
netCFD: a Ninf CFD component for Global Computing,
and its Java applet GUI

Mitsuhisa Sato, Kazuhiro Kusano,
Real World Computing Partnership, Tsukuba, Japan

fmsato,kusanog@trc.rwcp.or.jp

Hidemoto Nakada, Satoshi Sekiguchi
Electrotechnical Laboratory, Tsukuba, Japan

Satoshi Matsuoka
Tokyo Institute of Technology, Tokyo, Japan

Abstract

Ninf is a middleware for building a global computing sys-
tem in wide area network environments. We designed and
implemented a Ninf computational component, netCFD for
CFD (Computational Fluid Dynamics). The Ninf Remote
Procedure Call (RPC) provides an interface to a parallel
CFD program running on any high performance platform-
s. The netCFD turns high performance platforms such as
supercomputers and clusters into valuable components for
use in global computing. Our experiment shows that the
overhead of a remote netCFD computation for a typical ap-
plication was about 10% comparing with its conventional
local execution. The netCFD applet GUI which is loaded in
a web browser allows a remote user to control and visualize
the CFD computation results interactively.

1 Introduction

Remarkable growth of computer network technology has
resulted in a variety of information services being acces-
sible through the Internet. Most existing global network
services, such as e-mail, file archives, and the WWW, are
limited to the mere sharing of data resources. The global
network could be far better utilized, as it embodies a po-
tential to provide a computational environment for sharing
of computational resources, including CPUs and disk stor-
age. The coming gigabit information superhighways will
further enhance the vision of world-wide global computing
resources,as it will be more possible to tap into power of
an enormous number of computers with idle computation
cycles. For the global network computing, libraries and sys-
tems such as Globus[3], Legion[4], NetSolve[2] and other
systems[1] have been proposed.

We are currently pursuing the Ninf (Network based Infor-
mation Library for high performance computing)[6] project,

as an infrastructure for world-wide global computing in sci-
entific computation. Ninf is a Japanese global computing
infrastructure project which involves the Real World Com-
puting Partnership(RWCP), the Electrotechnical Laboratory
(ETL), the Tokyo Institute of Technology, and several other
collaborators. Ninf is intended to provide a useful interface
to a variety of high performance computing platforms such
as clusters, MPP’s and supercomputers, for global scientif-
ic computing which uses computational resources that are
distributed across a world-wide global network. The ba-
sic Ninf system supports the client-server based computing.
The computational resources are made available as remote
libraries on remote computation hosts which can be called
over the global network by a programmer’s client program
written in an existing language such as Fortran, C, or C++
by using a Ninf remote procedure call (RPC). The program-
mer can build a global computing systems by using Ninf
remote libraries as components, without being aware of the
complexities and hassles of network programming. Since
the Ninf RPC can also be asynchronous, a user can issue
multiple calls in parallel to exploit network-wide parallelis-
m.

In this paper, we describe a Ninf computational compo-
nent, netCFD, which allows remote computational resources
such as powerful workstations and parallel computers to be
used as components for CFD (Computational Fluid Dynam-
ics) applications. NetCFD is a set of Ninf interfaces for
a CFD program which can be used via Ninf RPC from a
remote client. We designed a Java applet to visualize the
result of computation by netCFD as a sample netCFD ap-
plication, By implementing the GUI client as a Java applet,
a user can use the netCFD application from anywhere via a
web browser without installing any programs.

The next section overviews the Ninf as a background.
In Section 3, we describe netCFD, and we present some
preliminary results in Section 4. Section 5 presents some
concluding remarks.

2 Ninf: a Network based Information Li-
brary

2.1 Overview

The basic Ninf system employs a client-server model.
The server and client may be connected via a local area
network or over the Internet. Machines may be heteroge-
neous: data in communication is translated into the common
network data format.

A Ninf server process runs on a Ninf server host. Ninf
remote libraries are implemented as executable programs
which contain networkstub routine as their main routines,
and are managed by the server process. We call such ex-
ecutable programsNinf executables (programs). When the
library is called by a client program, the Ninf server searches
the Ninf executables associated with the library’s name, and
executes the matched executable, and sets up an appropriate
communication with the client. The stub routine handles
communication with the Ninf server and its client, includ-
ing argument marshaling. The underlying executable can be
written in any existing scientific language, such as Fortran
or C, as long as it can be executed in the host.

