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Abstract. OpenJIT is an open-ended, reflective JIT compiler frame-
work for Java being researched and developed in a joint project by Tokyo
Inst. Tech. and Fujitsu Ltd. Although in general self-descriptive systems
have been studied in various contexts such as reflection and interpre-
ter/compiler bootstrapping, OpenJIT is a first system we know to date
that offers a stable, full-fledged Java JIT compiler that plugs into existing
monolithic JVMs, and offer competitive performance to JITs typically
written in C or C++. This is in contrast to previous work where compila-
tion did not occur in the execution phase, customized VMs being develo-
ped ground-up, performance not competing with existing optimizing JIT
compilers, and/or only a subset of the Java language being supported.
The main contributions of this paper are, 1) we propose an architec-
ture for a reflective JIT compiler on a monolithic VM, and identify the
technical challenges as well as the techniques employed, 2) We define
an API that adds to the existing JIT compiler APIs in “classic” JVM
to allow reflective JITs to be constructed, 3) We show detailed bench-
marks of run-time behavior of OpenJIT to demonstrate that, while being
competitive with existing JITs the time- and space-overheads of compi-
ler metaobjects that exist in the heap are small and manageable. Being
an object-oriented compiler framework, OpenJIT can be configured to
be small and portable or fully-fledged optimizing compiler framework in
the spirit of SUIF. It is fully JCK compliant, and runs all large Java
applications we have tested to date including HotJava. We are currently
distributing OpenJIT for free to foster further research into advanced
compiler optimization, compile-time reflection, advanced run-time sup-
port for languages, as well as other areas such as embedded computing,
metacomputing, and ubiquitous computing.

1 Introduction

Programming Languages with high-degree of portability, such as Java, typically
employ portable intermediate program representations such as bytecodes, and
utilize Just-In-Time compilers (JITs), which compile (parts of) programs into
native code at runtime. However, all the Java JITs today as well as those for
other languages such as Lisp, Smalltalk, and Self, are monolithically architected
without provision for user-level extension. Instead, we claim that JITs could be
utilized and exploited more opportunely in the following situations:
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– Platform-specific optimizations — Execution platforms could be from em-
bedded systems and hand-held devices to large servers and massive parallel
processors (MPPs). There, requirements for optimizations differ considera-
bly, according to particular class of applications that the platform is targeted
to execute. JITs could be made to adapt to different platforms if it could be
customized in a flexible way.

– Platform-specific compilations — Some platforms require assistance of com-
pilers to generate platform-specific codes for execution. For example, DSM
(Distributed-Shared Memory) systems and persistent object systems require
specific compilations to emit code to detect remote or persistent reference
operations. If one were to implement such systems on Java, one not only
needs to modify the JVM, but also the JIT compiler. We note that, as far as
we know, representative work on Java DSM (cJVM[2]) and persistent objects
(PJama[3]) lack JIT compiler support for this very reason.

– Application-specific optimizations — One could be more opportunistic by
performing optimizations that are specific to a particular application or a
data set. This includes techniques such as selection of compilation strategies,
runtime partial evaluation, as well as application-specific idiom recognition.
By utilizing application-specific as well as run-time information, the compi-
led code could be made to execute substantially faster, or with less space,
etc. compared to traditional, generalized optimizations. Although such tech-
niques have been proposed in the past, it could become a generally-applied
scheme and also an exciting research area if efficient and easily customizable
JITs were available.

– Language-extending compilations — Some work stresses on extending Java
for adding new language features and abstractions. Such extensions could
be implemented as source-level or byte-code level transformations, but some
low-level implementations are very difficult or inefficient to support with
such higher-level transformations in Java. The abovementioned DSM is a
good example: Some DSMs permit users to add control directives or storage
classifiers at a program level to control the memory coherency protocols,
and thus such a change must be done at JVM and native code level. One
could facilitate this by encoding such extensions in bytecodes or classfile
attributes, and customizing the JIT compilers accordingly to understand
such extensions.

– Environment- or Usage-specific compilations and optimizations — Other en-
vironmental or usage factors could be considered during compilation, such
as adding profiling code for performance instrumentation, debugging etc. 1

Moreover, with Java, we would like these customizations to occur within an
easy framework of portable, security-checked code downloaded across the net-
work. Just as applets and libraries are downloadable on-the-fly, we would like
the JIT compiler customization to be so as well, depending on the specific plat-
form, application, and environment. For example, if a user wants to instrument

1 In fact we do exactly that in the benchmarking we show later in Section 5, which
for the first time characterizes the behavior of a self-descriptive JIT compiler.
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his code, he will want to download the (trusted) instrumentation component
on-the-fly to customize the generated code accordingly.

Unfortunately, most Java JITs today are architected to be closed and mo-
nolithic, and do not facilitate interfaces, frameworks, nor patterns as a means
of customization. Moreover, JIT compilers are usually written in C or C++,
and live in a completely separate scope from normal Java programs, without
enjoying any of the language/systems benefits that Java provides, such as ease
of programming and debugging, code safety, portability and mobility, etc. In
other words, current Java JIT compilers are “black boxes”, being in a sense
against the principle of modular, open-ended, portable design ideals that Java
itself represents.

In order to resolve such a situation, the collaborative group between Tokyo
Institute of Technology and Fujitsu Limited sponsored by Information Promo-
tion Agency of Japan, have been working on a project OpenJIT[19] for almost
the past two years. OpenJIT itself is a “reflective” Just-In-Time open compiler
framework for Java written almost entirely in Java itself, and plugs into the
standard Sun JDK 1.1.x and 1.2 JVMs. All compiler objects coexist in the same
heap space as the application objects, and are subject to execution by the same
Java machinery, including having to be compiled by itself, and subject to static
and dynamic customizations. At the same time, it is a fully-fledged, JCK (Java
Compatibility Kit) compliant JIT compiler, able to run production Java code.
In fact, as far as we know, it is the ONLY Java JIT compiler whose source code
is available in public, and is JCK compliant other than that of Sun’s. And, as
the benchmarks will show, although being constrained by the limitations of the
“classic” JVMs, and still being in development stage lacking sophisticated high-
level optimizations, it is nonetheless equal to or superior to the Sun’s (classic)
JIT compiler on SpecJVM benchmarks, and attains about half the speed of the
fastest JIT compilers that are much more complex, closed, and requires a specia-
lized JVM. At the same time, OpenJIT is designed to be a compiler framework
in the sense of Stanford SUIF[28], in that it facilitates high-level and low-level
program analysis and transformation framework for the users to customize.

OpenJIT is still in active development, and we are distributing it for free for
non-commercial purposes from http://www.openjit.org/. It has shown to be
quite portable, thanks in part to being written in Java—the Sparc version of
OpenJIT runs on Solaris, and the x86 version runs on different breeds of Unix
including Linux, FreeBSD, and Solaris. We are hoping that it will stem and culti-
vate interesting and new research in the field of compiler development, reflection,
portable code, language design, dynamic optimization, and other areas.

