, the staging
server throttles the RDMA read rate (incoming) to balance
incoming and outgoing checkpoint data. To avoid imbalance
in incoming and outgoing data, we determine the number of
staging nodes according to outgoing PFS throughput.

4

C. Blocking and Non-blocking Checkpointing

Figure 5 shows the difference between blocking and non-
blocking checkpointing. To clarify the differences, we charac-
terize both schemes with two metrics, checkpoint overhead and
checkpoint latency. Checkpoint overhead (C) is the increased
execution time of an application because of checkpointing.
Checkpoint latency (L ) is the time to complete a checkpoint.

During blocking checkpointing, each process writes its
checkpoint data to the PFS, and blocks until the checkpoint
operation completes. Thus, the checkpoint overhead is identi-
cal to the checkpoint latency, i.e., Cblk = L blk = tb − ta . N
iterations of blocking checkpointing increase application run
time by N × Cblk .

With non-blocking checkpointing, each process contin-
ues computation during the PFS checkpoint so checkpoint
overhead (nblk ) is generally smaller than checkpoint latency
(L nblk = tc − ta). Application characteristics determine Cnblk

and L nblk . If an application is computation or network bound,
Cnblk and L nblk increase due to resource contention, and
L nblk can become larger than L blk . To initiate a non-blocking
checkpoint, the application must write its checkpoint data to
local storage. During the write operations, the application is
blocked so we add this overhead to Cnblk .

Non-blocking checkpointing has advantages over blocking
checkpointing. We can minimize Cnblk by slowly writing
checkpoint data to the PFS, thereby alleviating resource con-
tention. Because lower-level checkpoints can continue to be
cached on the compute nodes during a non-blocking check-
point, the application can take more frequent checkpoints and
increase resiliency with low checkpoint overhead. In contrast,
when an application takes a blocking PFS checkpoint, the
application loses Cblk potential computation time and it is
significantly more vulnerable to failure, as heavy PFS load
increases the likelihood of PFS failures.

Thus, we intuitively expect non-blocking checkpointing to
be more efficient than blocking checkpointing. However, non-
blocking checkpointing has a disadvantage. In Figure 5, the
blocking checkpoint completes at tb while the non-blocking
checkpoint finishes at tc. If a failure that requires a PFS
checkpoint occurs in the period between tb and tc, a non-
blocking checkpointing system incurs a catastrophic rollback
to an older checkpoint. Alternatively, blocking checkpointing
only rollbacks to tb. Therefore, with non-blocking checkpoint-
ing, the checkpoint interval, Cnblk , L nblk , and the frequency
of each level of checkpoint must be optimized to lower the
risk of the catastrophic rollback.

V. NON-BLOCKING CHECKPOINTING MODEL

As mentioned previously, with non-blocking checkpointing,
several factors are critical to performance: checkpoint interval,
Cnblk , L nblk , and frequency of each level of checkpoint. To
determine the optimal values, we extend an existing model
of a multi-level checkpointing system [4] to support our non-
blocking checkpointing system.
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Fig. 6: The basic structure of the non-blocking checkpointing model

A. Assumptions

For simplicity, we make several assumptions in our non-
blocking checkpointing model. Because we build on an ex-
isting model, we include that model’s assumptions [4]. We
highlight the important assumptions here.

We assume that failures are independent across components
and occur following a Poisson distribution. Thus, a failure
within a job does not increase the probability of successive
failures. In reality, some failures can be correlated. For exam-
ple, failure of a PSU can take out multiple nodes. However,
topology-aware techniques can provide very low probability
of those failures affecting processes in the same XOR set,
which eliminates the need to restart from the PFS. SCR also
excludes problematic nodes from restarted runs. Thus, the
assumption implies that the average failure rates do not change
and dynamic checkpoint interval adjustment is not required
during application execution.

We also assume that the costs to write and to read check-
points are constant throughout job execution. In reality, I/O
performance can fluctuate because of contention for shared
PFS resources. However, staging nodes serve as a buffer
between the compute nodes and the PFS. Thus, our system
mitigates PFS performance variability.

If a failure occurs during non-blocking checkpointing, we
assume that checkpoints cached on failed nodes have not
been written to the PFS. Thus, we must recover the lost
checkpoint data from redundant stores on the compute nodes,
if possible, and if not, locate an older checkpoint to restart the
application. We can use either an older checkpoint cached on
compute nodes, assuming multiple checkpoints are cached, or
a checkpoint on the PFS.

B. Basic model structure

As in the existing model [4], we use a Markov model
to describe run time states of an application. We construct
the model by combining the basic structures that Figure 6
shows. The basic structure has computation (white circle)
and recovery (blue circle) states labeled by a checkpoint
level. The computation states represent periods of application
computation followed by a checkpoint at the labeled level.
The recovery state represents the period of restoring from a
checkpoint at the labeled level.
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Fig. 2: Overview of FMI

is correctly estimating the number of spare nodes needed by
a job, which requires knowledge of the failure characteristics
of the machine and the behavior of the application. Another
solution is to request compute nodes from the resource man-
ager. This method may incur a high overhead if the job has
to wait for spare nodes to become available. This overhead
is reduced if the resource manager keeps a reserve of spare
nodes speciÞcally for fault tolerance. Either way, to support
fast restart, it is critical to have access to spare resources.

Finally, one needs a fast, scalable mechanism to detect and
react to failures. All of the above mechanisms matter little
if the time to detect a failure overwhelms the cost to restart
the job. Thus, we take these properties as required capabilities
for our design of FMI: a survivable messaging runtime, fast
C/R, scalable failure detection, notiÞcation, and spare node
allocation.

III. FMI P ROGRAMMING MODEL

In this section, we describe the FMI programming model
with an overview and then with an example.

A. Overview

With FMI, an application developer writes an application
with MPI semantics, and FMI ensures that the application is
agnostic to failure. The FMI runtime software handles the fault
tolerance activities, including fast checkpointing of application
state, restarting failed processes on failure, restoring applica-
tion state, and allocating additional nodes when needed.

In Figure 2, we give an overview of FMI. Each process in an
FMI application has anFMI rank as in MPI. But unlike MPI,
an FMI rank is virtual and not bound to a particular process
(Px) on a physical node. FMI may change the mapping of
FMI ranks to processes to hide underlying hardware failures,
transparently to the application. FMI also provides a capability
for compute nodes to join or leave the job dynamically,
primarily to replace failed nodes with spare nodes. Although
our current prototype of FMI has limitations (See Section
VIII), FMI transparently intercepts MPI calls, so that existing
MPI applications can run on top of FMI with minimal code
changes or without any code changes if users want to run their
application with the fault tolerance capabilities disabled.

