
Towards Dynamic Load Balancing Using Page Migration and Loop
Re-partitioning on Omni/SCASH

Yoshiaki Sakae
Tokyo Institute of Technology, Japan

sakae@is.titech.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology/JST, Japan

matsu@is.titech.ac.jp

Mitsuhisa Sato
Tsukuba University, Japan

msato@is.tsukuba.ac.jp

Hiroshi Harada
Compaq Computer, Japan
Hiroshi.Harada@jp.compaq.com

Abstract

Increasingly large-scale clusters of SMPs continue to be-
come majority platform in HPC field. Such a cluster envi-
ronment, there may be load imbalances due to several rea-
sons and mis-placement of data which bring performance
bottlenecks. To overcome these problems, some dynamic
load balancing mechanisms are needed. In this paper,
we report our ongoing work on dynamic load balancing
extention to Omni/SCASH which is an implementation of
OpenMP on Software Distributed Shared Memory, SCASH.
Using our dynamic load balancing mechanisms, we expect
that programmers can have load imbalances adjusted auto-
matically by the runtime system without explicit definition
of data and task placements in a commodity cluster envi-
ronment with possibly heterogeneous performance nodes.

1 Introduction

Recently, clusters of SMPs have become the majority in
HPC machines[13]. There, it is necessary to program con-
sidering the two level memory hierarchy, namely, shared
memory within a node and distributed memory among
nodes. Past work has compared several programming meth-
ods, such as (1) programming with message passing only,
(2) programming with shared memory intra-node and with
message passing inter-node, (3) programming solely with
shared memory when the target machine has underlying
shared memory, such as NUMA or Software Distributed
Shared Memory (SDSM). Each such approach has shown
drawbacks: with (1) while one attains good performance,
programmer’s burden will be high, with (2) while dynamic
load balancing may become easier with shared memory in
a node, a programmer has to cope with multiple paradigms
and resulting improvement in performance with respect to

(1) is typically negligible if at all[7, 3]. Although coding
becomes easier with (3) it is harder to achieve high perfor-
mance due to locality of data being difficult to express with
OpenMP.

Moreover, rapid progress of processor and network tech-
nology typically gives rise toperformance heterogeneity
due to incremental addition of nodes, incremental reinforce-
ment of processors/memory, etc. Also, multi-user environ-
ment might result in such performance heterogeneity even
if the nodes were homogeneous.

It would be difficult for a programmer to perform load
balancing explicitly for each environment/application, and
automatic adaptation by the underlying runtime is indis-
pensable. In this regard, we are investigating program-
ming environment for commodity clusters that perform au-
tomatic rearrangemnt of data and dynamic load balancing,
and employs OpenMP as the programming interface. More
specifically we have been developing Omni/SCASH[11], an
implementation of OpenMP on SCASH, a Software Dis-
tributed Shared Memory, for commodity clusters. In this
paper, we report on our implementation of dynamic data
rearrangement based on SCASH page reference counting
in the OpenMP parallel section, and performance monitor-
ing feedback-based loop re-partitioning to cope with load
imbalances in heterogeneous settings. With these mecha-
nisms, we expect that programmers can have load imbal-
ances adjusted automatically by the runtime system without
explicit definition of data and task placements.

2 Background

2.1 Omni OpenMP Compiler

The Omni OpenMP compiler is a translator which takes
OpenMP programs as input to generate a multi-threaded

1

C program with runtime library calls. Figure 1 shows the
structure of our compiler. C-front and F-front are front-
ends that parse C and Fortran codes into intermediate codes,
called Xobject code. Exc Java tools is a Java class library
that provides classes and methods to analyze and modify the
program easily with a high level representation. The repre-
sentation of Xobject code is a kind of AST (Abstract Syn-
tax Tree) with data type information, each node of which
is a Java object that represents a syntactical element of
the source code, and that can be easily transformed. The
translation from an OpenMP program to the target multi-
threaded code is written by Java in the Exc Java tools. The
generated program is compiled by the native back-end com-
piler and linked with the runtime library.

