
A Jini-based Computing Portal System

Toyotaro Suzumura
Tokyo Institute of Technology

2-12-1 Ookayama Meguro
Tokyo, Japan, 152-8552

suzumura@is.titech.ac.jp

Satoshi Matsuoka
Tokyo Institute of
Technology/JST

2-12-1 Ookayama Meguro
Tokyo, Japan, 152-8550

matsu@is.titech.ac.jp

Hidemoto Nakada
AIST/Tokyo Institute of

Technology
1-1-1 Chu-o Daiichi Higashi

Tsukuba-shi
Ibaraki, Japan, 305-8561

nakada@aist.go.jp

ABSTRACT
JiPANG(A Jini-based Portal Augmenting Grids) is a portal
system and a toolkit which provides uniform access interface
layer to a variety of Grid systems, and is built on top of Jini
distributed object technology. JiPANG performs uniform
higher-level management of the computing services and re-
sources being managed by individual Grid systems such as
Ninf, NetSolve, Globus, etc. In order to give the user a uni-
form interface to the Grids JiPANG provides a set of simple
Java APIs called the JiPANG Toolkits, and furthermore,
allows the user to interact with Grid systems, again in a
uniform way, using the JiPANG Browser application. With
JiPANG, users need not install any client packages before-
hand to interact with Grid systems, nor be concerned about
updating to the latest version. Such uniform, transparent
services available in a ubiquitous manner we believe is essen-
tial for the success of Grid as a viable computing platform
for the next generation.

1. INTRODUCTION
Web portals such as Yahoo now provide transparent and
ease-of-use interface to a complex set of web pages on the
Internet, and have led to the explosive growth of the web.
Recent developments of a variety of Grid systems such as
Globus[14, 13, 22], NetSolve[10], and Ninf[20, 21], have opened
up opportunities for sharing computing resources including
remote scientific instruments and storage devices and high-
performance computing services, as well as sharing com-
puted and instrumented information as the web has achieved.
However, in order for scientists to use the Grid effectively
as a problem solving infrastructure, transparent and easy-
of-use interfaces to comparatively more complex set of Grid
services are necessary, just as web portals have achieved for
the web. Such portal-like systems for the Grid are now
referred to as “computing portals”, and there are a vari-
ety of on-going projects such as CoG[15], GridPort[18], and
WebFlow[12], and in fact presently there is a dedicated GCE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the fullcitation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC2001 November 2001, Denver (c) 2001 ACM 1-58113-293-X/01/0011
$5.00

working group within the Global Grid Forum[2]. However,
existing efforts only allow users to access specific Grid sys-
tems or resources, and rely on the portal system to be con-
tinuously updated along with the upgrade of the Grid sys-
tem. Due to the continuous and increased development of
the Grid infrastructure, such updates will likely to be fre-
quent, and could serve a negative effect towards widespread
adaption of the Grid.

The web portal could also encounter such problems; the
reason for their success is that software infrastructure to
support their evolution has embodied flexible and dynamic
charactersitics to support the underlying change. On the
client side it is the use of HTML/XML, JavaScrtipt, Java,
etc., and on the server side, the combined use of CGI with
scripting languages, Java Servlets, and component technolo-
gies. What software technologies would a computing portal
then require in order to achieve similar characteristics, i.e.,
seamless, uniform, and intuitive interface to multiple soft-
ware infrastructure on the Grid, and support for their rapid
evolution ?

We are currently building a computing portal system called
JiPANG whose aim is to satisfy such goals. JiPANG is built
on top of Java Jini technology, and copes with dynamicity of
the Grid infrastructure in a portable manner. JiPANG aug-
ments Jini so that it satisfies properties important for the
Grid such as scalability, as well as offering a software frame-
work in the form of toolkits and various tools that makes it
easier for Grid builders to integrate existing Grid services, as
well as coping with their updates in a transparent manner.