Ninf delivers the following benefits:

� A client can execute the most time-consuming part
of his program on multiple remote high-performance
computers, such as vector supercomputers and MPP’s,
without any requirement for special hardware or oper-
ating systems. If such supercomputers are reachable
via a high speed network, the application will naturally
run considerably faster. Ninf also provides uniform
access to a variety of supercomputers.

� The Ninf programming interface is designed to be ex-
tremely easy-to-use and familiar-looking for program-
mers of existing languages such as FORTRAN, C and
C++. The user can call remote libraries without any
knowledge of network programming, and easily con-
vert existing applications that already use popular nu-
merical libraries such as LAPACK.

� The Ninf RPC can be asynchronous and automatic:
for parallel applications, a group ofNinf metaserver-
s [5] maintains the information of Ninf servers in the
network in a distributed manner, and automatically al-
locates remote library calls dynamically to appropriate
servers for load balancing. Ninf provides a transaction
system to allocate multiple calls to achieve network-
wide parallelism. The data-dependencies among Ninf
calls are automatically detected and scheduled by the
metaserver. The Ninf metaserver could be regarded as
a network agent which locates an appropriate server
depending on the client request and state of network
resources.

2.2 The Programming Interface

Ninf_call() is the sole client interface to the Ninf
servers. As an example to illustrate the programming inter-
face, let us consider a simple matrix multiplication routine
in C programs with the following interface:

/* declaration */
double A[N][N],B[N][N],C[N][N];
....
/* calls matrix multiply, C = A * B */
dmmul(N,A,B,C);

When thedmmul routine is available on a Ninf serv-
er, a client program can call the remote library using
Ninf_call :

/* call remote Ninf library */
Ninf_call("dmmul",N,A,B,C);

Here,dmmul is the name of a library that is registered as a
Ninf executable on a server, andA,B,C andN are the same
arguments, declared above. As we see here, at the client,
the user only needs to specify the name of the function as
if he were making a local function call:Ninf_call()
automatically determines the function arity and types of
arguments, appropriately marshals the arguments, makes
the remote call to the server, obtains the result, places the
result in the appropriate argument, and returns to the client.
The Ninf RPC is designed to make it appear as if arguments
are being shared between the client and the server. Note
that the physical location of the Ninf server is specified in
an environment variable, or a setup file.

To realize such a simple programming interface for the
client, we designed Ninf RPC so that client function call-
s obtain all the interface information regarding the called
library function at runtime from the server. As shown in
Figure 1, a client function call requests the interface in-
formation of the calling function to the Ninf server, which
in turn returns the registered Ninf executable interface in-
formation to the client. Using this information, Ninf RPC
automatically performs argument marshaling, and generates
the sequence of sending and receiving data to/from the Ninf
server. The client library then interprets and marshals the ar-
guments on the stack according to the supplied information.
For variable-sized array arguments, the interface description
must specify an expression that includes the input scalar ar-
guments so that the size of the arrays can be computed. In
the above example, the client function call sends the input
arrays,A andB, both of which are of a size given by the
parameterN. The Ninf server invokes the Ninf executable of
library dmmul, and forwards the input data to it.

This design is in contrast to traditional RPCs, where stubs
are generated on the client side at compile time. The Ninf
RPC’s dynamic interface acquisition eliminates the need for
such compile-time activities at all, and thus relieves the user

Interface
 request

Interface

Argument

Result

 Client
Program

 Ninf
Procedure

Client Library
Stub program

Ninf Server

 Ninf
Executable

Figure 1. Ninf RPC

from related code maintenance. Although this will cost
an extra network round trip time, we judged that typical
scientific applications are both compute and data intensive
such that the overhead should be not significant.

The Ninf RPC may also be invoked asynchronously, to
exploit network-wide parallelism. It is possible to issue a
request to a Ninf server, continue with other computation,
then poll for the result later. Multiple RPC requests to
different servers are also possible. Asynchronous Ninf RPC
is thus an important feature for parallel programming.

Since the Ninf client programming interface has been
designed to be as language independent as possible, a Ninf
client may be written in any one of a variety of programming
languages. It is usually easy to design a client interface to
Ninf, so long as the language supports a standard external
function interface for C programs. We have already de-
signed and implemented clientNinf_call functions for
C, FORTRAN, Java, and Lisp. The client and remote library
can be written in totally different languages.