B. Writing an FMI Application

Writing a fault tolerant application is usually a complex
ordeal, especially if there are a large number of dependencies
across processes. With FMI, application developers simply

1: int main(int * argc, char * argv[]) {
2: FMI_Init(&argc, &argv);
3: while ((n = FMI_Loop(...)) < numloop) {
4: / * user program * /
5: }
6: FMI_Finalize();
7: }

Fig. 3: FMI example code
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write their code with MPI semantics and fault tolerance is
provided by FMI. Figure 3 shows an example main loop
for a code using FMI. The primary difference between the
FMI and MPI programming models is that FMI provides the
function FMI Loop that synchronizes the application, writes
checkpoints, or rolls back and restarts as needed. This single
function call makes an application fault tolerant:

int FMI Loop(void∗∗ ckpts, size t∗ sizes, int len).

The parameterckpts is an array of pointers to variables that
contain data that needs to be checkpointed. If a failure occurred
during the previous loop iteration, the last good values of
the variables replace the values inckpts to roll back to the
last checkpoint. The parametersizes is an array of sizes
of each checkpointed variable, andlen is the length of the
arrays.FMI Loop returns the loop iteration count (loop id)
incremented from 0 regardless of whether a checkpoint was
written during this loop or not. However, ifFMI Loop rolls
back and restores the last checkpoint, it returns theloop id
during which the last checkpoint was written.

WhenFMI Loop is called the Þrst time at the beginning of
the execution, it writes checkpoints in memory usingmemcpy
to minimize checkpoint time, and applies erasure encoding to
the checkpoints using XOR encoding for level-1 checkpointing
(See Section V). When completed,FMI Loop guarantees that
an application can continue to run even on a failure within
the loop as long as any failures that occur are recoverable by
the level-1 checkpoint. After the Þrst call,FMI Loop writes
checkpoints at an interval speciÞed by aninterval environ-
mental variable. Alternatively, if a user speciÞes anMTBF
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represented asH2 { 1, 4} . It has 2 levels of storage: the node-
local storage is not shared, som1 = 1 ; however, the PFS
is shared across all compute nodes, som2 = 4 . In the
same manner, the burst buffer system in Figure 2 (b) can be
represented asH2 { 2, 2} . The total number of compute nodes
can be calculated as

! 2
i =1 mi = 4 nodes.

TABLE II
TIER i STORAGE(Si ) PERFORMANCE PARAMETERS

r i Sequential read throughput from compute nodes (H i =0 )
wi Sequential write throughput from compute nodes (H i =0 )
mi The number of a upper hierarchical entities (H i ! 1 ) sharingSi

In this model, we do not distinguish between node-local
storage and network-attached storage. Instead, we differentiate
the storage levels using performance parameters. We consider
only sequential read/write bandwidth because typically the I/O
pattern of C/R is sequential. Note that the read and write
bandwidth values are not the peak performance of the storage
but the effective throughput between compute nodes and the
storage location. For example, if tieri storage has a read
bandwidth of r , but the network-based Þle system delivers
a bandwidth oför < r , then the model parameter is set as
r i = ör . Using these performance parameters, we estimate C/R
time. However, as we show in Section VI, We can minimize
the performance gap between local and remote read/write
accesses with IBIO.

B. Modeling of C/R Strategies

Given the storage performance parameters of each tier, we
model level i checkpoint overhead(Oi ), checkpoint latency
(L i ), andrestart overhead(Ri ) in a multilevel checkpointing
library [4]. For simplicity, if multiple compute nodes con-
currently access a single storage location, we assume the
read/write throughput scales down linearly with the number
of concurrent accesses.

Checkpoint overheadOi is the increased execution time of
an application because of checkpointing. Checkpoint latency
L i and restart overheadRi are the times to complete a check-
point and restart respectively. If a checkpoint strategy conducts
erasure encoding, such as XOR [7] and Reed-Solomon en-
coding [8], the checkpoint overhead and latency also include

the encoding overhead and latency. We differentiate between
checkpoint overhead and latency to show the differences be-
tween synchronous and asynchronous checkpointing. During
synchronous checkpointing, checkpoint overhead and latency
are equal, i.e.,Oi = L i , because each process is blocked until
the checkpoint is completed. Asynchronous checkpointing,
meanwhile, incurs only initialization overhead, so checkpoint
overhead is equal or smaller than checkpoint latency, i.e.,
Oi < L i .

We model leveli checkpoint overhead and latency as

Oi =
"

Ci + Ei (synchronous checkpointing)
I i (asynchronous checkpointing)

L i = Ci + Ei

where Ci denotes actual checkpointing time,Ei denotes
encoding time, andI i denotes initialization time for asyn-
chronous checkpointing. If the leveli checkpointing does not
encode checkpoints,Ei becomes 0; otherwise we model the
encoding time asEi = D/e i whereD is the checkpoint size
per compute node andei is encoding throughput. The actual
checkpointing timeCi , i.e., sequential write time, is calculated
as

Ci =

#
$%

$&

D ! M/w i (i = N )

D !
'

MQ N
k = i +1 m k

(
/w i (otherwise)

whereM denotes the total number of checkpointing compute
nodes, i.e.,M =

! N
i =1 mi . With uncoordinated checkpointing,

we assume the checkpointing time is identical to coordinated
checkpointing time because of indirect global synchronization
as described in Section II-C. Because

! N
k= i +1 mk is the

number of storage locationsSi , the quantity
'

MQ N
k = i +1 m k

(

represents the max number of compute nodes per storage
locationSi .

When restarting with uncoordinated checkpointing, the
restart overhead is different from coordinated checkpointing.
We model the restart overheadRi , i.e., sequential read time,
as:

Ri =

#
$%

$&

D ! K/r i (i = N )

D !
'

KQ N
k = i +1 m k

(
/r i (otherwise)

and 4 for node 3) unlike a ßat buffer system. This capability
accelerates the partial restart of uncoordinated C/R.