2. JINI ON THE GRID
The Grid community[1] has very recently payed attention
to the Java Jini technology as a viable solution for build-
ing a robust Grid system. Jini offers a variety of features
necessary for distributed systems, such as discovery of re-
sources, dynamic federations, distributed leasing, and dis-
tributed event management, allowing construction of self-
healing system that have no single point-of-failure. It serves
as an underlying building block for systems and/or applica-
tions in a dynamic environment as per the Grid, where net-
work/machine failures/updates occur frequently. We first
give a very brief overview of Jini, pointing out its advantages
as well as its deficiencies when straightforwardly employed
for the Grid.

2.1 Jini Overview
Jini[5, 9, 16, 17, 8] is a framework for building scalable, ro-
bust, distributed systems using Java. It consists of a set of
specifications describing the model of operation of a Jini net-
work, including related protocols, classes, interfaces, helper
utilities and services. A Jini network is a network of many
services. Applications are created by dynamically combin-
ing these services in a grouping called the “federation”.

A Jini lookup service is the key component providing the
useful and unique features of Jini. The primary role of a
lookup service is service registration and bootstrapping as-
sistant. It accepts registrations from services, each of which
is called a service item, composed of service’s proxy object,
service ID, and a set of attributes associated with the proxy.
A lookup service guarantees the uniqueness of the service
among multiple lookup services with an assignment of a ser-
vice ID, which is a random 128 bit number generated from
time at instigation together with the network host address.
The lookup service supports a template search based on any
combination of the three criteria: service ID, type (Java in-
terfaces or classes) that a service supports, and associated
attributes. To search for a service, the client fills out a tem-
plate using only the fields it is interested in.

A Jini lookup service bootstraps a Jini client and services by
delivering a proxy corresponding to the service through the
Java dynamic class loading mechanism via the network. Any
Java class information that is required to re-constitute the
proxy will be dynamically loaded over the network through
the codebase annotation mechanism. This is the chief mech-
anism that gives Jini its power; the client initially does not
require any fragments of client software, freeing users from
updating or installing it. Moreover, a lease is negotiated be-
tween a service and a lookup service following the successful
registration of the service item. If this lease is not renewed
by the service before it expires, the lookup service removes
the service item from its database. This means that any ser-
vice failing to renew its lease, because of a broken network
connection or system failure, won’t be offered to requesting
clients, bringing system robustness.

The Jini security model is consistent with JDK 1.2’s fine-
grained, permission-based security model. One can create
security policy files to restrict the activity of downloaded
proxy objects. One can also be selective about the access
permissions granted to proxy objects, restricting them ac-
cording to codebase or code signings.

2.2 Deficiencies of Jini Alone as a Computing
Portal Platform

Whereas Jini provides a variety of features seemingly use-
ful for the Grid as well as computing portals in general as
stated above, there are some key features lacking in Jini
when straightforwardly applied as an underlying substrate
for computing portals construction. We discuss such “defi-
ciencies” below:

• Scalability
Since the Jini lookup service is intended to be used in a
local area network setting, by itself it is not appropri-
ate for managing a large number of Jini services spread

LUS

LUS LUS

LUS LUS LUS

Figure 1: Hierarchical chains of lookup services

over a Grid environment, as standard Jini assumes a
centralized lookup service. A solution (cf.Figure 1)
might use chain of lookups amongst the federation of
lookup services, where a lookup service itself could be a
full-fledged Jini service registered with another lookup
service. However, the overhead of traversing down the
chain with lookups will cause considerable overhead,
as each step in the traversal will require a series of full
Jini service lookup and acquisition. This will become
critical in a large-scale Grid environment where a large
number of services and resources could potentially ex-
ist.

• Search flexibility
The Jini lookup service only allows one to search for a
service with exact matching. For example, when one
wishes to search for a service whose name is “Ninf”
but the exact name is vague, it is not possible to
search using regular expressions such as ”*nin*” or
”?inf”. Other search strategies are conceivable, but
unsupported. A computing portal must support search
flexibility up to the extent that standard web portals
provide, facilitating various ways to search for a Grid
service, matching one’s requirements against the char-
acteristics that a particular service provides.

