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Abstract. In order to verify the viability finer-grained parallel language
MPC++, which had originally been developed for Myrinet-specific en-
vironments, we performed ports on top of different breeds of MPI, to
be executed on two networks of large performance/cost difference, as
well as porting NPB 2.3 apps to test ease of expressiveness of paral-
lel programs. Results were positive, (a) the port of the NPB 2.3 apps
were effortless, (b) small penalty of additional MPI layer was negligible
for NPB applications, and (c) for large data sets, MPC++/MPI on the
100Base-T network was competitive to both the C+MPI on Myrinet,
and the original implementation of MPC++ on PM/Myrinet.

1 Introduction

Although commodity “Beowulf” clusters are becoming widespread, program-
ming on such with languages with the class of parallel languages that provide
finer-grained multi-threading and fast message passing at the language level has
been believed to require expensive messaging hardware with low latency and
high bandwidth. Examples are parallel object-oriented language MPC++[1], in-
dependently developed in the past at the Real World Computing Partnership
(RWCP), Split-C[2](UC-Berkeley) and Charm++[3](UIUC). In particular, the
original MPC++ assumes a specialized user-level messaging library PM[4] on
top of fast and relatively expensive networks, such as Myrinet[5].

We claim that such languages still lacks systematic studies to identify (1)
whether they embody sufficient expressive power to easily describe traditional
parallel programs, (2) how much performance one expects to maintain/sacrifice
by using commodity software/hardware, especially commodity networking layer
(including software), for their implementation, and (3) the degree of scalability
compared to dedicated software/hardware implementations.

In order to verify the viability of such parallel languages, we took MPC++
which originally required specialized software/hardware layers, in a portable way
on top of different breeds of MPI, to be executed on two networks of substan-
tial performance/cost differences, namely, Myrinet and 100Base-T Ethernet. We
then investigated whether some NAS Parallel Benchmark (NPB)-2.3 applications
(CG, IS) can be ported “naturally” on top of MPC++, to be benchmarked in



such a environment. Finally we performed detailed analysis of the overhead of
MPI layer and compared its performance to original implementation of MPC++
on more “expensive” platforms. We have found that, (1) portings of programs
from C+MPI were a matter of few hours, including debugging, (2) benchmark
apps ported to MPC++ on MPI performs and scales well, compared both to
a) the original application written with C+MPI as well as b) the application
ported to run on MPC++, but run on the original implementation that employed
the fast user-level communication library PM on Myrinet, and (3) benchmark
apps on MPC++ on MPI on commodity 100Base-T network ran and scaled
competitively, so long as the problem size was large, and the local computa-
tion/communication ratio increased as we scaled the problem larger. The results
indicate that languages such as MPC++ could be made to run efficiently on a
commodity clusters when running ‘standard’ parallel programs.

2 MPC++ and Port to MPI

The language features of MPC++ v.2.0 Level 0[1] include object-oriented fea-
tures of C++, finer-grained, user-level multi-threading, fast remote method invo-
cation, remote memory read/write, synchronizing data structures, etc., basically
embodying the features of so-called “concurrent object-oriented programming
languages”. Program code is distributed identically to all physical processors
and a process for the program runs on each processor. Each process has sev-
eral finer-grained threads of control which are not preemptable. A program may
locally or remotely invoke a function instance with its own thread of control,
using the invoke and ainvoke template functions. Invoking a function instance
will involve creation of a new thread and the execution of the function. The
original thread invoking the function instance could either block until the end
of the invoked function instance execution, or could continue asynchronously in
parallel. All variables are processor-local. In order to access variables of remote
processors, a global pointer must be employed which provides remote variable
read-write transparently at the language level.

The original MPC++ implementation was tightly coupled with the underly-
ing PM communication library[4], which in turn was originally tightly coupled
with Myrinet. This provided for both low-latency and high-bandwidth communi-
cation, as well as finer-grained multithreading via fast user-level communication
handling.

In order to achieve portability on commodity clusters, we segregated MPC++
from PM and the custom threading layer, as seen in (Fig. 1). We centralized and
re-defined the communication layer API so that various communication libraries
could be employed; for the purpose of the paper we have employed MPI, but
other communication libraries such as VIA[6] could be used. We reimplemented
the threads as standard user-level threads using standard techniques, gaining
portability at the expense of efficiency of context switching and synchronization.
The resulting artifact, MPC++ on MPI, could be run on a commodity clustering
environment without any special software, driver, or hardware installation.
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Although there have been middle-tier libraries
such as Nexus[7] and Madeleine[8] that provide
common infrastructure for communication and mul-
tithreading, the point of this particular research is
what happens if such features are provided inte-
grally at the language level, rather being employed
as a library . Providing features at the language
level does have its pros and cons; one could either
eliminate the overhead by using language-level se-
mantics, but one could also decrease efficiency by
constraining a user to the particular programming
model and implementation thereof. For example,
the implementation of CC++[9] on Nexus largely assumes coarser-grained user
programs than MPC++.