2.3 Ninf IDL

A library provider provides the numerical library and
computational resources to the network by preparing N-
inf executables in the Ninf IDL (Interface Description Lan-
guage). For example, the interface description for the matrix
multiplication given in the previous section is:

Define dmmul(IN int n, IN double A[n][n],
IN double B[n][n], OUT double C[n][n])

"... description ..."
/* library including this routine. */
Required "libxxx.o"
/* Use C calling convention. */
Calls "C" dmmul(n,A,B,C);

where theaccess specifiers, IN andOUT, specify whether
the argument is read from or written to. To specify the size
of the arguments, otherIN arguments can be used to give a
size expression. In this example, the value ofn is referenced

to calculate the size of the array argumentsA, B, C. Since
Ninf is designed for numerical applications, the data type-
s supported in the Ninf IDL is tailored for such purposes:
for example, data types are limited to scalar types and their
multi-dimensional array types. The interface description is
compiled by aNinf interface generatorto generate a stub
program for each library function described in its interface
information. The interface generator also automatically out-
puts a makefile with which Ninf executables can be created
by linking stub programs and library functions. Once the
Ninf executables are “registered”on the server, anyone in
the network can use the libraries in a transparent manner
by issuing Ninf RPCs. Some existing libraries, such as
LAPACK, have already been ’Ninfied’ in this manner.

3 netCFD: a Ninf CFD component

NetCFD is a Ninf global computing component for CFD
(Computational Fluid Dynamics) computation, and it pro-
vides interfaces to CFD programs that run on MPP’s and
clusters or single workstations via Ninf RPCs. NetCFD
turns high performance platforms such as supercomputer-
s, MPPs and clusters into valuable components for global
computing.

3.1 netCFD Ninf Interface

In the current version of netCFD, the interface is designed
for our CFD program called femFlow which simulates a
given system using the Finite Element Method (FEM).

The main function in netCFD is ‘femFlow’ which starts
execution of the CFD program. The following IDL fragment
describes the interface to ‘femFlow’ in the Ninf IDL:

Define femFlow(IN int id, IN float header[24],
IN int n_node,IN int n_elem,
IN float x[n_node],IN float y[n_node],
IN float z[n_node], /* coordinate */
IN float u[n_node],IN float v[n_node],
IN float w[n_node], /* velocity */

/* pressure and temperature */
IN float t[n_node],IN float p[n_node],

/* initial conditions */
IN char uf[n_node],IN char vf[n_node],
IN char wf[n_node],
IN char tf[n_node],IN char pf[n_node],

/* define finite elements */
IN short elems[n_elem*8],IN int npe,
IN char pe[n_elem], /* partitioning */
flowDisplay(IN int step[1],IN double ctime[1],

IN double delta[1],
IN float data[n_node*5])){

... call CFD program ...
}

The IN arguments specify arrays of node coordinates and
the initial conditions of finite elements at the nodes. The fi-
nite elements are specified by the arrayelems which stores
the connectivity information with their node indexes. The
argumentspe contains the portioning information of nodes
in case of parallel computation. The argumentheader
contains several parameters for a simulation. The IN argu-
ments are sent to the ‘femFlow’ Ninf executable via the Ninf
server. The Ninf executable then calls the main CFD pro-
gram. The last argumentflowDisplay is the call back
function on a client side that receives the result in the form
of the velocity, pressure and temperature at each of the mesh
node at each simulation time step.

Other interfaces are provided to restart suspended simu-
lations and to replay the last few steps of a simulation. Some
sample mesh data files are also stored in the Ninf server, and
may be retrieved via Ninf RPCs.

3.2 femFlow: a CFD program with FEM

The CFD program that underlies netCFD is a parallel
3D CFD program, femFlow, written in C++ and MPI. In a
parallel environment, the Ninf executable in the server forks
the parallel process within the parallel platform, and com-
municates with them. In a single processor environment,
the sequential version is directly linked to the stub program
to call the routine.