• Tool Support
In order to make a service Jini-aware, One must per-
form some amount of programming accompanied with
knowledge of Jini. Although such programming can
be said to be sufficiently simple, it would nevertheless
be preferable if there are tools to help the users make
the Grid services Jini-aware in a simpler fashion, and
allow their management in a cohesive fashion.

• Security
Security is one of the concerns explicitly left unad-
dressed in the Jini specification. It is deemed as im-
plementation dependent with no support for authenti-
cation and authorization.

Consequently, although Jini can be used as an underlying
infrastructure, we must enhance Jini in order to achieve a
more comprehensive support for particularities of the Grid.

3. JIPANG SYSTEM—A JINI-BASED POR-
TALS SYSTEM

In order to exploit Jini technology and cope with its draw-
backs in the Grid environment, we propose the JiPANG
system, which is a computing portal system and a toolkit.
The primary goal of the JiPANG system is to perform uni-
form higher-level management of the computing resources
and services on the Grid, and provide users with a consis-
tent and transparent interface for accessing such services.
All entities in the Grid environment including computing
resources and services are represented as Jini services. Each
entity is registered with a nearby Jini lookup service, so that
Jini features such as fault resilience, dynamicity, federation
become available.

To overcome the deficiencies, JiPANG builds a layer on top
of Jini. For scalability of resource management it leverages
the combination of LDAP[4] servers and a collection of Jini
lookup services. The Jini lookup services exist at arbitrary
locations, managing a collection of registered services, while
the LDAP server publishes the information of all the ser-
vices. For searching and resource discovery it exploits the
search capabilities of LDAP, as well as providing a set of
tools including the JiPANG browser that allows the user
to search and browse through the resources as they become
available (or unavailable) to the Grid. JiPANG also facili-
tates a toolkit that make it easy to adapt existing Grid ser-
vices as Jini services. We will subsequently give an overview
of the architecture of JiPANG, and the details of the indi-
vidual component.

3.1 The JiPANG Architecture
The JiPANG architecture consists of the following compo-
nents, as illustrated in Figure 2:

• Jini Lookup services

• JiPANG (Grid) Services

• Registration Manager

• Directory services

• Service Broker

3.1.1 Jini Lookup Service
Each organization basically manages one or more Jini lookup
service(s), and JiPANG Grid services running in the same
network are registered with one of them. The latter is the
actual component that handles the management of the reg-
istered services.

3.1.2 JiPANG (Grid) Services
A JiPANG Grid service is a full-fledged Jini service that
provides the actual Grid service to the user. By the use of
Jini and the higher-level support provided by the JiPANG
toolkit, it is basically possible to create all kinds of ser-
vices for existing Grid systems, tools, and applications. To
make an existing service accessible to the Grid, the service
provider builds a service proxy object which will be located
in the client Java VM and communicating with the service
on behalf of the user. The service proxy object will use

Directory Service
 (LDAP)

Registration ManagerJini Lookup Service

Grid
Service

Grid
Service

Grid
Service

Client

Service
Proxy Object

notify events

add modify delete

download
interaction

request

lookup

search result

Service
Broker

Figure 2: JiPANG Architecture

its own proprietary protocol using sockets directly to com-
municate with the service logic. It is also registered with
a specified Jini lookup service, along with information per-
taining to the service such as its location, manufacturer, etc.
The JiPANG service toolkit provides a command-line utility
to assist this process.

One can also attach a GUI as an attribute of the service,
enabling a client to search for and employ the GUI in a
portable manner. JiPANG exploits a jini.org project called
ServiceUI[7] for this purpose. A service with a GUI can also
be executed directly via the JiPANG Browser which allows
the user to view all the services registered with the JiPANG
system, before the user is even aware of the specification of
each service by GUI experimentation.

The service proxy object and its associated GUI service pro-
vide a facade(a design pattern) to which some complex ser-
vice architecture can present a uniform outlook to the user in
a portable manner. In fact, by standardizing on an uniform
API for a certain class of services, the user need not be con-
cerned at all with the protocol that the proxy object uses,
nor the service logic which the service proxy object com-
municates with. For example, JiPANG allows one to build
a uniform interface to GridRPC systems such as Netsolve,
Ninf, etc., without the user being aware of which system
he is actually using the RPC service of, as we will see in
Section 4.