The purpose of the paper is to describe our experiences in building OpenJIT,
as well as presenting the following technical contributions:

1. We propose an architecture for a reflective JIT compiler framework on a
monolithic “classic” JVM, and identify the technical challenges as well as
the techniques employed. The challenges exist for several reasons, that the
JIT compiler is reflective, and also the characteristics of Java, such as its
pointer-safe execution model, built-in multi-threading, etc.
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2. We show an API that adds to the existing JIT compiler APIs in “classic”
JVM to allow reflective JITs to be constructed. Although still early in its
design, and requiring definitions of higher-level abstractions as well as ad-
ditional APIs for supporting JITs on more modern VMs, we nonetheless
present a minimal set of APIs that were necessary to be added to the Java
VM in order to facilitate a Java JIT compiler in Java.

3. We perform extensive analysis of the performance characteristics of OpenJIT,
both in terms of execution speed and memory consumption. In fact, as far as
we know, there have not been any reports on any self-descriptive JIT com-
pilation performance analysis, nor memory consumption reports for any JIT
compilers. In particular, we show that (1) JIT compilation speed does not
become a performance issue, especially during the bootstrap process when
much of the OpenJIT compiler is run under interpretation, (2) memory con-
sumption of reflective JITs, however, could be problematic due to recursive
compilation, especially in embedded situations, (3) that there are effective
strategies to solve the problems, which we investigate extensively, and (4)
that the solutions do not add significant overhead to overall execution, due
to (1). In fact, the self-compilation time of OpenJIT is quite amortizable for
real applications.

2 Overview of the OpenJIT Framework

2.1 OpenJIT: The Conceptual Overview

OpenJIT is a JIT compiler written in Java to be executed on “classic” VM sy-
stems such as Sun JDK 1.1.x and JDK 1.2.x. OpenJIT allows a given Java code
to be portable and maintainable with compiler customization. With standard
Java, the portability of Java is effective insofar as the capabilities and features
provided by the JVM (Java Virtual Machine); thus, any new features that has
to be transparent from the Java source code, but which JVM does not provide,
could only be implemented via non-portable means. For example, if one wishes
to write a portable parallel application under multi-threaded, shared memory
model, then distributed shared memory (DSM) would be required for execu-
tion under MPP and cluster platforms. However, JVM itself does not facilitate
any DSM functionalities, nor provide software ‘hooks’ for incorporating the
necessary read/write barriers for DSM implementation. As a result, one must
modify the JVM, or employ some ad-hoc preprocessor solution, neither of which
are satisfactory in terms of portability and/or performance. With OpenJIT, the
DSM class library implementor can write a set of compiler metaclasses so that
necessary read/write barriers, etc., would be appropriately inserted into critical
parts of code.

Also, with OpenJIT, one could incorporate platform-, application-, or usage-
specific compilation or optimization. For example, one could perform various
numerical optimizations such as loop restructuring, cache blocking, etc. which
have been well-studied in Fortran and C, but have not been well adopted into
JITs for excessive runtime compilation cost. OpenJIT allows application of such
optimizations to critical parts of code in a pinpointed fashion, specified by either
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Fig. 1. Comparison of Traditional JITs and OpenJIT

the class-library builder, application writer, or the user of the program. Further-
more, it allows optimizations that are too application and/or domain specific to
be incorporated as a general optimization technique for standard compilers, as
has been reported by [16].

In this manner, OpenJIT allows a new style of programming for optimiza-
tions, portability, and maintainability, compared to traditional JIT compilers,
by providing separations of concerns with respect to optimization and code-
generation for new features. With traditional JIT compilers, we see in the up-
per half of Figure 1, the JIT compilers would largely be transparent from the
user, and users would have to maintain code which might be too tangled to
achieve portability and performance. OpenJIT, on the other hand, will allow
the users to write clean code describing the base algorithm and features, and by
selecting the appropriate compiler metaclasses, one could achieve optimization
while maintaining appropriate separation of concerns. Furthermore, compared
to previous open compiler efforts, OpenJIT could achieve better portability and
performance, as source code is not necessary, and late binding at run-time allows
exploitation of run-time values, as is with run-time code generators.

2.2 Architectural Overview of OpenJIT

The OpenJIT architecture is largely divided into the frontend and the backend
processors. The frontend takes the Java bytecodes as input, performs higher-
level optimizations involving source-to-source transformations, and passes on
the intermediate code to the backend, or outputs the transformed bytecode.
The backend is effectively a small JIT compiler in itself, and takes either the
bytecode or the intermediate code from the frontend as input, performs lower-
level optimizations, and outputs the native code for direct execution. The reason
there is a separate frontend and the backend is largely due to modularity and ease
of development, especially for higher-level transformations, as well as defaulting
to the backend when execution speed is not of premium concern. In particular,
we strive for the possibility of the two modules being able to run as independent
components.

Upon invocation, the OpenJIT frontend system processes the bytecode of the
method in the following way: The decompiler recovers the AST of the original
Java source from the bytecode, by recreating the control-flow graph of the source
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program. At the same time, the annotation analysis module will obtain annota-
ting info on the class file, which will be recorded as attribute info on the AST2.
Next, the obtained AST will be subject to optimization by the (higher-level) op-
timization module. Based on the AST and control-flow information, we compute
the data & control dependency graphs, etc., and perform program transforma-
tion in a standard way with modules such as flowgraph construction module,
program analysis module, and program transformation module. The result from
the OpenJIT frontend will be a new bytecode stream, which would be output
to a file for later usage, or an intermediate representation to be used directly by
the OpenJIT backend.

The OpenJIT backend system, in turn, performs lower-level optimization over
the output from the frontend system, or the bytecodes directly, and generates
native code. It is in essence a small JIT compiler in itself. Firstly, when invo-
ked as an independent JIT compiler bypassing the frontend, the low-level IL
translator analyzes and translates the bytecode instruction streams to low-level
intermediate code representation using stacks. Otherwise the IL from the fron-
tend is utilized. Then, the RTL Translator translates the stack-based code to
intermediate code using registers (RTL). Here, the bytecode is analyzed to di-
vide the instruction stream into basic blocks, and by calculating the depth of the
stack for each bytecode instruction, the operands are generated with assumption
that we have infinite number of registers. Then, the peephole optimizer would
eliminate redundant instructions from the RTL instruction stream, and finally,
the native code generator would generate the target code of the CPU, allocating
physical registers. Currently, OpenJIT supports the SPARC and the x86 proces-
sors as the target, but could be easily ported to other machines. The generated
native code will be then invoked by the Java VM, as described earlier.

3 Overview of the OpenJIT Frontend System

As described in Section 2, the OpenJIT frontend system provides a Java class
framework for higher-level, abstract analysis, transformation, and specialization
of Java programs which had already been compiled by javac: (1) The decompiler
translates the bytecode into augmented AST, (2) analysis, optimizations, and
specialization are performed on the tree, and (3) the AST is converted into
the low-level IL of the backend system, or optionally, a stream of bytecodes is
generated.