TABLE I
NODE SPECIFICATION

CPU Intel Core i7-3770K CPU (3.50 GHz x 4 cores)
Memory Cetus DDR3-1600 (16 GB)

M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 CT256M4SSD3 (256GB, mSATA)

(Peak read: 500 MB/s, Peak write: 260 MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5Õ SATA

Device Converter with Metal Frame
RAID Card Adaptec ASR-7805Q Single

To build a reliable burst buffer system at extreme scale,
minimizing the number of system components is critical while
maximizing high I/O throughput under minimal budget. To
explore the bandwidth we can achieve by a single node with
only commodity devices, we developed an mSATA-based SSD
test system. The detailed speciÞcation is shown in Table I.
The theoretical peak throughputs of sequential read and write
operation of the mSATA-based SSD is 500 MB/sec and 260
MB/sec, respectively. We aggregate the eight SSDs into a
RAID card, and connect the RAID cards via PCIe 3.0 (x8).
The theoretical peak performance of this conÞguration is 4
GB/sec for read and 2.08 GB/sec for write in total. To use
the storage systems as burst buffers, the mSTA-based SSDs
must be accessed via a high-speed network (e.g., InÞniBand)
with a network-based Þle system. However, simple methods
cannot exploit the bandwidth. For example, if we use NFS with
IPoIB for the network-based Þle system, the useful bandwidth
is only 1 GB/s for both read and write (details in Section VI).
A new network-based Þle system is required to exploit the
PCIe-attached high bandwidth storage.

IV. U SER-LEVEL INFINIBAND-BASED FILE SYSTEM FOR

BURST BUFFERS

To exploit the bandwidth of burst buffers, we developed
a user-level InÞniBand-based Þle system and I/O API called
IBIO. Our earlier work showed that I/O operations with
concurrent multiple threads can effectively exploit the high
bandwidth of PCIe-attached storage [23] as well as the PFS
[4]. Thus, we parallelize the operations of IBIO with multiple
reader and writer threads. The current API of IBIO includes
open, write , read and close . The interfaces are identical
to POSIX except that ofopen. The IBIO open requires a
hostnameas well as apathnameso that IBIO clients can access
any Þles on any IBIO servers. IBIOopen sends a query to the
IBIO server to open the Þle, and it returns the Þle descriptor
(fd ).

Figure 3 and Figure 4 show the design of IBIOwrite and
read. When a client on a compute node writes its Þle to
remote storage via the IBIOwrite call (Figure 3), the IBIO
client divides the data into smaller chunks, and it transfers
the chunks using an RDMA API we developed in prior
work [4] (Step 1). The RDMA transfer API enables one-sided

Hi 
!"#$%&'(

)"*'(
Si 

i   = 0 i   > 0 

1 2 mi 

H i-1 H i-1 H i-1 

Fig. 5. Recursive structured storage model

communications from the client to the server using a low-
level, user-space InÞniBand API calledibverbs. Once the IBIO
server thread receives a write request from a client, the IBIO
server reads the chunk into the selected buffer according to
the fd by using an RDMA read (Step 2). Then, the IBIO
server creates awriter thread to asynchronously write the
chunk to the Þle (Step 3) so that the IBIO server thread can
receive subsequent chunks from IBIO clients while writing
the chunk. When all chunks for the write call are written, the
writer threads inform the IBIO server (Step 4), and the IBIO
server informs the IBIO client that the write is complete (Step
5).

Since communications from server to client are required
for IBIO read operations, we extended the RDMA transfer
API from prior work to support bi-directional communications.
When an IBIO client reads a Þle from remote storage via
IBIO read (Figure 4), the IBIO client sends the read request
containing thefd to the IBIO server (Step 1). Once the
IBIO server receives the read request, the IBIO server thread
identiÞes the Þle according to thefd , and it creates areader
thread to handle the read request (Step 2). Then the IBIO
server thread waits for the next request. The reader thread
reads a chunk of the Þle with Þle descriptorfd into its buffer
(Step 3). The reader thread requests that the IBIO server thread
sends the chunk to the IBIO client (Step 4), and then reads
the next chunk. When all chunks for the read call have been
read, the reader thread informs the IBIO server, and the IBIO
server informs the IBIO client that the read is complete (Step
5).

V. M ODELING

As described in Sections II and III, each checkpoint strategy
and storage architecture have advantages and disadvantages.
Here we discuss the model we developed to identify the best
checkpoint strategy for a given conÞguration.

A. Recursive Structured Storage Model

We introduce a recursive structured storage model to gener-
alize storage architectures to describe both ßat and burst buffer
systems with a single model. Figure 5 shows the recursive
structured storage model based on arestricted context-free
grammar. A tier i hierarchical entity,H i , has storageSi shared
by mi upper hierarchical entities,H i ! 1. We denoteHi =0 as
a compute node. If each tier of hierarchical storage is shared
as{ m1, m2, . . . , mN } within N -tired hierarchical storage, we
denote the storage architecture asHN { m1, m2, . . . , mN } .
For example, the ßat buffer system in Figure 2 (a) can be
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AbstractÑThe computational power of High Performance
Computing (HPC) systems and supercomputers is growing
exponentially, driven by extreme-scale scientiÞc simulations.
However, the overall system failure rate can also increase as
the system size grows. Although Checkpoint/Restart is one of
widely used fault tolerance techniques for scientiÞc applications
running for a day or weeks at a time, checkpoint and restart
time are expected to become huge overhead due to the high
failure rate. To minimize checkpoint and restart time, we
explore application-level lossy compression based on a wavelet
transformation. Our preliminary studies show that our lossy
compression approach can reduce size of simulation data of a
real climate application by 86-87% with 0.09% of an average
error.

Keywords-Fault tolerance; Checkpoint/Restart; Compres-
sion;

I. I NTRODUCTION

The computational power of High Performance Comput-
ing (HPC) systems and supercomputers is growing expo-
nentially, driven by extreme-scale scientiÞc simulations. The
extreme-scale systems enable researchers to conduct Þn-
grained scientiÞc simulations. However, the overall system
failure rate can also increase as the system size grows, and
MTBF (Mean Time Between Failure) of future exascale
supercomputers is expected to shrink to an order of hours.
Without any fault tolerance techniques, application can not
continuously run for a day and a week in such extrem-scale
systems

Checkpoint/Restart is one of widely used fault tolerance
techniques for scientiÞc applications running for a day or
weeks Acheckpointis a snapshot of application state that
can be used to restart execution if a failure occurs. However,
when writing checkpoints of an extreme-scale application
state to reliable storage such as parallel Þle system (PFS),
the low I/O throughput becomes a bottleneck to the ap-
plication performance, and long-running applications may
not be able to even proceed their simulations due to the
checkpoint/restart overhead.