3.1.3 Registration Manager
The registration manager is responsible for reflecting the in-
formation stored in the Jini lookup service into the LDAP
server. This component runs alongside each individual Jini
lookup service, waiting for event notifications from the lookup
service. The event contains the registration or deletion of
services, or modification of some attributes associated with
a service item. For example, when the manager obtains the
event that a service is registered, it fetches the attributes as-
sociated with the service and store them in the LDAP server.
Alternatively, if a service is deleted due to lease expiration
or service failure, the manager also deletes the entry in the
LDAP server.

o=JiPANG

jp

ac go

titech

is

uva

edu

utk indiana

cs cs

zeus extreme

k2

gov

anl

dslnet2

Jini Lookup Service

JiPANG Service

host

mcs

Figure 3: The JiPANG Directory Service

3.1.4 Directory Service
The directory service is used to publish the location and
attributes of all JiPANG services registered with lookup
services in the Grid. This component allows the users to
search for their desired service in a faster and more flexible
manner than directly employing Jini lookup services. Jini
lookup services and their associated services are organized
as entries in a hierarchical tree called the directory infor-
mation tree (DIT) (cf.Figure 3). The location of an entry
in the DIT is based on organizational structures and other
entries it is associated with. For example, a Jini lookup
service running at a host named ’uva.is.titech.ac.jp’, is lo-
cated in the directory information tree at: lookup=uva-lus,
dc=uva, dc=is,dc=titech, dc=ac, dc=jp. The registration of
this entry is performed by the registration manager running
alongside each Jini lookup service.

The collection of services registered with a lookup service
are located at its sibling nodes. As an example, the “Ninf”
service running on the node can be located at service=Ninf,
lookup=uva-lus, dc=uva, dc=is, dc=titech, dc=ac, dc=jp.
The set of attributes associated with the service include the
service name, proxy class name and its interface name, etc.
Its GUI as well as other attributes may be represented as
entries as well as described earlier. The attached GUI inter-
face with a service is stored in the sibling node of the service.
Likewise, in the case of a service offering a set of computa-
tional solvers, such solvers are represented as sibling nodes.

A directory service can contain referral to other directory
services that a particular Grid system may maintain for it-
self. For example, an entry for a particular resource data in
the JiPANG directory can refer to an entry in the Globus
MDS. This offloads the management of the internal resource
management structure that need not be exposed to the client,
but otherwise important for the particular Grid system for
its own purposes.

3.1.5 Service Broker
The purpose of the Service Broker is to select the ”best”
service, allowing the user to specify only the minimum pa-
rameters of interest. The Broker first queries the Directory

Service for a set of services that satisfy the client’s request.
The Broker then filters the set of services according to the
criteria in the request. When a service is finally selected
out of the subset, the Broker downloads the service proxy
object based on the metadata received from the Directory
service and deploys it within the client’s side of Java VM.
The Service Broker can also be extended to serve as alter-
native resource brokering system for dedicated Grid services
such as the GridRPC system.

3.2 JiPANG Toolkit
The JiPANG Toolkit provides the user with uniform access
to the Grid services, and allows the service provider to create
such services in an easy manner. The toolkit consist of three
subcomponents, the service toolkit, client toolkit, and the
browser.

3.2.1 Service Toolkit
The service toolkit allows the Grid service provider to fa-
cilitate service registration into the JiPANG system with-
out knowledge of Jini. It consists of several command-line
utilities, one of which is called jipang register, allowing the
service provider to register the service proxy object with the
lookup service as specified in the XML-based configuration
file. The configuration file also contains various information
regarding the service, and such information are automati-
cally converted into a set of attributes associated with the
service. A sample file, which registeres a Ninf services with
a host, is shown below.