3 Evaluation Procedure

Because of the commodity platform, the overhead includes the a) extra software
overhead imposed by the MPI software layer, and b) overhead of the underly-
ing communication layer on which MPI is implemented, such as the TCP/IP,
including both software and hardware layers. Threading efficiency is sacrificed
as mentioned earlier. Also, in the current implementation, collective communi-
cation such as “Reduction” or “Barrier” is implemented at the MPC++ level,
and currently does not utilize the collective communication features of the un-
derlying MPI. Although this was done for portability reasons this could turn out
to be less efficient due to extra software handling overhead.

In order to investigate (1) whether MPC++ allows easy expressiveness of
traditional SPMD style parallel programs, (2) how much performance one re-
tains/loses by using commodity software/hardware, and (3) the degree of scal-
ability compared to dedicated software/hardware implementations, we first cre-
ated the portable implementation of MPC++ as mentioned in Section 2. Then,
we ported the CG and IS from NPB-2.3 benchmarks onto MPC++ to identify
whether MPC++ could readily express these applications. Next, we performed
comprehensive benchmarks of the applications, varying the followings:

– number of processors (1–32),
– problem size (class A and B),
– messaging layer (MPI vs. Native PM),
– different incarnations of MPI (LAM[10] vs. MPICH[11]),
– low-level software messaging layer (PM vs. TCP/IP)
– underlying hardware messaging layer (Myrinet vs. 100Base-T Ethernet).

3.1 Porting NPB CG and IS to MPC++

The NPB-2.3 benchmarks are written in parallel SPMD-style. All are in For-
tran+MPI, except for IS which is written in C+MPI.



We had initially considered rewriting the NPB benchmarks in MPC++ from
scratch, according to the NPB-2.3 specification[12]. However, we decided to port
from their MPI versions, due to: (1) it would be difficult to precisely quantify the
difference of respective communication layers, due to drastically different code
base, (2) development effort will be substantial, and (3) it was deemed that, even
if written from scratch, there is a good change that it will resemble the code
structure of a port. This decision still restricted us to the use of NPB to CG and
IS, due to most of the NPB programs being written with Fortran+MPI. (We
have used the port of CG to C + threads by Yoshio Tanaka at Electrotechnical
Laboratory, Tsukuba, Japan.)

Here are the general strategies employed to port CG and IS from their
C+MPI versions to the MPC++ versions:

– The main control thread on node 0 distribute work to slave threads on other
nodes. MPI program written in SPMD style is executed equally on each
compute node. Thus, on parallelization by dividing the task to each node,
one must make conditionals according to the node number of each node. For
example, serialized region must be guarded by a if statement to check for
execution on node 0. For MPC++, on the other hand, even if the program is
written in SPMD style, its main thread will be executed only on node 0 and
the other nodes will each wait for a divided task to be assigned from node
0 via remote invocations. Hence we must modify the MPI program so that
the control thread on node 0 performs such distribution to slave threads on
other nodes on initialization of a parallel region.

– Translation of message send/receive pair to remote read/write. In a SPMD
MPI program, the programmer usually pairs the MPI_Send on the send side
and MPI_Recv on the receive side manually, and will be careful to avoid
any deadlocks since all the nodes will be executing the (possibly blocking)
MPI_Recv. On the other hand, in MPC++ the programmer can perform one
sided access to remote memory with a global pointer, if the remote address is
known earlier. Here, one must be careful with synchronization and updating
so that correct data will be read by the receiver. This is usually achieved by
preceding the reads/writes with a global barrier.

– Translation of other, simpler MPI primitives to MPC++. These include
operations such as collective operations.

Although it is not clear whether all SPMD program in this manner, in prac-
tice, we have found it rather straightforward to port C NPB programs into
MPC++, using the above strategies. The specifics of each program is as below:

Port of CG CG measures the time elapsed in solving an unstructured sparse
linear system with the conjugate gradient method. For direct comparison
with an MPC++ version, we used the port of the original Fortran+MPI CG
by Tanaka which parallelized the program with C+Threads into C+MPI,
and then subsequently ported it to MPC++. The modification from C+MPI
into MPC++ took approximately 2 hours, and the total modified lines of
code are about 60 out of 800 lines.



Port of IS IS is an integer sorting program. Its kernel loop consists of node in-
ternal histogram calculation, total histogram gathering, data re-distribution,
ranked internal sorting, and subsequent validation. Three of these phases
need to communicate: total histogram gathering, exchanging number of data
to be re-distributed, and data re-distribution. These are implemented using
MPI Reduce, MPI Alltoall and MPI Alltoallv in the original C+MPI ver-
sion. Due to the simplicity of the data structures, we were able to do the
port in approximately 1.5 hours. The total lines of code modified are about
50 out of 1000 lines.