To reduce checkpoint and restart time, we explore
application-level lossy compression approach based a wave-
lat transformation [1]. Although lossy compression can
introduce errors to the simulation data after a restart, appli-
cations can proceed and produce approximate results even
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Figure 1. Application-level lossy compression using a wavelat transfor-
mation

with high failure rate. Our preliminary studies show that our
lossy compression approach can reduce size of simulation
data of a real climate application by 86-87% with 0.09% of
an average error.

II. A PPLICATION-LEVEL LOSSYCOMPRESSION

To reduce checkpoint and restart time, we explore
application-level lossy compression approach based a wave-
lat transformation. In our approach, we apply three-step
lossy compression to only arrays of simulation data, such as
pressures, temperatures, and velocities, to avoid applications
from crashing. Our three-step lossy compression approach
Þrst transforms the simulation data using awavelet trans-
formation, then applyquantizationand encodingto reduce
the simulation data, which is necessary to be checkpointed.

For the simplicity, we explain the lossy compression
approach when compressing a 1-D array as shown Figure
1. In the Þrst step (wavelete transformation), we divide the
values of the array into two subbands, low-frequency (L in
Figure 1) and high-frequency (H in Figure 1) bands based
on multi-resolution analysis.

Next, we applyquantizationto the wavelet transformed
data. In thequantizationstep, we sort values in the high-
frequency band, then divide the values inton segments
(division #), and replace each value in each segment with
an average value in its segment. After the quantization,n
values of data are in the high-frequency band in the target
array. Although this quantization is an irreversible operation,
which can introduce errors to the simulation data, we can
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Fig. 12: XOR encoding performance per node

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0123"2.43"5$"" -./0123"2.43"5%" -./0123"2.43"5$!"

67
8/

39
8:

"

;-<"8=>4"5$"?"@=9AB0=8C/9D"

;-<"8=>4"5$"?"E0=8C/9D"

;-<"8=>4"5%"?"@=9AB0=8C/9D"

;-<"8=>4"5%"?"E0=8C/9D"

;-<"8=>4"5$!"?"@=9AB0=8C/9D"

;-<"8=>4"5$!"?"E0=8C/9D"

Fig. 13: EfÞciency of blocking and non-blocking checkpointing

XOR checkpoint, SCR computes the parity of each block as
in RAID-5 [8], [9], which createsS = B + B

N ! 1 bytes of
encoded checkpoint data fromB bytes of original checkpoint
data within N members of an XOR group. Since encoding
time increase linearly with the encoded checkpoint size, the
large XOR group size,NS, saturates the XOR encoding rate.
As Section III showed, most failures affect just one node.
Thus, we use XOR checkpoints only to handle failure cat-
egory 1 in Table I, and we handle the other failure categories
k = 2 , 3, 4. . . 5 by a PFS checkpoint. Thus, we set the XOR
encoding rate as the saturated maximal rate, 400MB/s.

B. EfÞciency Comparison

As future systems will be larger and will have larger
memory sizes, failure rates and checkpoint size are expected
to increase. To explore the effects, we increase failure rates
and checkpoint costs by factors of 1, 2, and 10, and compare
efÞciency between blocking and non-blocking checkpointing.
We use 29 GB for the checkpoint size per compute node,
which is half of the memory of a TSUBAME2.0 thin. As
Figure 12 shows, an XOR encoding rate is constant regardless
of the number of compute nodes, which means XOR encoding
scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows theefÞciencyof both checkpointing meth-
ods under different failure rates and checkpoint costs. We
deÞne theefÞciencyas ideal time

expected time . The ideal time is the
run time if the application encounters no failures and take
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Fig. 14: EfÞciency under varying the overhead factor:!

no checkpoints, whileexpectedtime is the expected run
time computed from our model for a non-blocking method
and the existing model [4] for a blocking one. When we
compute efÞciency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximalefÞciency. The non-blocking method always achieves
higher efÞciency than the blocking method. The efÞciency
gap become more apparent with higher failure rates and
higher checkpoint cost because longer PFS checkpoint time
on a blocking checkpointing often incurs a lower level failure
during the PFS checkpoint, and must rollback to the beginning,
while a non-blocking method can rollback to the recent XOR
checkpoint. Further, since overhead of a blocking checkpoint
is identical to checkpoint latency, which is directly added to
application run time, the efÞciency decreases more quickly
than with non-blocking checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost! 2), but still maintain
90% efÞciency with current failure rates.

Because a non-blocking checkpointing overlaps with ap-
plication computation, the checkpointing method can impact
the application run time depending on the overhead factor,
! , in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efÞcient
than blocking checkpointing. Figure 14 shows efÞciency with
increasing overhead factor and different failure rates and PFS
checkpoint costs.F andC denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more ef-
Þcient than non-blocking with a larger overhead factor in cur-
rent failure rates and cost. However, in future systems where
the failure rates and cost increase, non-blocking checkpointing
can be effective even with a large overhead factor. With
large failure rates and checkpointing costs, the checkpointing
interval decreases so that checkpointing overhead dominates
the overall run time. Since an application is blocked with
blocking checkpointing, the checkpoint latency impacts ap-
plication run time more than with non-blocking checkpointing
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Fig. 7. EfÞciency of multilevel coordinated
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Fig. 8. EfÞciency in increasing level-1 C/R per-
formance in x100 failure rate: L1 C/R time/scale
factor

we use 16 GB/s for read throughput, and 8.32 GB/s for write
throughput in the burst buffer system.

For uncoordinated checkpointing, we use 16 nodes for the
cluster size (K ). Earlier studies showed that the optimal cluster
size is from 32 to 128 processes, i.e., 4 to 16 nodes for a 8-core
Coastal compute node, to provide a good trade-off between
the size of the clusters and the amount of messages to log for
most applications [11], [24]. Because the cluster size is small
enough to assign a compute node to a single burst buffer node,!

KQ 2
k =2 m k

"
is computed as 1 compute node for uncoordinated

restart.
We use asynchronous checkpointing forPFS, and syn-

chronous checkpointing forXOR. For the encoding rate, we
only provide an encoding rate (e1) for level 1 (XOR) because
PFSdoes not need encoding.