<JipangService>
<lookup host="uva.is.titech.ac.jp" port="4160" />
<proxy> <!-- Proxy class Info -->
<class>org.jipang.grid.ninf.NinfProxy</class>
<param type="java.lang.String">uva.is.titech.ac.jp</param>
<param type="java.lang.String">3030</param>
</proxy>

<serviceInfo>
<name>Ninf</name>
<manufacturer>Hidemoto Nakada</manufacturer>
<vendor>Electrotechnical Laboratory</vendor>
<version>1.0</version>
<model>new</model>
<serialNumber>1.1.1</serialNumber>
</serviceInfo>

<!-- Grid RPC Information -->
<gridRPC>
<server>
<host>uva.is.titech.ac.jp</host>
<port>3030</port>
<resource> ldap://uva.is.titech.ac.jp:2339/cn=uva, dc=is, dc=titech, dc=ac, dc=
</server>

</gridRPC>

....

....

<!-- Service GUI Information -->
<guiInfo>
<name>NinfBrowser</name>
<description>This is a
main user interface provided by Ninf service
</description>
<role>net.jini.lookup.ui.MainUI</role>
<toolkit>java.awt</toolkit>
<type>Frame</type>
<factory>org.jipang.grid.ninf.NinfUIFact</factory>
</guiInfo>
</JipangService>

Figure 4: The JiPANG Browser

3.2.2 Client Toolkit
The client toolkit is a set of Java class libraries that allows
users access to a collection of services registered within the
JiPANG system from his Java program. Alternatively, the
service provider can use the toolkit to create a front-end
application for a class of Grid services. With this API, a
user does not require prior knowledge of the location of the
service, nor install any client packages. Here is a sample
API provided by this toolkit:

public JipangServiceInfo[] searchService(String service, String
filter, String baseDN) throws JipangException ;

public Object getProxy(String dn) throws JipangException;

The first method takes three arguments: service name, a
character for representing filtering condition in the LDAP
format, and the base distinguished name; and returns an
array of service information that satisfies the search con-
dition. This API encapsulates the process of querying the
LDAP server with a set of attributes and retrieve appro-
priate services that match the criteria. The second method
obtains the service proxy object whose distinguished name
is registered in the LDAP server from a corresponding Jini
lookup service.

3.2.3 JiPANG Browser
The JiPANG Browser provides a Microsoft Windows Explorer-
like interface to the JiPANG system. It allows users to ex-
plore a variety of services stored in the Directory Service,
searching for a desired service. The browser can be cus-
tomized so that application-specific browsing and features
can be integrated. We have developed the browser based
on an existing LDAP Browser which is mainly attributed to
Jarek Gawor, Illionis Institute of Technology. It is entirely
written in Java with the help of the JFC(SwingSet), JNDI,
and Jini class libraries. The key features of the browser are
that it itself is a JiPANG Grid service, and also that users
can launch services including GUI services directly from the
Browser. The figure 4 shows a screenshot of the browser in
action, with GUI services listed in the browser.

4. EXAMPLE JIPANG GRID SERVICES
Whereas the JiPANG Service Toolkit allows one to build ar-
bitrary Grid services, we show prototype example Grid ser-
vices we have built using JiPANG. They include the GridRPC

service that abstracts out the differences between a class of
GridRPC systems such as Netsolve and Ninf, the Instru-
mentation Service built using NWS, and Globus services
that provide full fledged Globus services through the CoG
toolkit in a portable manner.

4.1 GridRPC Service
GridRPC is a middleware that provides remote library ac-
cess and task-parallel programming model on the Grid. Rep-
resentative systems include NetSolve, Ninf, etc. The Ji-
PANG service implementing the GridRPCInterface inter-
face defined below deals with the interaction with remote
computational servers in a portable, transparent manner,
by defining a uniform GridRPC invocation method called
jipangCall(String problem). A jipangCall invocation results
in problem submission and retrieval of the result from the
server, irrespective of whether it is a Netsolve server, Ninf
server, CORBA server, or an unknown server to be defined
in the future. The user simply writes one application us-
ing jipangCall, and the latest version of the proxy object,
would be downloaded on-the-fly in the client’s Java VM,
and speaks the particular protocol as required by the RPC
server. To date, we have developed GridRPC services im-
plementing this interface, that can call a NetSolve server, a
Ninf server, or a simple compute service which calls JLA-
PACK[11] routines in a remote server via Java RMI.