4 Performance Evaluation

Based on the ported codes, we conduct performance evaluations on a major
subset of the combinations as described in Section 3, as shown in Table 1.
Some combinations are simply not available (e.g., MPC++ on LAM on PM).
Here, Native-PM denote the original incarnation of PM on Myrinet, while PM-
Ether[13] denote the port of PM onto Ethernet. MPICH-PM[14] is MPICH with
PM as the underlying communication layer. Any combination of MPC++ with
underlying MPI are the portable implementation in Section 2, while MPC++
directly coupled with PM (MPC++/PM-Ether and MPC++/Native-PM) is the
original MPC++ implementation where PM is hardwired.

Table 1. Evaluated Data

Ethernet Myrinet
CG Fortran/LAM Fortran/MPICH-PM/Native-PM

C++/LAM C++/MPICH-PM/Native-PM
MPC++/LAM MPC++/MPICH-PM/Native-PM
MPC++/PM-Ether MPC++/Native-PM
MPC++/MPICH-PM/PM-Ether

IS C/LAM C/MPICH-PM/Native-PM
MPC++/LAM MPC++/MPICH-PM/Native-PM

MPC++/Native-PM

4.1 Evaluation Environment

As an evaluation platform, we employ a 32-node portion of our Presto I exper-
imental PC cluster interconnected with 3 networks, i.e., dual independent full
32-port switches (Planex FHSW-3232NW) for the 100Base-T Ethernets, and
with Myricom M2M-OCT-SW8 switch × 2 for the Myricom Myrinet (M2M-
PCI64A-21). Each node has a single Pentium II 350Mhz processor with 256MB
of SDRAM. The operating system is Linux 2.2.14, augmented with the RWCP
SCore 3.0 as the clustering environment for Myrinet. Only one 100Base-T net-
work (Intel EtherExpress Pro) was used. We employed the pgcc (Pentium gcc)
compiler for all programs with the switches -O6 -mcpu=i686 -malign-double
-fstrength-reduce -funroll-loops -fexpensive-optimizations.



4.2 Benchmark Results of CG and IS

The graphs Fig. 2, Fig. 3 show the number of nodes vs. elapsed time for CG for
different combinations described above. Overall they exhibit reasonable scala-
bility up to 16 nodes for class A and 32 nodes for class B, for all combinations.
For class A, as node size increases (up to 32) the working-set size per node be-
comes quite small and the communication time becomes dominant for Ethernet,
as we will verify later. As a result, there is no room for further speedup for node
increase, both for C+MPI and MPC++. Fortran+LAM still shows speedup at
32, and this might be due to the relatively coarse-grained communication as
compared to the C version (communication granularity for the two programs
differ). For Myrinet, on the other hand, we still observe scalability at 32 nodes
for all combinations. For Class B, since computation increases with O(n2) while
communication increases only with O(log(n)), communication time is not as
dominant. Here, all systems except for MPC++/PM-Ether, shows scalability
up to and possibly beyond 32 nodes 1.

We note that, even for Class A, as long as we are executing within the number
of nodes where a particular combination is exhibiting scalability (up to 16–32
nodes), there is little significant difference in execution time, usually within 10-
20%, and even at worst well within the factor of 2.
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Fig. 2. CG Performance (Class A)
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Fig. 3. CG Performance (Class B)

1 Fig. 3 dose not include MPC++/LAM graph, because of its mysterious behavior on
Class B Ethernet



The graphs Fig. 4, Fig. 5 show the number of nodes vs. elapsed time for IS,
again for different combinations described above. Since IS involves finer-grained
communication compared to CG, communication overhead increases significantly
along with the number of nodes. Still, they show some degree of speedup up to
16 nodes for class A and 32 nodes for class B, for all combinations. For Class
A, Myrinet provides good scalability even at 32 nodes, irrespective of the in-
termediate software layer—as a matter of a fact The C/MPICH-PM/Native-
PM combination shows almost the same performance as the MPC++/MPICH-
PM/Native-PM version, and in fact is superior to the MPC++/Native-PM ver-
sion. By contrast scalability can only be achieved up to 16 nodes for Ethernet,
and moreover, the speedup is not as stable compared to Myrinet. For Class B,
because of a larger working set we obtain much better scalability for Ethernet.
One interesting note is that MPC++/LAM continues to scale whereas it levels
off for C/LAM. There are several potential reasons for this, but they will require
further detailed profiling to determine.
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Although scalability was somewhat limited beyond 16 nodes for class A, for
(more realistic) class B both benchmarks exhibited competitive performance and
scaled well under both 100Base-T and Myrinet. These observations support the
viability (albeit somewhat preliminarily) of portable MPC++/MPI implemen-
tation to execute well not only on dedicated platforms, but also on everyday
commodity platforms.