Transformation over AST is done in a similar manner to Stanford SUIF,
in that there is a method which traverses the tree and performs update on a
node or a subtree when necessary. There are a set of abstract methods that are
invoked as a hook. The OpenJIT frontend system, in order to utilize such a hook
functionality according to user requirements, extends the class file (albeit in a
conformable way so that it is compatible with other Java platforms) by adding
annotation info to the classfile. Such an info is called “classfile annotation”.
2 In the current implementation, the existence of annotation is a prerequisite for fron-

tend processing; otherwise, the frontend is bypassed, and the backend is invoked
immediately.
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Fig. 2. Overview of OpenJIT Frontend System

The overall architecture of the OpenJIT frontend system is as illustrated in
Fig. 2, and consists of the following four modules:

1. OpenJIT Bytecode Decompiler
Translates the bytecode stream into augmented AST. It utilizes a new algo-
rithm for systematic AST reconstruction using dominator trees.

2. OpenJIT Class Annotation Analyzer
Extracts classfile annotation information, and adds the annotation info onto
the AST.

3. OpenJIT High-level Optimizer Toolkit
The toolkit to construct “compilets”, which are modules to specialize the
OpenJIT frontend for performing customized compilation and optimizations.

4. Abstract Syntax Tree Package
Provides construction of the AST as well as rewrite utilities.

For brevity, we omit the details of the frontend system. Interested readers
are referred to [20].

4 OpenJIT—Backend and Its Technical Issues

4.1 Overview of the OpenJIT Backend System

As a JIT compiler, the high-level overview of the workings of OpenJIT backend
is standard. The heart of the low-level IL translator is the parseBytecode()
method of the ParseBytecode class, which parses the bytecode and produces an
IL stream. The IL we defined is basically an RISC-based, 3-operand instruction
set, but is tailored for high affinity with direct translation of Java instructions
into IL instruction set with stack manipulations for later optimizations. There are
36 IL instructions, to which each bytecode is translated into possibly a sequence
of these instructions. Some complex instructions are translated into calls into
run-time routines. We note that the IL translator is only executed when the
OpenJIT backend is used in a standalone fashion; when used in conjunction
with the frontend, the frontend directly emits IL code of the backend.
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Then, RTL converter translates the stack-based IL code to register based
RTL code. The same IL is used, but the code is restructured to be register-based
rather than encoded stack operations. Here, a dataflow analyzer is then run to
determine the type and the offset of the stack operands. We assume that there
are infinite number of registers in this process. In practice, we have found that
24–32 registers are sufficient for executing large Java code without spills when no
aggressive optimizations are performed[24]. Then, the peephole optimizer would
eliminate redundant instructions from the RTL instruction stream.

Finally, the native code generator would generate the target code of the CPU.
It first converts IL restricting the number of registers, inserting appropriate spill
code. Then the IL sequence is translated into native code sequence, and ISA-
specific peephole optimizations are performed. Currently, OpenJIT supports the
SPARC and x86 processors as the target, but could be easily ported to other
machines3. The generated native code will be then invoked by the Java VM,
upon which the OpenJIT runtime module will be called in a supplemental way,
mostly to handle Java-level exceptions.

The architectural outline of the OpenJIT backend is illustrated in Figure 3.
Further details of the backend system can be found in [23].

4.2 Technical Challenges in a Reflective Java JIT Compiler

As most of OpenJIT is written in Java, the bytecode of OpenJIT will be initially
interpreted by the JVM, and gradually become compiled for faster, optimized
execution. Although this allows the JIT compiler itself to adapt to the particular
execution environment the JIT optimizes for, it could possibly give rise to the
following set of problems:

1. Invoking the Java-based JIT compiler from within the JVM
As the JIT compiler is invoked in the midst of a call chain of the base Java
program. There must be a smooth way to massaging the JVM into invoking
a JIT compiler in Java in a separate context.

3 Our experience has been that it has not been too difficult to port from SPARC to
x86, save for its slight peculiarities and small number of registers, due in part being
able to program in Java. We expect that porting amongst RISC processors to be
quite easy.
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2. Recursive Compilation
The current OpenJIT is designed to be entirely bootstrapped in “cold” mode,
i.e., no parts of the JIT compiler are precompiled. Thus, as is with any
reflective system, there must be some mechanism to stop the infinite recursive
process, and “bottom out”. This is a little more subtle than conventional
compiler bootstrapping, as compilation occurs at runtime coexisting with
compilation of applications; furthermore, the mechanism must be safe w.r.t.
Java multi-threading, i.e., no deadlocks should occur.

3. Speed and Memory Efficiency of the JIT compiler
A JIT compiler is beneficial only if the combined (compilation time + execu-
tion time) is smaller than the interpretation time under JVM. In more prac-
tical terms, OpenJIT must compete with traditional C-based JIT compilers
for performance. Here, because of the interpretation and possible slowness
of JIT execution even if itself were JIT compiled due to quality of generated
native code, it is not clear if such goals could be satisfied. Moreover, me-
mory efficiency is of primary concern, especially for embedded systems. In
this regard, there is a particular issue not present in C-based JIT compilers.

4. Lack of appropriate API for Java-written JIT compilers in standard JVM
A JIT compiler must be able to introspect and modify various data structu-
res within the JVM. Unfortunately, JVM does not have any APIs for that
purpose, primarily because it is likely that JIT compilers were assumed to
be written with a low-level language such as C. For this purpose, there must
be appropriate Java-level APIs which must be reasonably portable for JVM
introspection in OpenJIT.

Again, for brevity, we only cover the most salient technical features here: for
complete technical details readers are referred to [25].

Invoking the Java-based JIT compiler from within the JVM. In a
“classic” JVM, for each method, both JIT compilation and transfer of control to
the native method happens at the point of the subject method invocation. The
JVM interpreter loop is structured as follows. When a method is invoked, the
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invoker function of the methodblock structure (a structure internal to the JVM
which embodies various info pertaining to a particular method) mb is called.
Under interpretive execution, this in turn calls the JVM to generate a new Java
stack frame. The first argument of invoker() function o is the class object for
static method calls, and the invoked object on normal method calls. The second
argument mb is a pointer to the methodblock structure, etc.

while(1) {
get opcode from pc
switch(opcode) {
...(various implementation of the JVM bytecodes)
callmethod:

mb->invoker(o, mb, args_size, ee);
frame = ee->current_frame; /* setup java frame */
pc = frame->lastpc; /* setup pc*/
break;

}
}

As showed in Figure 4, we substitute the value of the invoker in method-
block structure of every method to OpenJIT invoke when a class is loaded. The
OpenJIT invoke function is defined as follows in C:

bool_t OpenJIT_invoke(JHandle *o, struct methodblock *mb,
int args_size, ExecEnv *ee)

This function in turns calls the OpenJIT compile() in the C runtime to
dynamically compile the method. Thereafter, the control is transferred to
mb->invoker, transferring control to the just compiled method. The called
OpenJIT compile() performs the following functions:

1. Mutual exclusion to prevent simultaneous compilation of the same method —
We must prevent multiple threads from compiling the same method at the
same time with proper mutual execution using a compile lock. We reserve a
bit in the methodblock structure as a lock bit.