public interface GridRPCInterface
extends JipangInterface {

public void setArg(Vector vec) throws JipangException;
public JipangExecInfo jipangCall(String func)

throws JipangException;
}

Here is an example call being made with jipangCall:

public class GridRPCTest{
public static void main(String[] args) {
....
/** instance a jipang client */
GridRPCClient client = new GridRPCClient();

/** set arguments to be passed to a GridRPC server */
client.setArg(max);
client.setArg(mag);
client.setArg(xsize);
client.setArg(ysize);
client.setArg(left);
client.setArg(right);
client.setArg(top);
client.setArg(bottom);
client.setArg(output);

/** submit a problem and retrive the result */
JipangExecInfo execInfo = client.jipangCall("mandelbrot");
System.out.println(execInfo.toString());
...

}

4.2 Instrumentation (NWS) Service
The instrumentation service we have developed is a proxy to
the Network Weather Service (NWS)[23], and provides accu-
rate forecasts of dynamically changing performance charac-
teristics from a distributed set of metacomputing resources.
By specifying in the query, an appropriate NWS instrumen-
tation data as well as forecasts can be retrieved, irrespective
of the client location. Also, other instrumentation services

can be utilized with the same set of APIs as is done for
GridRPC (although some features such as forecasts may not
be available, or only return the last instrumented data.)

public interface NWSInterface extends JipangInterface {
public String getNameServer(String nameWithPort)

throws JipangException;
...
public String[] getForecasts(String sourceMachine,

String destinationMachine,String experimentName,
int atMost) throws JipangException;

public String[] getMeasurements(String sourceMachine,
String destinationMachine,
String experimentName,int count, double sinceWhen)

throws JipangException;
}

4.3 Globus Service
The Java Commodity Grid Toolkit(CoG Kit) for Globus
provides a rich set of classes for Java programmers to access
basic Globus services. By using CoG we have built a Jini ser-
vice that publishes most of Globus services. An advantage
of using Globus services in this style is that, it allows con-
struction of thin-client software, for which Globus services
can be dynamically installed or updated as well as loaded
at the time of use. As such, as long as Globus is registered
and maintained on at least one machine readily accessible
and published to the JiPANG directory, it becomes acces-
sible, with latest versions of the CoG/Globus automatically
downloaded/used as long as they are properly maintained
at the service site, freeing the client users from maintaining
Globus himself. We currently have defined a set of APIs to
provide interfaces to the low-level Globus services and ap-
plication interfaces such as RSL, GRAM, MDS, GASS, GSI,
GSI-FTP, and GARA. The APIs are designed to resemble
the original ones for user familiarity. Below are an example
GRAM interface and a sample program using the interface.

public interface GlobusGramInterface extends JipangInterface {
public void ping(String resourceManagerContact)

throws JipangException;
public void request(String resourceManagerContact,

String rsl)
throws JipangException;

....
}

public class GramTest {
public static void main(String[] args){

GlobalGramInterface proxy;

try{
JipangClient client

= new JipangClient("globus.is.titech.ac.jp", "389");
proxy = (GlobusGramInterface)client.getProxy(dn);

} catch(JipangException ex){
ex.printStackTrace();
System.exit(1);

}

String dn = "service=Gram,lookup=matsulab-lus,
dc=is,dc=titech,dc=ac,dc=jp";

String rsl =
"&(executable=/bin/sleep)(directory=/tmp)(arguments=15)";

JipangGramJob job = new JipangGramJob(rsl);
String contact = null;

if (args.length == 0) {

System.err.println("Usage: java GramTest [resource manager]");
System.exit(1);
}

contact = args[0];
try {
job.addListener(new JipangGramJobListener() {

public void statusChanged(JipangGramJob gjob) {
System.out.println("Job status change \n" +
" ID : "+ gjob.getIDAsString() + "\n" +