The used modeling and numerical methods are as follows:

� Basic Equations

– Equation of Continuity

– Equation of Motion (Navier-Stokes Equation)

– Equation of Mechanical Energy

� Discretization Method

– Finite Element Method (FEM)

– 8-node isoparametric element

– High-order upwind finite element scheme

� Matrix Solver

– SCG (Scaled Conjugate Gradient) Method

� Time integration

– SMAC Method

� Parallelized by domain decomposition

� Object-oriented design in C++

Figure 2. netCFD and Java applet GUI

3.3 netCFD Java applet GUI

The netCFD Java applet GUI is a Java applet which allows
a remote user to interactively control CFD computation and
visualize results in a web browser. It uses a Java Ninf RPC
interface to retrieve the mesh data and run the simulation in
the Ninf server.

The client applet receives the data of velocity and pres-
sure, temperature at each time step by “call back” from the
server. In the netCFD applet GUI, the call back function
is a Java method function to visualize the data. There are
a few modes of displaying the result: In the vector mode,
a vector at each node indicates the direction of flow. Its
color shows the value of the selected data item which may
be including velocity, pressure or temperature, at each node.
In the element mode, each element is painted using the color
of the value of the selected item at its center. The user can
zoom into a part of the simulated area to see a result more
precisely during the simulation.

Figure 2 illustrates the netCFD system, which was
demonstrated at Supercomputing ’98. The netCFD Java
applet GUI is one of netCFD applications, and the netCFD
Ninf component can be used as a component in other global
computing systems.

4 Preliminary Performance Evaluation

This section shows the result of a preliminary evalua-
tion of netCFD. To demonstrate the feasibility of global
computing using netCFD, we have built a global computing
environment to link the RWCP Tsukuba Research Center
(TRC) and the Electrotechnical Laboratory(ETL), as shown
in Figure 3. We set up a Ninf server on a Sun Ultra Enter-
prise (4 CPU, 300 MHz Ultra Sparc) at the TRC, and the

Sun(6CPU,SPARC)

Sun(4CPU,SPARC) PC Cluster
(4node,

Pentium Pro 200MHz)

Ninf Client Ninf Server

netCFD
(sequential) netCFD

(parallel)

1.5Mpbs
WAN

100BaseT
ethernet
LAN

ETL TRC

Figure 3. Experiment Test-bed between TRC
and ETL

sequential version of the netCFD component runs on this
server machine. The parallel version of the netCFD com-
ponent runs on a four-node PC cluster (Pentium Pro 200
MHz), connected with a 100BaseT Ethernet local area net-
work. The client is a Sun Ultra Enterprise (6 CPU, 336 MHz
Ultra Sparc) at the ETL. These sites are connected over a
1.5 Mbps wide-area network.

4.1 Basic Performance of Ninf RPC

To measure the basic performance of the Ninf RPC, we
prepared the following Ninf RPC entry:

Define test(IN int in_size,
IN int input[in_size],
IN int out_size,
OUT int output[out_size])

{ /* do nothing */ }

This Ninf entry sends an input array of sizein_size from
the client to the server and returns an output array of size
out_size back from the server to the client. Figure 4
shows the basic performance of Ninf call from both a local
client (at TRC) and a remote client at ETL. The graph of ‘up’
shows the execution time taken for a call of this test entry
for varied values of the sizeout_size , with in_size
fixed at one. The graph ‘down’ shows the execution times
for varied values of the sizein_size , with out_size
fixed at one. This graph indicates that the overhead is 0.05
sec, with a bandwidth of 0.2 KBytes from the ETL site.

4.2 Performance of a netCFD application

We measured the performance of a typical netCFD client
application, which computes the velocity, temperature and
pressure of each finite elements and stores them in a local
file in client site at every time step, as shown in Figure 5.
The netCFD executable can execute either sequentially on
the Sun workstation or in parallel on our PC cluster.