2. Setup of invoker and CompiledCode fields in the methodblock structure —
When a method is invoked, and subject to compilation, we reset the invoker
and other fields in the methodblock so that any subsequent invocation of the
method will have the method run by the interpreter during compilation. This
allows natural handling of recursive self-compilation of OpenJIT compiler
classes.

3. Invocation of the body of the JIT compiler — The Java method to invoke
the compiler is then upcalled. An instance of a new JIT compiler in Java (to
be more specific, its upcall entry class) is allocated and initialized for each
JIT compiler invocation. Then, the compile() method of the instantiated
entry class is up with do execute java method vararg(). Note that the
current call context is preserved in the stack; that is to say, the same thread
is utilized to make the upcall.



372 H. Ogawa et al.

4. Postprocessing of JIT compilation — After compilation, control returns to
the C runtime. At this point, most of the compiler becomes garbage, except
for the persistent information that must be maintained across method com-
pilations. This is to facilitate dynamic change in the compiler with compilets,
and also to preserve space, directly exploiting the memory management fea-
ture of Java. If the compilation is successful, we set the invoker field of the
methodblock structure to the compiled native code. When compilation fails:
The methodblock field values are restored to their original values. 4

In this manner, the JIT compiler in Java is smoothly invoked on the same
execution thread. In practice it is much more complicated, however, due to
possibility of exceptions, JIT compilation occurring even on calls from native
methods, advanced features such as backpatching, inlining, and adaptive com-
pilation. Some of the issues are further discussed below, while for the rest refer
to [25].

Recursive Compilation. Recursive compilation is handled at the C runtime
level of OpenJIT with simple locking mechanism, as we see in the following
simplified code fragment (in practice, it would include more code such as support
for adaptive compilation):

COMPILE_LOCK(ee);
if (COMPILE_ON_THE_WAY(mb)) {

/* now compiling this method. avoid from double compiling */
COMPILE_UNLOCK(ee);
return;

}
START_COMPILE(mb);
/* reset invoker temporarily */
mb->invoker = (mb->fb.access & ACC_SYNCHRONIZED) ?

invokeSynchronizedJavaMethod : invokeJavaMethod;
/* reset dispatcher temporarily */
mb->CompiledCode = (void *)dispatchJVM;
COMPILE_UNLOCK(ee);

This is essentially where the compilation “bottoms out”; once the method starts
to be compiled, a lock is set, and further execution of the method will be in-
terpreted. In fact, in Java we actually obtain this behavior for free, as mutual
exclusion of multi-threaded compilation has to be dealt with in any case, defaul-
ting to interpretation.

However, in the case of recursive compilation, there are some issues which do
not exist for C-based JIT compilers:

4 In practice, the invoker field is not directly substituted for the compiled native
method, but rather we invoke a native code stub, depending on the type of the
return argument. This is done to handle exceptions, java reflection, calls between
native and interpreted code, etc.
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– Possibility of Deadlocks — We must be assured that, as long as JIT compi-
ler obeys the locking protocol, recursive multi-threaded compilation does not
cause any deadlocking situations. This is proven by showing that cyclic re-
source dependencies will not exist between the multi-threaded compilations.
Let the dependencies between the methods be denoted mc

1 −→ mc
2, where for

execution of compiled method mc
1 we need to execute a compiled method mc

2.
We further distinguish compiled and interpreted execution of methods with
mc and mi, respectively. Then, starting from the entry method as a node,
graph of dependency relations will clearly form a tree for single-threaded
case. For multi-threaded case, however, it must be shown that arbitrary in-
terleavings of the tree via possible self compilation will only create DAGs.
Informally this simply holds because all mi’s will not be dependent on any
other nodes, and thus the cycle will have to be formed amongst mc’s, which
is not possible.
We also note that, in practice, deadlocks could and does occur not only
between the JIT compiler and the JVM. One nasty bug which took a month
to discover was in fact such a deadlock bug. As it turns out, the “classic”
JVM locks the constant pool for a class when its finalizer is run. This could
happen just when OpenJIT tries to compile the finalizer method, resulting
in a deadlock.

– Speed and Memory Performance Problems — Aside from the JIT compiler
merely working, we must show that the JIT compiler in Java could be time
and memory efficient. The issue could be subdivided into cases where the
OpenJIT is compiling (1) application methods, and (2) OpenJIT methods.
The former is simply shown by extensive analysis of standard benchmarks
in Section 5, where it is shown that OpenJIT achieves good time and me-
mory performance and despite being constrained by the limitations of the
“classic” VM, such as handle-based memory systems implementation, non-
strict and non-compacting GC, slow monitor locking, etc. The latter is much
more subtle: because of recursive compilation, two undesirable phenomena
occur. (A) compilation of a single application bytecode will set off a chain
of recursive compilations, due to the dependency just discussed. This has
the effect of accumulating compiling contexts of almost the entire OpenJIT
system, putting excessive pressure on the memory system. (B) We could pre-
vent the situation by employing adaptive compilation and defaulting back to
interpretation earlier, but this will have the effect of slowing down the boot-
strap time, as long as possibly having some residual effect on application
compilation due to some OpenJIT compiler methods still being interpreted.
(A) and (B) are strongly interrelated; in the worst case, we will be trading
speed, especially the bootup time, for space. On the other hand, one could
argue that little penalty is incurred by adaptive means, not because of the
typical execution frequency argument, but rather, that because of recursive
compilation, much of the OpenJIT system could be compiled under inter-
pretation in the first place. We perform extensive performance analysis to
investigate this issue in Section 5.
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Lack of appropriate API for Java-written JIT compilers in standard
JVM. None of the current Java VMs, including the “classic” VM for which
OpenJIT is implemented, have sufficient APIs for implementing a JIT compiler
in Java. In particular, JVM basically only provides APIs to invoke a C-based
JIT compiler, but does not provide sufficient APIs for generalized introspection
or intersession features. Note that we cannot employ the Java reflection API
either, for it abstracts out the information required by the JIT compiler.

Instead, we define a set of native methods as a part of the OpenJIT runtime.
The Compile class declares the following native methods, which are defined in
api.c of the distribution. There are 17 methods in all, which can be categorized
as follows:

– Constant pool introspection methods

public final native int ConstantPoolValue(int index)
private final native int ConstantPoolTypeTable(int index)
public final int ConstantPoolType(int index)
public final boolean ConstantPoolTypeResolved(int index)
public final String ConstantPoolClass(int index)
private native byte[] ConstantPoolClass0(int index)
public final String ConstantPoolName(int index)
private native byte[] ConstantPoolName0(int index)
public final native int ConstantPoolAccess(int index)
public final native byte[] ConstantPoolMethodDescriptor(int index)
public final native int ConstantPoolFieldOffset(int index)
public final native int ConstantPoolFieldAddress(int index)

– Native method allocation and reflection

public final native void NativeCodeAlloc(int size)
public final native int NativeCodeReAlloc(int size)
public final native void setNativeCode(int pc, int code)
public final native int getNativeCode(int pc)
private native byte[] MethodName()

– Class resolution methods (used for inlining)

public final native void initParser(int caller_cp, int index)
public final native void resolveClass(int caller_cp, int index)

As one can see, majority of the methods are such that either introspective
or intercessive operations being performed on the JVM.