" Status : "+ gjob.getStatusAsString());
}

});

System.out.println("submitting job1...");

/*
* call a method on the downloaded proxy
*/
proxy.gramRequest(contact, job);
System.out.println("job submited: " + job.getIDAsString());
try {

while (proxy.gramGetActiveJobs() != 0) {
Thread.sleep(2000);
} catch(Exception e) {
System.out.println(e.getMessage());
}

}

5. DISCUSSION
We have already covered the properties of JiPANG with re-
spect to the deficiencies we have mentioned earlier. We now
briefly discuss whether JiPANG satisfies other requirements
as a computing portals system as depicted in Section 1:

• High Usability and Portability

In JiPANG, usability is achieved by the fact that the
service proxy object is downloaded on-the-fly at run-
time onto the client Java VM, allowing the user to in-
teract transparently with the latest version of the ser-
vice, freeing the users from tedious installation, main-
tenance, and update tasks. Portability is achieved in
that a Grid service is provided over the network via a
proxy Java object, runnable on any device which sup-
ports Java VM.

• Interoperability and Dynamicity

JiPANG provides users with one consistent Java li-
brary toolkit to access a wide-range of Grid services.
the JiPANG toolkit facilitates the development of a
Grid application combining different kinds of Grid ser-
vices. It also allows more dynamic component pro-
gramming, coupling various services together as each
service will be downloaded on-the-fly as required. As
an example, consider an application that consists of
three phases, first phase transferring a large amount
of data from a remote database server to a comput-
ing server as input, second phase computing with var-
ious solvers, and finally visualizing the ouput obtained
from the compute server. With JiPANG, the appli-
cation can firstly utilize Globus GASS service for file
transfer, the Ninf service to invoke multiple solvers in
the computing phase, and finally invoke the general
visualization services for visualizing the ouput.

• Uniformity

In JiPANG uniformity is achieved by implementing the
common Java interface for a class of services providing

similar functionalities. As we have seen, we have de-
fined a common interface called GridRPCInterface for
various Grid RPC systems. Users can access such ser-
vices implementing this interface from the same client
source code without any modifications.

6. RELATED WORK
Webflow[12] is a pioneering computing portals work where
end-user interfaces are provided using standard web browsers,
and a group of http servers are used not only as web servers
but also compute server proxies using CGI technology. As
such the client characteristics are limited to those of Web/CGI,
e.g., one will have to handcraft scripts to interface existing
Grid services as CGI services. GridPort[18] is a collection of
services, scripts and tools that allow developers to connect
Web-based interfaces with the computational Grid behind
the scenes, and are based on both Grid technologies such
as Globus and standard Web technologies such as CGI and
Perl. GridPort facilitates numerous features, but does not
provide transparent, uniform interface in a streamlined ar-
chitecture as is with JiPANG. The CoG[15] project has un-
dertaken the design and development of a set of Commodity
Grid Toolkits (CoG Kits), that define and implement a set
of general components that map Globus functionality into
a commodity environment such as Java, CORBA, DCOM,
etc. CoG and JiPANG are somewhat complimentary be-
cause one of CoG’s primary objective is to define a common
API as a specification, whereas JiPANG’s approach is to
allow incorporation of services using Jini technology.

7. FUTURE WORK
This paper has given an overview of the JiPANG system, a
computing portals system and toolkit based on Jini. The re-
sulting infrastructure will allow integration of a large num-
ber of future Grid services on the network accessible in a
portable, uniform way by Grid application developers.

There are numerous work to be done. Firstly, enhanced
development and documentation work is necessary to make
more Grid services available to the client users. Some of the
Globus services may be too low level as a client service, and
we need to build more layers on top to allow easier appli-
cation development. We need to experience of application-
level services as is with the Punch system[19]. Security is
one aspect that is not well covered neither with Jini nor Ji-
PANG. We need to integrate the standardization efforts of
the Grid security model into JiPANG.