2) Failure Rate Estimation:Failure rates (F ) are based on
a failure analysis study using a multilevel C/R library called
the Scalable C/R (SCR) Library [7]. SCR provides several
checkpoint options:LOCAL, XOR, andPFS. With LOCAL, SCR
simply writes the checkpoint data to node-local storage. In
this case, if one of the checkpoints is lost due to a failure,
an application would not be able to restart its execution. So,
SCR providesXOR, which is a RAID-5 strategy that computes
XOR parity across subgroups of processes so that SCR can
restore the lost checkpoint data. SCR also providesPFSto keep
checkpoint data on the most reliable storage level, the PFS.
The failure analysis study shows that the average failure rate (#
of failures/second) per a single compute node requiringLOCAL
is 1.96! 10! 10, XORis 1.77! 10! 9, andPFSis 3.93! 10! 10.

In a ßat buffer system, each failure rate is calculated
by simply multiplying the failure rate by the number of
compute nodes, 1088 nodes. This leads to failure rates of
2.14! 10! 7 (= 1.96! 10! 10 ! 1, 088) for LOCAL, 1.92! 10! 6

(= 1.77 ! 10! 9 ! 1, 088) for XOR, and 4.28 ! 10! 7 (=
3.93! 10! 10 ! 1, 088) for PFS. The failure rates are identical
to the measured ones of the LLNL Coastal cluster. Actually,
if the level-i failure rate is lower than the level-i + 1 rate,
the optimal leveli checkpoint count is zero because a leveli
failure can be recovered with a leveli + 1 checkpoint, which
is written more frequently than leveli [21] . Thus, we do not
considerLOCALcheckpointing for the simulation. We evaluate

the two level C/R case where level1 is XOR, and level2 is PFS,
with failure rates of{ F1, F2} = { 2.14! 10! 6, 4.28! 10! 7}
(See Table IV).

In a burst buffer system, we use 34 burst buffer nodes, and
assume the failure rate of a burst buffer node is identical to
a compute node. On a compute node failure, an application
does not lose checkpoint data because the checkpoint data is
not in compute nodes. However, if a burst buffer node fails,
checkpoint data on the failed burst buffer nodes is lost. Thus,
we also use two level C/R where level 1 isXOR, and level 2 is
PFS. Because the total number of nodes increases, failure rate
requiring level 1 checkpoint increases according to the number
of burst buffer nodes. For 34 burst buffer nodes, the level 1
failure rate is calculated as6.67 ! 10! 8 (= (1.96 ! 10! 10 +
1.77! 10! 9) ! 34). Meanwhile, checkpoint data is stored on
fewer nodes, which decreases the failure rate requiringPFSfor
recovery. The level 2 failure is1.33 ! 10! 8 (See Table IV).
On compute node failures, application can restart from level 1
checkpoint regardless of the number of failed compute nodes
in a burst buffer system. Thus, the failure rate of each level is
{ F1, F2} = { 2.63 ! 10! 6, 1.33 ! 10! 8} for the burst buffer
system. Because the burst buffer system uses more nodes for
burst buffers, the overall failure rate of the burst buffer system
(2.64 ! 10! 6) is higher than one of the ßat buffer system
(2.57! 10! 6).

B. EfÞciency with Increasing Failure Rates and Level 2 C/R
Costs

We expect the failure rates and aggregate checkpoint sizes
to increase on future extreme scale systems. To explore the
effects, we increase failure rates and level 2 (PFS) C/R costs
by factors of 1, 2, 10, 50 and 100 from the base conÞguration
in Table III, and compare the efÞciencies of multilevel coor-
dinated and uncoordinated C/R on a ßat buffer system and
on a burst buffer system. We do not change the level 1 (XOR)
checkpoint cost; because the total performance of node-local
storage and burst buffer will scale with increasing system size.
For uncoordinated C/R, we assume that the message logging
overhead is 0. We discuss the allowable message logging
overhead in Section VII-C.

Figure 7 shows application efÞciency under increasing
failure rates (xF) and level 2 C/R costs (xL2). When we

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

0 2 4 6 8 10 12 14 16 R
ea

d/
W

rit
e 

th
ro

ug
hp

ut
 (

G
B

/s
ec

on
ds

) 

# of Processes 

Read - Peak Read - Local Read - IBIO Read - NFS 

Write - Peak Write - Local Write - IBIO Write - NFS 

Fig. 6. Sequential read and write throughput
of local I/O, and I/O with IBIO and NFS via
FDR InÞniBand networks

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1 2 10 50 100 

E
ffi

ci
en

cy
 

Scale factor (xF, xL2) 

Coordinated Flat Buffer Uncoordinated Flat Buffer 
Coordinated Burst Buffer Uncoordinated Burst Buffer 

Fig. 7. EfÞciency of multilevel coordinated
and uncoordinated C/R on a ßat buffer system
and a burst buffer system

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1 2 5 10 20 

E
ffi

ci
en

cy
 

Scale factor (L1/) 

Coordinated Flat Buffer Uncoordinated Flat Buffer 
Coordinated Burst Buffer Uncoordinated Burst Buffer 

Fig. 8. EfÞciency in increasing level-1 C/R per-
formance in x100 failure rate: L1 C/R time/scale
factor

we use 16 GB/s for read throughput, and 8.32 GB/s for write
throughput in the burst buffer system.

For uncoordinated checkpointing, we use 16 nodes for the
cluster size (K). Earlier studies showed that the optimal cluster
size is from 32 to 128 processes, i.e., 4 to 16 nodes for a 8-core
Coastal compute node, to provide a good trade-off between
the size of the clusters and the amount of messages to log for
most applications [11], [24]. Because the cluster size is small
enough to assign a compute node to a single burst buffer node,l

KQ2
k=2 mk

m
is computed as 1 compute node for uncoordinated

restart.
We use asynchronous checkpointing forPFS, and syn-

chronous checkpointing forXOR. For the encoding rate, we
only provide an encoding rate (e1) for level 1 (XOR) because
PFS does not need encoding.