The current API is sufficient, but admittedly too low level of abstraction, in
that it exposes too much of the underlying VM design; indeed, our goal is to
allow JITs to be a customizable and portable hook to the Java system, and thus,
have OpenJIT be portable across different kinds of VMs. For this purpose, in
the next version of OpenJIT, we plan to design a substantially higher-level API,
abstracting out the requirements of the different VMs. The implementation of
the API for “classic” VM will sit on the current APIs, but other VMs will have
different implementations of native methods.
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Another issue is the safety of the API. In the current implementation, the
OpenJIT native method APIs are accessible to all the classes, including the
application classes. It is easy to restrict the access to just the compiler classes
(those with path org.OpenJIT.), but this will preclude user-defined compilets.
Some form of security/safety measures with scope control, such as restricting
access only to signed classfiles, might be necessary. We are currently investigating
this possibility to utilize the security API in JDK 1.2.

5 Performance Analysis of OpenJIT

We now analyze the behavior of OpenJIT with detailed benchmarks. As mentio-
ned earlier, our concern is both execution speed and memory usage. The former
is obvious, as the execution overhead of the JIT compiler itself as well as quality
of generated code will have to match that of conventional JIT compilers. Me-
mory usage is also important, especially in areas such as embedded computing,
one of major Java targets.

All the OpenJIT objects, except for the small C runtime system, coexists
in the heap with the target application. The necessary working space inclu-
des that of various intermediate structures of compiler metaobjects that the
OpenJIT builds, including various flowgraphs, intermediate code, etc., and per-
sistent data, such as the resulting native code. Standard C-based JIT compilers
will have to allocate such structures outside the Java heap; thus, memory usage
is fragmented, and efficient memory management of the underlying JVM is not
utilized. For OpenJIT, since both the application and compiler metaobjects will
coexist in the heap, it might seem that we would obtain the most efficient usage
of heap space.

On the other hand, the use of Java objects, along with automated garbage
collection, could be less memory efficient than C-based JITs. Moreover as men-
tioned in Section 4, there could be a chain of recursive compilations which will
accumulate multiple compilation contexts, using up memory. It is not clear what
kind of adaptive compilation techniques could be effective in decreasing the ac-
cumulation, while not resulting in substantial execution penalty.

5.1 Benchmarking Environment

As an Evaluation Environment, we employed the following platform, and pitted
OpenJIT against Sun’s original JIT compiler (sunwjit) on JDK 1.2.2 (Clas-
sicVM).

– Sun Ultra60 (UltraSparc II 300MHz×2, 256MB)
– Solaris 2.6-J
– JDK 1.2.2 (ClassicVM)

We took six programs from the SPECjvm98 benchmark, as well as the simple
“Hello World” benchmark. The six— 201 compress (file compression), 202 jess
(expert system), 209 db (DBMS simulator), 213 javac (JDK 1.0.2 compiler),
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Table 1. Code size of OpenJIT and C runtimes

classes (files) methods # lines classfile (stripped binary) bytes
Frontend 243 1,439 24,148 629,062
Backend (sparc) 23 182 7,560 118,592
Backend (x86) 21 182 8,085 118,125
C runtime(sparc) 3 3,565 42,556
C runtime(x86) 3 3,752 28,928
sunwjit (sparc) 234,112
sunwjit (x86) 146,508

and 227 mtrt (multi-threaded raytracer), and 228 jack (parser generator)—
have been chosen as they are relatively compute intensive, do not involve mere
simple method call loops, and not reliant on runtime native calls such as net-
works, graphics, etc. “Hello World” benchmark superficially only makes a call
to System.out.println(), but actually it will have executed almost the entire
OpenJIT system, the Java packages that OpenJIT employs, as well as the con-
structors of system classes. This allows us to observe the bootstrap overhead of
the OpenJIT system.

In order to obtain the precise profile information for memory allocation, we
employed the JVMPI (Java Virtual Machine Profiler Interface) of JDK 1.2.2.
Additionally, we extended OpenJIT to output its own profile information. This
is because it is difficult to determine with JVMPI whether the allocated compiler
metaobject is being used to compile application methods, or used for recursive
compilation, because JVMPI merely reports both to be of the same class (say,
merely as instances of ILnode, etc.). By combining JVMPI and OpenJIT profile
information, we obtain precise information of how much space the live OpenJIT
compiler metaobjects occupy, how much native code is being generated, how
much of the native code is that of OpenJIT, along the execution timeline. Also,
how much classfiles are being loaded, how many methods are being compiled,
and what is the percentage of the OpenJIT classes, can be profiled as well.

Such profiling is done in real-time, in contrast to the simulation based profi-
ling of SpecJVM memory behavior in [6]. Such an approach is difficult to apply
for our purpose, as JIT compilation is being directly involved, resulting in code
not directly profilable with JVM simulation. Our compiler-assisted profiling al-
lows us to obtain almost as precise an information as that of [6] at a fraction
of time. Nevertheless, the profile information generated is quite large, reaching
several hundred megabytes for each SpecJVM run.

5.2 Benchmarking Contents

The Size of OpenJIT. We first show the code size of OpenJIT compared to
sunwjit. As we can see, the frontend is approximately 3 times the size of backend
in terms of number of lines, and factor of approximately 8–10 larger in terms of
number of classes and methods. This is because the frontend contains numerous
small classes representing syntactic entities of Java, whereas the backend has
much larger method size, and the backend IL does not assign a class for each
instruction. We also see that the combined size of OpenJIT backend and C
runtime is smaller than sunwjit, but when it is self-compiled, the x86 version
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Table 2. Baseline Performance

Program JIT class# alloc obj# allocsize[MB] GC# time
(openjit) (openjit)

interpreter 167 4,890(—) 0.273(—) 0 0.380
Hello sunwjit 172 5,244(—) 0.285(—) 0 0.450

openjit 185 90,600(74,831) 2.906(2.316) 5 1.270
openjit-int 185 37,059(31,149) 1.265(0.941) 2 1.280
interpreter 224 15,547(—) 110.640(—) 20 673.910

201 sunwjit 226 9,399(—) 110.266(—) 16 89.620
compress openjit 241 136,328(107,197) 114.330(3.318) 21 72.530

openjit-int 241 81,910(62,742) 112.662(1.918) 18 74.460
interpreter 373 7,951,562(—) 221.919(—) 547 148.550

202 sunwjit 375 7,936,214(—) 221.190(—) 565 65.750
jess openjit 390 8,103,973(142,626) 226.383(4.402) 528 62.530

openjit-int 390 8,049,403(98,045) 224.710(2.998) 532 62.160
interpreter 218 3,218,293(—) 63.249(—) 33 307.480