8. ACKNOWLEDGMENTS
The authors would like to sincerely thank Jack Dongarra,
Rich Wolski, and the NetSolve team in University of Ten-
nessee, Dennis Gannon and his group in Indiana Univer-
sity for providing us with their applications and giving us
their ideas and comments. We also thank to the whole CoG
team for providing the CoG toolkit. In particular, we thank
Jarek Gawor for allowing us to extend and use his Java-
based LDAP browser.

9. REFERENCES
[1] Global Grid Forum Jini Working Group.

http://www.mcs.anl.gov/gridforum/jini/.

[2] Grid Computing Environments Working Group.
http://www.computingportals.org/.

[3] GridRPC Tutorial.
http://ninf.etl.go.jp/papers/gridrpc tutorial/.

[4] OpenLDAP Project. http://www.openldap.org.

[5] The Jini Community. http://www.jini.org/.

[6] The Neos Project. http://www-neos.mcs.anl.gov/.

[7] The ServiceUI Project.
http://artima.com/jini/serviceui/index.html.

[8] P. M. Ahmed Al-Theneyan and M. Zubair. Enhancing
Jini for use across non-multicastable networks. In
ICASE Report No.2000-34, 2000.

[9] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and
A. Wollrath. The jini specification, 1999.

[10] H. Casanova and J. Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems.
In Proceedings of Super Computing ’96, 1996.
http://www.cs.utk.edu/netsolve/.

[11] J. D. David M.Doolin and K. Seymour. JLAPACK
-Compiling LAPACK Fortran to Java. June 1988.

[12] W. F. Erol Akarsn, Geoffrey C.Fox and T. Haupt.
Webflow - high-level programming environment and
visual authoring toolkit for high performance
distributed computing. In Proceedings of
Supercomputing ’98, 1998.
http://www.npac.syr.edu/users/haupt/WebFlow/.

[13] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, and S.Tuecke. A Directory
Service for Configuring High-Performance Distributed
Computations. In Proc. 6th IEEE Symp. on
High-Performance Distributed Computing, pages
365–375, 1997.

[14] I. Foster and C. Kesselman. The Globus Project: A
Status Report. In Proc. IPPS/SPDP ’98
Heterogeneous Computing Workshop, pages 4–18,
1998.

[15] J. G. Gregor von Laszewski, Ian Foster. Cog kits: A
bridge between commodity distributed computing and
high-performance grids,a java commodity grid kit. In
ACM 2000 Java Grande Conference, June 2000.

[16] A. W. Jim Waldo, Geoff Wyant and S. Kendall. A
Note on Distributed Computing. In Sun Microsystems
Technical Reports, November 1994.

[17] S. Li. Professional Jini. Wrox Press Ltd.n, 29 S.LA
SALLE ST, SUITE 520 CHICAGO IL 60603, 2000.

[18] S. M. Mary Thomas and J. Boisseau. Development of
web toolkits for computational science portals: The
npaci hotpage. In Proceedings of HPDC 9, pages
308–309, August 2000.

[19] R. J. F. Nirav H. Kapadia and J. A. B. Fortes. Punch:
Web portal for running tools. In IEEE Micro.,
May-June 2000.

[20] S. Sekiguchi, M. Sato, H. Nakada, and U. Nagashima.
– Ninf – : Network base information library for
globally high performance computing. In Proceedings
of Parallel Object-Oriented Methods and Applications
(POOMA), Feb. 1996. http://ninf.etl.go.jp/.

[21] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada,
and S. Sekiguchi. Are Global Computing Systems
Useful ? Comparison of Client-server Global
Computing Systems Ninf, NetSolve versus CORBA.
In Proceedings of the 14th International Parallel and
Distributed Processing Symposium(IPDPS ’00), 2000.

[22] e. Warren Smith. An Evaluation of Alternative
Designs for a Grid Information Service. In HPDC
2000 Proceeding, pages 185–192. GlobusTeX Users
Group, March 2000.

[23] R. Wolski, N. T. Spring, and J. Hayes. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing.