2) Failure Rate Estimation: Failure rates (F ) are based on
a failure analysis study using a multilevel C/R library called
the Scalable C/R (SCR) Library [7]. SCR provides several
checkpoint options:LOCAL, XOR, andPFS. With LOCAL, SCR
simply writes the checkpoint data to node-local storage. In
this case, if one of the checkpoints is lost due to a failure,
an application would not be able to restart its execution. So,
SCR providesXOR, which is a RAID-5 strategy that computes
XOR parity across subgroups of processes so that SCR can
restore the lost checkpoint data. SCR also providesPFS to keep
checkpoint data on the most reliable storage level, the PFS.
The failure analysis study shows that the average failure rate (#
of failures/second) per a single compute node requiringLOCAL
is 1.96⇥10

�10, XOR is 1.77⇥10

�9, andPFS is 3.93⇥10

�10.
In a ßat buffer system, each failure rate is calculated

by simply multiplying the failure rate by the number of
compute nodes, 1088 nodes. This leads to failure rates of
2.14⇥10

�7 (= 1.96⇥10

�10⇥1, 088) for LOCAL, 1.92⇥10

�6

(= 1.77 ⇥ 10

�9 ⇥ 1, 088) for XOR, and 4.28 ⇥ 10

�7 (=
3.93⇥ 10

�10⇥ 1, 088) for PFS. The failure rates are identical
to the measured ones of the LLNL Coastal cluster. Actually,
if the level-i failure rate is lower than the level-i + 1 rate,
the optimal leveli checkpoint count is zero because a leveli
failure can be recovered with a leveli + 1 checkpoint, which
is written more frequently than leveli [21] . Thus, we do not
considerLOCAL checkpointing for the simulation. We evaluate

the two level C/R case where level1 is XOR, and level2 is PFS,
with failure rates of{ F1, F2} = { 2.14⇥ 10

�6, 4.28⇥ 10

�7}
(See Table IV).

In a burst buffer system, we use 34 burst buffer nodes, and
assume the failure rate of a burst buffer node is identical to
a compute node. On a compute node failure, an application
does not lose checkpoint data because the checkpoint data is
not in compute nodes. However, if a burst buffer node fails,
checkpoint data on the failed burst buffer nodes is lost. Thus,
we also use two level C/R where level 1 isXOR, and level 2 is
PFS. Because the total number of nodes increases, failure rate
requiring level 1 checkpoint increases according to the number
of burst buffer nodes. For 34 burst buffer nodes, the level 1
failure rate is calculated as6.67 ⇥ 10

�8 (= (1.96 ⇥ 10

�10
+

1.77⇥ 10

�9
)⇥ 34). Meanwhile, checkpoint data is stored on

fewer nodes, which decreases the failure rate requiringPFS for
recovery. The level 2 failure is1.33 ⇥ 10

�8 (See Table IV).
On compute node failures, application can restart from level 1
checkpoint regardless of the number of failed compute nodes
in a burst buffer system. Thus, the failure rate of each level is
{ F1, F2} = { 2.63⇥ 10

�6, 1.33⇥ 10

�8} for the burst buffer
system. Because the burst buffer system uses more nodes for
burst buffers, the overall failure rate of the burst buffer system
(2.64 ⇥ 10

�6) is higher than one of the ßat buffer system
(2.57⇥ 10

�6).

B. Efficiency with Increasing Failure Rates and Level 2 C/R
Costs

We expect the failure rates and aggregate checkpoint sizes
to increase on future extreme scale systems. To explore the
effects, we increase failure rates and level 2 (PFS) C/R costs
by factors of 1, 2, 10, 50 and 100 from the base conÞguration
in Table III, and compare the efÞciencies of multilevel coor-
dinated and uncoordinated C/R on a ßat buffer system and
on a burst buffer system. We do not change the level 1 (XOR)
checkpoint cost; because the total performance of node-local
storage and burst buffer will scale with increasing system size.
For uncoordinated C/R, we assume that the message logging
overhead is 0. We discuss the allowable message logging
overhead in Section VII-C.

Figure 7 shows application efÞciency under increasing
failure rates (xF) and level 2 C/R costs (xL2). When we
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Fig. 15: Required PFS throughput at different failure rates

in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would beneÞt other systems.

C. Building an EfÞcient and Resilient System

When building a reliable data center or supercomputer, two
major concerns are cost of the PFS and the PFS throughput
required to maintain high efÞciency. Generally, we want to
minimize cost, but not sacriÞce performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efÞciency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to maintain
90%, 80%, and 70% efÞciency under increasing failure rates.
The failure rates are scaled from 1! up to 16! todayÕs rates.
Because blocking checkpointing requires extremely high PFS
bandwidth to achieve 90% efÞciency, we omit that line from
the Þgure. Alternatively, our non-blocking checkpointing sys-
tem achieves 90% efÞciency with a mere 10GB/s bandwidth
for failure rates up to 4! todayÕs rates.

Overall, our checkpointing system outperforms blocking
checkpointing. However, at 90% efÞciency, the bandwidth
requirement rises sharply with failure rates larger than 5!
because the time for L1 checkpoints begins to dominate appli-
cation run time due to shortened optimal checkpoint intervals.
Here, increased PFS bandwidth cannot increase efÞciency.
However, we found that current levels of PFS throughput are
adequate for maintaining 80% and 70% efÞciency.

With blocking checkpointing, systems require higher PFS
throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. R ELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Moody et al. [4] modeled a multi-

level checkpointing system and optimized the checkpoint
frequency based on collected failure rates and checkpointing
costs. We extend their model in this work. Bautista-Gomez et
al. [5] proposed multi-level checkpointing using local SSDs
and a PFS. They use Reed-Solomon (RS) encoding for highly
resilient cached checkpoints to reduce PFS usage. Generally,
PFS usage is costly when compared to local storage, and
the PFS is accessed less often in multi-level checkpointing.
However, increasing failure rates require checkpoints to a PFS
more frequently. Thus, even with multi-level checkpointing,
checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]Ð[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] pre-
sented a comprehensive study of different techniques of over-
lapping I/O, communication, and computation, and showed
the performance beneÞts of asynchronous I/O. Nawab et
al. [16] asynchronously transfer multiple striped TCP data
streams to increase I/O performance in Grid environments.
An asynchronous staging service using RDMA proposed by
Hasan et al. [11] is the closest research to ours. The authors
achieved high I/O throughput by using additional nodes. As
we observed, optimizing performance requires determination
of the proper number of staging nodes for a given number
of compute nodes. However, the comprehensive study on the
problem is not shown nor do they present their solution. To
deal with bursty I/O requests, Liu et al. [17] proposed a storage
system design that integrates SSD buffers on I/O nodes. The
system achieved high aggregate I/O bandwidth. As Figure 14
showed, if we apply asynchronous I/O to checkpointing, we
must consider the interference with the running application,
i.e., theoverhead factor, to acheive high system efÞciency.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, calledfork checkpoint[19] , and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efÞciency [21]. VaidyaÕs model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the
slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. C ONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution

9

5/1*(,!V !4!:,W*/(,B!P52!0'()*1'.*0!@0!
B/AA,(,%0!A@/7*(,!(@0,#!