209 sunwjit 220 3,213,851(—) 63.095(—) 32 142.160
db openjit 235 3,343,820(109,778) 67.104(3.398) 39 172.830

openjit-int 235 3,289,249(65,197) 65.431(1.994) 37 182.080
interpreter 386 5,972,713(—) 147.288(—) 80 200.940

213 sunwjit 388 5,936,663(—) 145.458(—) 69 94.850
javac openjit 403 6,181,295(208,562) 154.486(6.478) 77 102.960

openjit-int 403 6,126,571(164,145) 151.531(5.080) 67 108.850
interpreter 239 6,382,222(—) 84.118(—) 90 173.510

227 sunwjit 241 6,376,266(—) 83.902(—) 90 59.430
mtrt openjit 256 6,524,115(124,549) 88.467(3.855) 96 56.640

openjit-int 256 6,469,545(79,968) 86.794(2.451) 93 56.980
interpreter 270 6,878,777(—) 150.755(—) 451 196.330

228 sunwjit 272 6,868,951(—) 150.353(—) 465 66.669
jack openjit 287 7,046,695(152,625) 155.818(4.707) 286 66.970

openjit-int 287 6,992,109(108,001) 154.144(3.302) 276 68.010

could get larger. Thus, this raises an interesting issue of what happens if we
run the compiler always interpreted in embedded situations; in the subsequent
benchmark, we will also investigate this possibility.

Baseline Performance. We next observe the baseline execution time and me-
mory usage characteristics of OpenJIT. We set the heap limit to 32MBytes (as
mandated by the SpecJVM98 benchmarks) comparing the execution of JVM
interpreter, sunwjit, OpenJIT with self compilation, and OpenJIT without self
compilation. Table 2 shows for each execution, how many classes are loaded and
their sizes, how many objects are allocated (parenthesis indicates how many
OpenJIT compiler metaobjects), how much memory size are allocated (and that
of OpenJIT compiler metaobjects), wallclock execution time, and number of
GCs.

Figure 5 additionally show consumed overall heap space, live OpenJIT object
heap space, along the time axis. This shows the process of compiler bootstrap-
ping. The compilation in OpenJIT was set to be most aggressive i.e., all the
methods are JIT compiled on their first invocations, and the entire frontend had
been turned off, and are not loaded.

The Hello benchmark exemplifies the overhead of bootstrapping openjit and
openjit-int; compared to sunwjit, we see approximately 2.8 times increase in
startup time, indicating that compilation with OpenJIT incurs approximately
×3 overhead over sunwjit. On the other hand, difference between openjit and
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Fig. 5. Timeline behavior of heap usage and live object allocated by OpenJIT (in-
terpreter, sunwjit, openjit, openjit-int). The measured time of this figure contains the
overhead of profiling, so it did not exactly match the results of Table 2.

openjit-int is negligibly small; this indicates that overhead of self compilation
is almost negligible, but rather, the overhead of system and library classes are
substantial (we observe approximately 457 methods compiled, as opposed to 128
methods for OpenJIT).

For the six SPECjvm98 benchmarks, we see that the overhead is well amorti-
zed, and OpenJIT is competitive with sunwjit, sometimes superior. The running
time of programs range between 56–172 seconds, so the overhead of JIT compila-
tion is well amortized, even for openjit-int, given the relative expense of OpenJIT
compilation over sunwjit. Moreover, since method-specific openjit compiler me-
taobjects are mostly thrown away on each compilation, in principle we do not
occupy memory compared to sunwjit (Fig. 5) In fact, we may be utilizing me-
mory better due to sharing of the heap space with the application. The runtime
comparison of execution times of each program depends on each program. For
compress, openjit was 20% superior, whereas sunwjit was faster by about 18%.
Other benchmarks are quite similar in performance. Even small but unnegligible
difference in compilation overhead, OpenJIT is likely producing slightly superior
code on average.

We do observe some anomalies, however. Firstly, for most cases OpenJIT
had increased invocations of GCs due to heap coexistence; but for jack and jess,
OpenJIT had less GC invocations, by approx. 40% and 5%, respectively. This
is attributable to unpredictable behavior of conservative GC in the “classic”
JVM; it is likely that by chance, the collector happened to mistake scalars for
pointers on the stack. Neither really contributes significantly to performance
differences. Another anomaly is that, in many cases openjit-int was faster than
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openjit with self-compilation. This somewhat contradicts our observation that
compilation DOES incur some overhead, as difference between interpreted and
compiled executions of OpenJIT itself should manifest, but doesn’t.

Figure 5 shows the timeline track of the amount of heap usage by the entire
program, OpenJIT (openjit) and interpreted OpenJIT (openjit-int), respectively,
for the Hello benchmark. Again, we observe that during bootstrapping, openjit
and openjit-int require approximately 700Kbytes of heap space, which is about
2.6 times the heap space as sunwjit and pure interpreter. Since openjit-int does
not allocate metaobjects to compile itself, and the amount being consumed to
compile methods of other classes are small, we attribute the consumption to the
system objects with the libraries being called from OpenJIT, and immediately
released.

The Hello benchmark also verifies that there are two phases of execution
for OpenJIT. Firstly, there is a bootstrap phase where the entire OpenJIT is
aggressively compiled, accumulating multiple compilation contexts in the call
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Fig. 6. Timeline behavior of heap usage with SPECjvm98 (sunwjit vs. openjit). The
measured time of this figure contains the overhead of profiling, so it did not exactly
match the results of Table 2.
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Table 3. SPECjvm98 results on Linux (x86)

Benchmark OpenJIT interpreter sunwjit IBM1.1.8
200 check 0.043 0.082 0.106 0.042
201 compress 40.828 316.687 59.338 18.236
202 jess 29.783 90.434 48.493 13.142
209 db 85.881 203.289 119.228 40.259
213 javac 56.227 120.199 70.698 30.964
222 mpegaudio 40.911 263.870 41.705 11.942
227 mtrt 30.101 96.156 37.337 17.014
228 jack 28.403 107.049 49.176 10.751

chain of the JIT compiler. Thus, the space required is proportional to the critical
path in the call chain. Then, it quickly falls off, and transcends into a stable phase
where most parts of OpenJIT have been compiled, and only application methods
are being compiled and executed.

No matter how the memory is being used, the amount of additional heap
space required for recursively compiling OpenJIT will not be a problem for mo-
dern desktop environments, in some situations. A typical desktop applications
consumes orders of magnitude more space: for example, our measurements in
Figure 6 for javac shows it consumes more than 20 Mbytes5. However, for em-
bedded applications, such an overhead might be prohibitive. As discussed earlier,
this could be suppressed using less aggressive, adaptive compilation similar to
the Self compiler[12], but it is not clear what strategy will achieve good suppres-
sion while not sacrificing performance. In the next section we consider several
adaptive strategies for suppression.