Omni OpenMP
compiler

a.out

C + OpenMPF77 + OpenMP

Omni runtime library

c + runtime library call

Xobject code

C-frontF-front

Exc Java tools

Figure 1. Omni OpenMP compiler

2.2 SCASH

SCASH[5] is a page-based software distributed shared
memory system using the PM[12] low-latency and high
bandwidth communication library for Myrinet[9] and mem-
ory management functions, such as memory protection,
supported by the operating system kernel. SCASH is based
on the Release Consistency (RC) memory model with mul-
tiple writer protocol and implemented as a user level run-
time library. In the RC memory model, the consistency of a
shared memory area is maintained on each synchronization
called thememory barrier synchronizationpoint.

To realize memory consistency, invalidate and update
page consistency protocols have been implemented. In the
invalidate protocol, an invalidation message for a dirty page
is sent to remote hosts where the page copy is kept at the
synchronization point. In the update protocol, new data on

a page is sent to remote hosts where the page copy is kept
at the synchronization point.

In SCASH, thehomenode of a page is the node that
keeps the latest data of the page and the page directory
which represents the set of nodes sharing the page. The
baseis the node that knows the latest home node when the
home migrates. All nodes know the base nodes of all pages.

2.3 Translation of OpenMP programs to SCASH

In the OpenMP programming model, global variables are
shared by default. On the other hand, variables declared in
the global scope are private for the processor in SCASH,
and shared address space must be allocated explicitly by the
shared memory allocation primitive at runtime. To com-
pile an OpenMP program into “shemem memory model”
of SCASH, the compiler transforms code to allocate global
variables in shared address space at runtime. More specif-
ically the compiler transforms an OpenMP program by the
following steps:

1. All declarations of global variables are converted into
pointers which contain the address of the data in shared
address space.

2. The compiler rewrites all references to global variables
to indirect references through the corresponding point-
ers.

3. The compiler generates global data initialization func-
tion for each compilation unit. This function allocates
the objects in shared address space and stores these ad-
dresses to the corresponding indirect pointers.

The OpenMP primitives are transformed into a set of
runtime functions which use SCASH primitives to synchro-
nize and communicate between processors.

To translate a sequential program annotated with paral-
lel directives into a fork-join parallel program, the compiler
encapsulates each parallel region into a separate function.
The master node calls the runtime function to invoke the
slave threads which execute this function in parallel. All
threads in each node are created at the beginning of exe-
cution, and wait for the fork operation on slave nodes. No
nested parallelism is supported.

In SCASH, the consistency of all shared memory area
is maintained at a barrier operation. This matches the
OpenMP memory model. The lock and synchronization
operations in OpenMP use the explicit consistency manage-
ment primitives of SCASH on a specific object.

From a viewpoint of the programmer, our implemen-
tation for the SDSM is almost similar in behavior to the
hardware-supported SMP implementations, except for dif-
ferences in various aspects such as granurality of coherence
which may have performance implications.

2

2.4 Performance Degradation on Performance
Heterogeneous Environment

Before progressing to the discussion on extensions for
dynamic load balancing, we’ll show performance degrada-
tion on heterogeneous settings.

Fig. 2 exemplifies the situation where the nodes are per-
formance heterogenous. The cluster consists of 8 500Mhz
Intel Pentium III nodes, and 2 300Mhz Intel Celeron nodes,
and the earlier version of Omni/SCASH without any load
balancing features are installed. The benchmark run is the
SPLASH II Water benchmark. As one can observe from
the Figure, the slower nodes dominate the critical path of
the loop, and as a result, the entire cluster performs as if it
were 8+2 300Mhz nodes instead of performing as if it had
the weighted average clockspeed of the two types of pro-
cessors, which would have been ideal.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8

T
im

e
[s

ec
]

Number of Nodes

Omni/SCASH Performance: SPLASH II Water 27000 molecules on Hetero

Pentium III 500Mhz
Celeron 300Mhz x 1 + Pentium III 500Mhz
Celeron 300Mhz x 2 + Pentium III 500Mhz

Figure 2. Execution Time of SPLASH II Water
on Performance Heterogeneous Cluster

3 Dynamic Load Balancing

As mentioned in section 1, there are several conditions
which gives rise to load imbalance: (1) the target appli-
cation has load imbalance inherently, (2) there are differ-
ences in loads among the nodes due to multi-user environ-
ment, and (3) when an application is run on performance-
heterogeneous cluster. In these cases, it is important to
blance loads among the nodes to achieve sufficient perfor-
mance. As static load balancing techniques would be insuf-
ficient, dynamic load balancing techniques based on run-
time performance measurement would be essential.