5/1*(,!U !4!2,W*,%&/@7!(,@B!@%B!F(/0,!0'()*1'.*0!)A!
7)&@7!H8LX!@%B!H8L!F/0'!HGHL!@%B!R52!9/@!5;:!
H%A/%/G@%B!%,0F)(-#!

5/1*(,! 6Y!4!CAA/&/,%&$!)A!3*70/7,9,7!&))(B/%@0,B!@%B!
*%&))(B/%@0,B!&',&-.)/%08(,#0@(0!)%@!A7@0!?*AA,(!
#$#0,3!@%B!@!?*(#0!?*AA,(!#$#0,3!



!

!

5<H!I5@*70!>)7,(@%0!<,##@1/%1!H%0,(A@&,J!4!"#$!I$9!+'*/&):./)'*8! )*+1.B$!0!8),-1)2)$B!
-&'%&0,,)*%! ,'B$1! /' ! $*0:1$! 208/=! /&0*8-0&$*/! 20.1/!/'1$&0*+$! :08$B! '*!
+#$+I-')*/K&$8/0&/Z! ),-1$,$*/0/)'*! '2! 0!&.*/),$! /#0/! ()/#8/0*B8! -&'+$88!20)1.&$8!0*B!
011'+0/$8!8-0&$!&$8'.&+$8Z!0!*$(! '<$&109!*$/('&I!8/&.+/.&$!+011$B!1'%N&)*%!2'&!8+010:1$!
20)1.&$! B$/$+/)'*! 0*B! *'/)2)+0/)'*Z! 0*B! B$,'*8/&0/)'*! '2! /#$! 20.1/! /'1$&0*+$! 0*B!
8+010:)1)/9!'2!>?P!$<$*!()/#!0!?"@>!'2!D!,)*./$;!Y8-$+)0119=!'.&!),-1$,$*/0/)'*!'2!>?P!
#08!20)1.&$N2&$$!-$&2'&,0*+$!/#0/!)8!+',-0&0:1$!()/#!?5P=!0*B! '.&!$H-$&),$*/8!()/#!0!
5')88'*!$L.0/)'*!8'1<$&!8#'(!/#0/!&.**)*%!()/#!>?P!)*+.&8!'*19!0!E[\!'<$&#$0B!()/#!0!
<$&9!#)%#!,$0*!/),$!/'! 20)1.&$!'2!D!,)*./$ ;!

!

*

*

*

*

*
!

!

!

5@/7E/%EP7@&,!Q@(1,!#&@7,!R,0F)(-!;,#/1%4!!P*!+'*+1.8)'*!'2!'.&!8),.10/)'*8=!/#$!
+#0*%$!'2!/#$!&'./)*%!01%'&)/#,!2&',!/#$!+.&&$*/19!.8$B!]-^K_'(*^!&'./)*%!/'!_>OOO5!
&'./)*%!'*!"O]@M?YE;T!('.1B!*'/!'*19!1$0B!/'!0!#)%#$&!-$&2'&,0*+$!'2!/#$!?5P`M11/'011!
'*!/#$!20.1/N2&$$!*$/('&I=!08!8#'(*!)*!>)%;!E=!:./!018'!()11!)*+&$08$!/#$!20)1N)*N-10+$!
+#0&0+/$&)8/)+!'2!/#$!*$/('&I;!@'/#!()11!8.--'&/!/#$!$22'&/8!/'!0+#)$<$!$H08+01$!8+)$*/)2)+!
8),.10/)'*8;! !

!

!

!

!

!

!

!

!

TABLE II: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24 GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

FMI with an MPI implementation. For those experiments, we
used MVAPICH2 version 1.2 running on top of SLURM [17].

A. FMI Performance

TABLE III: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication perfor-
mance on Sierra, and compare FMI to MVAPICH2. Table
III shows the ping-pong communication latency for 1-byte
messages, and bandwidth for a message size of 8 MB. Because
FMI can intercept MPI calls, we compiled the same ping-pong
source for both MPI and FMI. The results show that FMI
has very similar performance compared to MPI for both the
latency and the bandwidth. The overhead for providing fault
tolerance in FMI is negligibly small for messaging.

Because failure rates are expected to increase at extreme
scale, C/R for failure recovery must be fast and scalable. To
evaluate the scalability of C/R in FMI, we ran a benchmark
which writes checkpoints (6 GB/node), and then recovers
using the checkpoints. Figure 12 shows the C/R throughput
including XOR encoding and decoding. The checkpoint time
of FMI is fairly scalable because the checkpointing and
encoding times are constant regardless of the total number
of nodes. Also, because FMI writes and reads checkpoints to
and from memory, the throughputs are high. FMI achieves 2.4
GB/sec checkpointing throughput per node, and 1.3 GB/sec
restart throughput per node. On a restart, newly launched
processes gather the restored checkpoint chunks from the other
processes in the XOR group after the decoding as in Figure 11,
so the restart throughput is lower than that of checkpointing.

Fast and scalable failure detection time and reinitialization
time (H1 and H2 states) are critical in environments with high
failure rates. Figure 13 shows the time for all processes to be
notified of failure with the log-ring overlay. In this experiment,
we inject a failure by sending a signal to kill a process in
between two checkpoints to measure averaged performance.
For example, if we write checkpoints after 10, 20, 30 seconds,
we inject failures after 15, 25, 35 seconds. later. As shown, the
global detection is scalable because the log-ring propagates the
notification in logarithmic time. When a process terminates,
ibverbs waits approximately 0.2 seconds before closing the
connection to the terminated process. Therefore there is a
constant overhead of 0.2 seconds before the notification starts
to propagate in the log-ring.