We have also taken some benchmarks on the x86 version of OpenJIT, and
compared it against IBM’s JDK 1.1.8 JIT compiler, which is reputed to be
the fastest JIT compiler for x86, in neck to neck with Sun’s Hotspot. Table 3
shows the results: we see that, for most benchmarks, OpenJIT x86 is superior to
sunwjit, and runs about half the speed of IBMs JIT, despite being constrained
by the “classic” JVM.

5.3 Adaptive OpenJIT Compilation Strategies

There are several criteria in the design space for adaptive compilation in OpenJIT
for memory suppression of the bootstrapping phase.

1. Alteration of JIT compilation frequency — The most aggressive strategy
will compile each method on its first invocation. We reduce the frequency
of compilation using the following strategies, with p as a parameter (p =
2, 4, 8, 16)
– JIT compile on pth invocation, deferring to interpretation for the first

p − 1 invocations (constant delay).
– Assign each method a random number between [0, p − 1], and compile

when the number of invocation reaches that number (random delay).
5 [6] reports that with exact GC, the actual usage is approximately 6MBytes. The

difference is likely to be an artifact of conservative GC, our close examination has
shown.
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– Compile with probability 1/p on each invocation (probabilistic). reduced
probability increased the execution time by

2. Restriction of methods subject to adaptation — We could delay compilation
for all the methods, or alternatively, only those of the OpenJIT compiler
metaclasses. The former obviously will likely consume less space, but the
former may be sufficient and/or desirable, as it will not slow down the ap-
plication itself. We verify this by comparing altering compilation frequency
changes to all classes, versus only altering the frequency of OpenJIT method.
For the latter, all other methods are compiled on first invocation except for
class initializers, which are interpreted.

3. Restriction of number of simultaneous compilations — We put global re-
striction on how many compilations can occur simultaneously. This can be
done safely without causing deadlocks. Attempt to compile exceeding this
limit will default back to the interpreter. (L = 1, 8). Note that, although
simultaneous compilation could occur for application methods under multi-
threading, this primarily restricts the simultaneous occurrence of deep re-
cursive compilation chains on bootstrapping.

4. Restricting compilation of org.OpenJIT.ParseBytecode.parseBytecode()
— This is a special case, as preliminary benchmarks indicated that parse-
Bytecode(), is quite large for a single method, (1576 lines of source code,
6861 JVM bytecodes), and thus single compilation of this method creates
a large structure in the heap space once it is subject to compilation, irre-
spective of the strategies used. In order to eliminate the effect, we test cases
where compilation of parseBytecode() is restricted. In the next version of
OpenJIT we plan to factor the method into smaller pieces.

According to the Hello benchmark, in when adaptaion is applied to all the
methods, combinations of other schemes effectively yielded reduction in the num-
ber and size of objects that are allocated during bootstrapping, without signi-
ficant increase in bootstrap time. On the other hand, restricting compilation of
OpenJIT method only did not yield significant results, except for the case when
the entire OpenJIT was interpreted, or when parseBytecode() was restricted,
again, without significant loss of performance.

The table only shows the total memory allocated. In order to characterize
the peak memory behavior, we present the timeline behavior in Figure 7. Here,
for each scheme, the parameter with lowest peak is presented. We observe that,
(1) probabilistically lowering the frequency helps reduce the peak usage, and
(2) parseBytecode() dominates the peak. We are currently conducting futher
analysis, but it is conclusive that naive frequency adjustment does not help to
reduce the peak; rather, the best strategy seems to be to estimate the heap usage
based on bytecode length, and supressing compilation once a prescribed limit is
exceeded.
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Table 4. Alteration of JIT compilation frequency for all methods

Hello
criteria param method# alloc obj# alloc size [MB] GC# time

(openjit) (openjit) (openjit)
always – 457(128) 90,594(74,831) 2.905(2.316) 5 1.270

constant 2 225(126) 64,827(52,194) 2.117(1.629) 3 1.190
delay 4 180(116) 57,568(46,133) 1.898(1.445) 3 1.280

8 161(114) 55,743(44,470) 1.843(1.395) 4 1.250
16 151(113) 54,069(43,064) 1.793(1.352) 4 1.810

random 2 412(127) 84,739(69,746) 2.729(2.162) 5 1.270
delay 4 301(123) 72,686(59,272) 2.357(1.843) 4 1.190

8 231(120) 62,628(50,589) 2.050(1.578) 4 1.240
16 196(115) 61,923(49,790) 2.031(1.558) 3 1.350

probability 2 170(115) 56,383(45,041) 1.862(1.412) 4 1.280
4 190(115) 58,493(46,877) 1.924(1.466) 4 1.900
8 149(115) 53,710(42,735) 1.780(1.341) 3 2.010
16 112(99) 27,066(21,399) 0.955(0.664) 1 0.920

Table 5. Alteration of JIT compilation frequency for OpenJIT methods only

Hello
criteria param method# alloc obj# alloc size [MB] GC# time

(openjit) (openjit) (openjit)
always – 457(128) 90,594(74,831) 2.905(2.316) 5 1.270

constant 2 457(128) 90,526(74,757) 2.904(2.314) 5 1.240
delay 4 451(122) 89,616(73,988) 2.877(2.291) 5 1.260

8 449(120) 88,535(73,179) 2.845(2.265) 5 1.280
16 446(117) 85,699(71,112) 2.760(2.200) 5 1.800

random 2 457(128) 90,534(74,765) 2.904(2.314) 5 1.320
delay 4 455(126) 90,236(74,491) 2.895(2.306) 5 1.220

8 452(123) 89,780(74,115) 2.882(2.295) 5 1.230
16 450(121) 89,299(73,763) 2.868(2.284) 5 1.330

probability 2 450(121) 89,490(73,884) 2.873(2.288) 5 1.270
4 429(116) 83,831(69,523) 2.703(2.152) 4 1.980
8 446(117) 85,722(71,136) 2.760(2.201) 5 2.020
16 441(112) 84,637(70,295) 2.728(2.117) 4 0.910

limit 1 457(128) 90,590(74,821) 2.906(2.316) 4 2.530
simultaneity 8 457(128) 90,514(74,751) 2.903(2.314) 4 1.410

no parseBytecode – 456(127) 69,463(58,430) 2.248(1.788) 3 1.190
openjit-int – 329(0) 37,059(31,149) 1.265(0.941) 2 1.280
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Fig. 7. Timeline behavior of heap usage for adaptive compilation (best cases).
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6 Related Work

As mentioned earlier, most modern compilers and language systems are boot-
strapped in a self-descriptive fashion, but they do not coexist at runtime. In fact,
although Lisp and Smalltalk systems embodied their own compilers written in
terms of itself and executable at run-time, they are typically source-to-bytecode
compilers, and not bytecode-to-native code compilers, which JITs are. In fact,
as far as we know, there have not been any reports of a JIT compiler for a
particular language being reflective. Most JIT compilers we have investigated,
including those for Lisp, Smalltalk, Java as well as experimental languages such
as SELF, have been written in C/C++ or in assembly language.