4.3 Details of CG (Class A)

We analyzed the breakdowns of communication, to investigate the rather subtle
performance difference between the original NPB and the MPC++ CG code.
Table 2 (C/LAM) and Table 3 (MPC++/LAM) show the results. The numbers
indicate the average number of respective MPI operations per node (collective
communication is tallied as count of one for each node), “AVG” indicates the
average message length per message, and “Total” denotes the average of total
number of bytes sent as messages per node. Figure 6 shows the breakdown of time
spent on communication/computation for CG for C/LAM and MPC++/LAM.
(Possible overlap of communication/computation are not taken into account.)

Table 2. CG (Class A: C/LAM) Breakdown of Communication (per node)

Nodes 2 4 8 16 32
Send 1,200 2,790 5,160 9,090 16,140
Irecv 1,200 2,790 5,160 9,090 16,140
Wait 1,200 2,790 5,160 9,090 16,140
AVG(KB) 18.2 11.7 7.4 4.5 2.6
Total(MB) 20.8 31.3 36.5 39.1 40.4

Table 3. CG (Class A: MPC++/LAM) Breakdown of Communication (per node)

Nodes 2 4 8 16 32
Send 1,591 3,572 6,333 10,654 18,095
Isend 390 1,170 2,730 0 0
Recv 1,981 4,742 9,063 10,654 18,095
Iprobe 1,598 3,575 6,334 10,654 18095
Test 390 1170 2,730 0 0
AVG(KB) 10.80 6.77 4.14 3.87 2.37
Total(MB) 20.9 31.4 36.6 39.4 40.8
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Fig. 6. CG Breakdown (Class A)

In comparison, both send almost equivalent amount of data, but the MPC++/LAM
average message size is smaller, resulting in greater number of messages. This is
attributable to small control messages, as well as the artifact of converting from
C+MPI to MPC++ code. Still, the effect of this is largely negligible as we have
seen. As a small note the number of Isend’s dropping to 0 is due to the change
in communication strategy in MPC++/MPI when message size becomes small.



Figure 6 shows that communication time largely becomes dominant. This is
despite that the total size of messages sent per node decreases considerably—
rather, the number of communications per node increases almost linearly as the
number of nodes increase. Thus, the performance penalty is largely due to the
communication latency in this case, for both C++ and MPC++ versions, and
the superior low-latency characteristics of PM over Myrinet, not the bandwidth,
is likely the cause of superior scalability over 100Base-T Ethernet.

We have performed similar analysis for IS, but we omit the details for brevity.
In a nutshell, the MPI operations and the number of messages sent greatly
differ between the original IS and the MPC++ version, due to the difference
in the collective operations—the original IS uses the MPI collective operations,
while the MPC++ version uses its own language directive, which is in turn
implemented in terms of point-to-point MPI communication.

5 Conclusion

We have performed detailed analysis of viability of MPC++ on commodity clus-
tering environments. Compared to the original MPC++ which assumed a spe-
cialized user-level messaging library PM on top Myrinet, a portable implemen-
tation could sit on top of various messaging layers such as MPI, which could in
turn might sacrifice performance in various ways. We ported NPB-2.3 CG and IS
into MPC++, respecting its natural programming style (e.g., remote read/write
through global pointers instead of MPI send/receive), and verified that the ef-
forts involved is quite small, i.e. approximately 60 out of 800 lines for CG and
about 50 out of 1000 lines for IS, each taking only a few hours. This is an (albeit
indirect) evidence that one could program parallel applications that resemble
those in NPB naturally in MPC++. We then performed performance analysis of
running on different combinations of applications, the programming language,
the underlying software messaging layers, and networking hardwares. The results
show that for larger, realistic data sets (class B), the portable implementation
of MPC++ on MPI and commodity clustering hardware using 100Base-T Eth-
ernet scales quite competitively to both the original NPB code and the versions
running on Myrinet. For smaller data sets, we have performed more detailed
analysis to examine the source of the overhead.

Still, many future work remain. First of all, our results are restricted to a
few benchmarks. Secondly, we need to perform more finer-grained analysis of
scalability, especially the profiling of different parts of code to investigate what
usage pattern in the algorithm results in what kind/size/frequency of commu-
nication, affecting the overall performance. Next, we need to perform further
detailed analysis of the communication characteristics. In particular, scalability
beyond 32 nodes, and the effect of use of high-bandwidth, low-latency commod-
ity networking must be investigated. Another interesting endeavor to increase
portability while maintaining performance is to employ efficient middle-tier layer
such as Nexus and Madeleine, as mentioned earlier. Their implementation will
effectively be the middle-ground approach compared to our ‘direct’ porting of



MPC++ onto commodity clusters, and as such could further clarify where the
overhead is for scaling by comparing the results with the current ones.
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