FMI establishes the log-ring overlay network (H2 states) on
the recovery. The initialization must be fast and scalable for
fast recovery. In Figure 14, we show the initialization time
for MVAPICH2 and FMI. For FMI, this is time spent in the
H1 and H2 states. We compare the time in FMI Init with
that in MVAPICH2’s MPI Init. We see that the time to build
the log-ring (H2 state) is small and scalable, because each
process only connects to log2 n other processes. The FMI
bootsrapping time (H1 state) is about two times faster than
that of MVAPICH2. The current prototype of FMI has limited
capabilities compared to MPI. A smaller number of messages
are exchanged in FMI initialization than in MVAPICH2, which
results in faster bootstrapping. However, we expect that if FMI
evolves to support more capabilities, it will also exchange
more messages and its initialization time will approach that
of MVAPICH2.

B. Application Performance with FMI

To investigate the impact of FMI on the performance of
an actual application run, we used a Poisson equation solver,
the Himeno benchmark [18]. Himeno is a stencil application
in which each grid point is iteratively updated using only
neighbor points. The computational pattern frequently appears
in numerical simulation codes for solving partial differential
equations. Himeno uses point-to-point communications and
one Allreduce at the end of each iteration.

Figure 15 shows the performance of Himeno compared with
MPI using SCR [4]. The FLOPS metric is computed based
on time spent in application code making useful progress.
For example, if an application fails at time t1, and rolls
back to time t0, the FLOPS metric does not include the lost
computation done to restore the application back to the state
at t1. We configured SCR to write checkpoints to tmpfs and
optimize the checkpoint interval of both SCR and FMI with
Vaidya’s model [13] based on configured MTBF of 1 minute,
and measured checkpointing time.

Because the point-to-point communication performance of
FMI and MVAPICH2 are nearly the same (Table III), the
performance of Himeno is nearly the same for FMI and MPI if
we do not write any checkpoints during the execution (FMI &
MPI in Figure 15). For checkpointing, SCR writes to memory
via a file system (MPI + C), while FMI writes checkpoints
directly to memory using memcpy (FMI + C). Thus, FMI
exhibits higher performance by 10.3 % with the same memory
consumption as MPI when checkpointing is enabled. We also
injected failures into Himeno to see the impact of killing a
process with a MTBF of 1 minute during the execution. Even
with the very high failure rate, we found that Himeno incurred
only a 28% overhead with FMI. Because the FMI C/R time is
constant regardless of the total number of nodes according to
performance model in Section V-B, we expect FMI to scale
to a much larger number of nodes.

C. Resiliency with FMI

FMI applications can continue to run as long as all failures
are recoverable. To investigate how long an application can
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run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to PoissonÕs distribution, the probability that
an application runs for timeT continuously ise! ! áT whereλ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of2.13! 6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of4.27! 7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMIÕs performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6! higher
failure rates. At failure rates of 10! higher than todayÕs,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate,λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efÞciency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efÞciency of using multilevel C/R with
FMI, where efÞciency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efÞciency at larger scales,
we increase failure rates and checkpoint costs up to 50! ,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efÞciency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre Þle system/ p/ lscratchd . We Þnd that we
can achieve fairly high efÞciencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efÞciency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efÞciency.
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run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to PoissonÕs distribution, the probability that
an application runs for timeT continuously ise! ! áT where!
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of2.13! 6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of4.27! 7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMIÕs performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6! higher
failure rates. At failure rates of 10! higher than todayÕs,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate,! ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efÞciency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efÞciency of using multilevel C/R with
FMI, where efÞciency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efÞciency at larger scales,
we increase failure rates and checkpoint costs up to 50! ,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efÞciency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre Þle system/ p/ lscratchd . We Þnd that we
can achieve fairly high efÞciencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efÞciency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efÞciency.
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Figure 2. Ratio of compressed checkpoint size to original checkpoint size
under increasing division #

Figure 3. Average errors of uncompressed checkpoint to original value
under increasing division #

considerably reduce the checkpoint size.
Finally, we applyencodingto each values after the quan-

tization. If division # is2k , we can differentiate2k of values
by k bits. We reduce size of each value in the high-frequency
band by representing the values withk bits. Then, we store
the float , double values tochar variables. Thus, we can
store the values with four times less thanf loat values, and
eight times less fordoublevalues.

For 2-D and 3-D arrays, the series of the transformation is
applied separately in the X and Y directions for 2-D arrays,
and in the X, Y and Z directions for 3-D arrays.

III. E VALUATION

To explore the effect of our lossy-compression approach
on a real application, we apply our approach to simulation
data of a climate simulation application, NICAM [2], then
we measured compressed size of checkpiont data, and errors
to the original values with different division #. In this
evaluation, we also applygzip to the compressed data after
our lossy-compression in the previous section. The NICAM
code writes several physical quantities, such as pressure,
temperature and velocity, as a checkpoint. We target an array
of temperature values in this evaluation.

Table I
COMPRESSION RATIO BY SIMPLE TECHNIQUES

gzip gzip three-step
+ wavlet transformation compression

Compression ratio 86.57 % 78.70% 12-14%

Figure 2 shows compression ratio to the original check-
point size (compressed size/original size x100) with in-
creasing division #. As shown in the Þgure, we conÞrmed
that we can reduce the checkpoint data to about 12 to
14 %. Meanwhile, directly applyinggzip to the original
checkpoint only reduce the size to 86.57%, and our approach
without lossy-compression, i.e.,quantizationandencoding,
only reduce to 78.70%. The simple compression techniques
cannot considerably reduce the checkpoint size.

Figure 3 presents average errors produced by our lossy
compression with increasing division #. The error is the
difference to the original values in Kelvin (K). As in Figure
3, our lossy compression only produces from 0.2 to 0.8 of
errors. In terms of temperature of a climate simulation, the
error is relatively small. If we can choose 13 for the division
#, we can reduce the checkpoint size to about 13% with only
0.3 of error on average in NICAM.

IV. CONCLUSION

To reduce checkpoint and restart time, we explored
application-level lossy compression approach based a wave-
late transformation. Our three-step lossy compression ap-
proach Þrst transforms the simulation data using awavelet
transformation, and then applyquantizationand encoding
to reduce the simulation data, which is necessary to be
checkpointed. Our preliminary studies show that our lossy
compression approach can reduce size of simulation data of
a real climate application to 12-13% with 0.2 to 0.8 of errors
on average error. In future work, we will reduce the errors,
and compression time.
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