More recent efforts in self-descriptive, practical object-oriented system is
Squeak[14]. Squeak employs the Bluebook[9] self-definition of Smalltalk, then
bootstraps it using C, then further optimizes the generated VM. Bootstrap-
ping in Squeak involves the VM only, and not the JIT compiler. The recently-
announced JIT Squeak compiler is written in C and basically only merges the
code fragments corresponding to individual bytecode. Thus, this is not a true
compiler in a sense, but rather a simple bytecode to binary translator. This was
done to achieve very quick porting of Squeak to various platforms, and stems
from some of the earlier work done in [21].

We know of only two other related efforts paralleling our research, namely
MetaXa[10] and Jalapeño[1]. Metaxa is a comprehensive Java reflective system
whereby many language features could be reified, including method invocations,
variable access, and locking. MetaXa has built its own VM and a JIT compiler;
as far as we have communicated with the MetaXa group, their JIT compiler is
not full-fledged, and is specific to their own reflective JVM. Moreover, their JIT
is reported not robust enough to compile itself.

Jalapeño[1] is a major IBM effort in implementing a self-descriptive Java
system. In fact, Jalapeño is an aggressive effort in building not only the JIT
compiler, but the entire JVM in Java. The fundamental difference stems from
the fact that Jalapeño rests on its own customized JVM with completely shared
address space, much the same way the C-based JIT compilers are with C-based
JVMs. Thus, there is little notion of separation of the JIT compiler and the
VM for achieving portability, and the required definition of clean APIs, which is
mandated for OpenJIT. For example, the JIT compilers in Jalapeño can access
the internal objects of the JVM freely, whereas this is not possible with OpenJIT.
So, although OpenJIT did not face the challenges of JVM bootstrapping, this
gave rise to investigation of an effective and efficient way of interfacing with a
monolithic, existing JVMs, resulting in very different technical issues as have
been described in Section 4.

The manner in which Jalapeño bootstraps is very similar to Squeak and
other past systems. The way the type safety of Java is circumvented, however,
is similar to the technique employed in OpenJIT: there is a class called Magic,
which defines a set of native methods that implements operations where direct
access to VM internals are required. In OpenJIT, the Compile class defines a
set of APIs using a similar technique. Unfortunately, again there is no mention
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of attempting to develop the API into a clean one for generalized purposes of
self-descriptive JITs for Jalapeño.

There are other technical differences as well; OpenJIT is architected to be
a compiler framework, supporting features such as decompilation, various fron-
tend libraries, whereas it is not with Jalapeño. No performance benchmarks
have been made public for Jalapeño, whereas we present detailed studies of exe-
cution performance validating the effectiveness of reflective JITs, in particular
memory profiling technique which directly exploits the ‘openness’ of OpenJIT.
Interestingly enough, Jalapeño is claimed to be only targeting server platforms,
and not desktop nor embedded platforms. It would be quite interesting to in-
vestigate the memory performance of Jalapeño in the manner we have done, in
particular to test whether it makes sense to target smaller platforms or not.

Still, the Jalapeño work is quite impressive, as it has a sophisticated three-
level compiler system, and their integrated usage is definitely worth investigating.
Moreover, there is a possibility of optimizing the the application together with
the runtime system in the VM. This is akin to optimization of reflective systems
using the First Futamura projection in object oriented languages, as has been
demonstrated by one of the author’s older work in [17] and also in [18], but could
produce much more practical and interesting results. Such an optimization is
more difficult with OpenJIT, although some parts of JVM could be supplanted
with Java equivalents, resulting in a hybrid system.

There have been a number of work in practical reflective systems that target
Java, such as OpenJava[27], Javassist[5], jContractor[15] , EPP[13], Kava[30],
just to name a few. Welch and Stroud present a comprehensive survey of Java
reflective systems, discussing differences and tradeoffs of where in the Java’s
execution process reflection should occur[30].

Although a number of work in the context of open compilers have stressed
the possibility of optimization using reflection such as OpenC++[4], our work
is the first to propose a system and a framework in the context of a dynamic
(JIT) compiler, where run-time information could be exploited. A related work
is Welsh’s Jaguar system[31], where a JIT compiler is employed to optimize
VIA-based communication at runtime in a parallel cluster.

From such a perspective, another related area is dynamic code generation
and specialization such as [7, 11, 8]. Their intent is to mostly provide a form of
run-time partial evaluation and code specialization based on runtime data and
environment. They are typically not structured as a generalized compiler, but
have specific libraries to manipulate source structure, and generate code in a
“quick” fashion. In this sense they have high commonalities with the OpenJIT
frontend system, sans decompilation and being able to handle generalized com-
pilation. It is interesting to investigate whether specialization done with a full-
fledged JIT compiler such as OpenJIT would be either be more or less beneficial
compared to such specific systems. This not only includes execution times, but
also ease of programming for customized compilation. Consel et. al. have inve-
stigated a hybrid compile-time and run-time specialization techniques with their
Tempo/Harrisa system [29, 22], which are source-level Java specialization system
written in C; techniques in their systems could be applicable for OpenJIT with
some translator to add annotation info for predicated specializations.
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7 Conclusion and Future Work

We have described our research and experience of designing and implementing
OpenJIT, an open-ended reflective JIT compiler framework for Java. In parti-
cular, we proposed an architecture for a reflective JIT compiler framework on a
monolithic VM, and identify the technical challenges as well as the techniques
employed, including the minimal set of low-level APIs required that needed to
be added to existing JVMs to implement a JIT compiler in Java, contrasting
to similar work such as Jalapeno. We performed analysis of the performance
characteristics of OpenJIT, both in terms of execution speed and memory con-
sumption, using collaborative instrumentation technique between the JVM and
OpenJIT, which allowed us to instrument the JIT performance in real-time,
and showed that OpenJIT is quite competitive with existing, commercial JIT
systems, and some drawbacks in memory consumption during the bootstrap pro-
cess could be circumvented without performance loss. We demonstrate a small
example of how reflective JITs could be useful class- or application specific cu-
stomization and optimization by defining a compilet which allowed us to achieve
8-9% performance gain without changing the base-level code.

Numerous future work exists for OpenJIT. We are currently redesigning the
backend so that it will be substantially extensible, and better performing. We
are also investigating the port of OpenJIT to other systems, including more
modern VMs such as Sun’s research JVM (formerly EVM). In the due process
we are investigating the high-level, generic API for portable interface to VMs.
The frontend requires substantial work, including speeding up its various parts
as well as adding higher-level programming interfaces. Dynamic loading of not
only the compilets, but also the entire OpenJIT system, is also a major goal,
for live update and live customization of the OpenJIT. We are also working on
several projects using OpenJIT, including a portable DSM system[26], numerical
optimizer, and a memory profiler whose early prototype we employed in this
work. There are numerous other projects that other people have hinted; we
hope to support those projects and keep the development going for the coming
years, as open-ended JIT compilers have provided us with more challenges and
applications than we had initially foreseen when we started this project two years
ago.
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