Figure 6 shows the execution time of the application for
both local (TRC) and remote (ETL) clients. We made the
mesh data around a cylinder with two sizes: ‘Small’ (2720

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 2000 4000 6000 8000 10000

 Up(from etl)

Down(from etl)

Up(local)

Down (local)

ex
ec

ut
io

n
tim

e
(s

ec
)

data size

Figure 4. Basic performance of Ninf Call

client server netCFD Ninf
routine

File

Store
data

Ninf Call

call
back

step end

return

exec
each
step

call back
routine

Figure 5. A typical netCFD application

nodes, 1289 elements) and ‘Large’ (10560 nodes, 5120 el-
ements) for this experiment. Each program runs for 200
steps. In the netCFD Ninf executable, the netCFD routine
executing in server side calls back the specified routine on
the client at every step, so that the call back routine on the
client stores data sent back in a file. The amount of data sent
back to the client at each step is 106 KB in ‘Small’, 412 KB
in ‘Large’ respectively. For comparison, ‘local’ indicates
the same application program running without netCFD. As
can be seen in the Figure, the overhead for remote execution
of netCFD is less than 10% of the total execution time. For
the PC cluster, execution time for a remote client takes al-
most the same amount of time as execution of a local client.
This is because the data sent from the parallel CFD program
is buffered in the sever, and the sending of data to the remote
client can thus overlap with computation. The call back from
server side are waiting for returning from the call back. We

0

200

400

600

800

1000

1200

1400

1600

1800

ex
ec

ut
io

n
tim

e
(s

ec
)

local
ninf (local)
ninf(etl)
ninf(etl,async)

Ultra Pentium*4 Ultra Pentium*4
Small(200steps) Large(200steps)

Figure 6. netCFD performance

implemented an asynchronous call back mode in which the
server does not wait for the return. ‘ninf(etl,async)’ shows
the execution time using the asynchronous call back mode.
It appear to improve the performance for this application.

4.3 Other issues for remote computing system

One of the most important issues for global computing
systems is authentication. A simple authentication mecha-
nism is included in the current implementation of netCFD
so that the library provider can restrict use of his computing
resources to a particular set of users.

The Ninf metasever provides a scheduling mechanism
which automatically selects an appropriate server to execute
the requested Ninf calls. This will be useful when sever-
al computational resources are available for, for example,
netCFD applications. When many Ninf applications are
running, the metaserver locates the least loaded server and
forwards the Ninf call there. We did not use the metaserver
in our experiments.

The Java applet is a very useful mechanism because it
makes Ninf applications available via web servers anywhere,
without the need for a program to reside on the remote clien-
t. There are, however, many restrictions on using applets
because of security reason. The netCFD Java applet cannot
upload a remote user’s data, or store results. While the ap-
plet GUI is useful for demonstration, the netCFD program
should be executed as a Java application if the remote user
wants to upload and store data.

5 Concluding Remarks

In this paper, we have presented a Ninf computational
component for CFD, and some applications of netCFD with
result of a preliminary evaluation. Ninf enables a remote
user to use several computational resources for CFD com-
putation in a global computing environment with a single
interface. Our experimental results show the possibilities of
global computing for CFD applications. The netCFD can
also be used as a component for other applications, such as
parallel domain decomposition method and heterogeneous
computation.

As another demonstration of a Ninf component, we have
also designed netMO for the molecular orbital (MO) compu-
tations in chemistry. NetMO allows remote users to access
to a famous MO program, GAMESS, via a Ninf interface.
It provides a variety of functionality given by GAMESS, as
well as fast computation of MO.

Some demonstrations of netCFD and netMO are current-
ly available on our web site at:

http://pdplab.trc.rwcp.or.jp/

References

[1] Notes of the 1st Intl. Workshop on ’Desktop Access to
Remote Resources’. http://www-fp.mcs.anl.gov/ gre-
gor/datorr.

[2] H. Casanova and J. Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems.
Technical report, University of Tennessee, 1996.

[3] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. InProc. of Workshop on Environ-
ments and Tools. SIAM, 1996. http://www.globus.org/.

[4] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver,
and P. F. Reynolds Jr. Legion: The Next Logical Step
Toward a Nationalwide Virtual Computer. Technical
report, University of Virginia, 1994.

[5] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima,
M. Sato, and S. Sekiguchi. Utilizing the Metaserver
Architecture in the Ninf Global Computing System. In
Proc of HPCN’98 (LNCS 1401), 1998.

[6] M. Sato, H. Nakada S. Sekiguchi, , S. Matsuoka, U. Na-
gashima, and H. Takagi. Ninf: A Network based In-
formation Library for Global World-Wide Computing
Infrastructure.Proc. of HPCN’97 (LNCS 1225), pages
491–502, 1997.