It is widely known that the locality of data affects perfor-
mances in NUMA/SDSM environment, and as a result sev-
eral data placement techniques have been proposed, such

as (1) placing an extra initialization loop for some data
which are accessed in the main loop as a preamble, to uti-
lize the first-touch memory allocation mechanism supported
by the system, (2) annotating affinity info between data and
threads[6], and (3) application programmers describing data
placement explicitly with directives. These are all static
techniques, and consequently cannot deal with access pat-
tern changes at runtime or dynamic load changes in nodes,
especially those with most frequent access to certain data.

Instead, we propose a mechanism that combines dy-
namic loop re-partitioning based on runtime self-profiling
of performance for dynamic load balancing, and dy-
namic page migration based on page reference counting
for dynamic data placement. Because excessive loop re-
partitioning may cause unnecessary page migrations, it is
very important to investigate the balance between loop re-
partitioning and page migration.

3.1 Directive Extention for Loop Re-partitioning

We use loop re-partitioning as a runtime load balancing
function for data parallel applications. Althoughdynamic
andguidedoptions of OpenMP can achieve load balancing
to some extent, both involve some lock and memory flush
operations when access to the range of loop indices allo-
cated to each processors as a chunk of work must be man-
aged centrally. Instead, we achieve load balance by adjust-
ing the chunk size for each processor early on in the loop
according to runtime performance profiled from the initial
static OpenMP scheduling.

We have added the new scheduling policyprofiled to the
scheduleclause as follows:

schedule(profiled[, chunk_size])

When profiled scheduling is specified, a chunk of
chunksizeiterations are assigned to each thread. When a
thread finishes its assigned chunk of iterations, each thread
calculates the next chunk size according to the result of run-
time self-profiling. When nochunksizeis specified, it de-
faults to 1.

When an application programmer specifiesprofiled
scheduling for some parallel loop, Omni makes new sub-
functions for each parallel region, and these are invoked
on slave threads participated in the parallel region. In ad-
dition, Omni inserts time measurement code arround the
loops for measuring precise execution time of iterations,
then re-partition the loop according to performance varia-
tions between threads for the target loop as in Fig. 3. For
precise performance measurement, we utilize hardware real
time counter supported by CPU via PAPI[2].

Each thread manages loop related informa-
tions such as index of subloop and upper/lower

3

#pragma parallel omp for schedule(profiled)
 for (i = 0; i < N; i++) {
 LOOP_BODY;
 }

static void __ompc_func(void **__ompc_args){
 int i;
 {
 int lb, ub, step;
 double start_time = 0.0, stop_time = 0.0;
 lb = 0, ub = N, step = 1;
 _ompc_profiled_sched_init(lb, ub, step, 1);
 while (_ompc_profiled_sched_next(&lb, &ub, start_time, stop_time)) {
 _ompc_profiled_get_time(&start_time);
 for (i = lb; i < ub; i += step) {
 LOOP_BODY;
 }
 _ompc_profiled_get_time(&stop_time);
 }
 }
}

Figure 3. Code translation when profiled is
specified as scheduling policy

bounds of subloop, and these values are ini-
tialized by ompc profiled sched init() .
ompc profiled sched next() calculates the

next iteration space of subloop for each thread.
ompc profiled sched next() adjusts iteration

space between threads according to performance ratio
measured byompc profiled get time() to achieve
loop re-partitioning.

ompc profiled sched next() calculates loop
re-partitioning as follows:

1. When a profiled (loop) scheduling is performed:

(a) Calculate execution speed of each thread for pre-
vious chunk of loops, and broadcast the info to
all other threads.

(b) Estimate the optimal time taken to perform the
remaining loops when performing the loop re-
partitioning according to performance ratio, and
also when the loop repartitioning is not per-
formed.

(c) When the performance improvement is above a
certain threshold:

i. each thread calculates the number of chunks
for all threads and store these in the
chunk_vector .

ii. each thread adjusts its own loop index, loop
upper/lower bounds, etc., and exit.

(d) Otherwise a flag is set to indicate that loop
re-partitioning may not be performed anymore.
Each thread merely calculates the next chunk of
subloop based onchunk_vector calculated
previously, and exit.

2. When a profiled schedule is’t performed, each thread
calculates the next chunk of subloop based on the
chunk_vector calculated previously, end exit.

Of the operations above, (a) alone involves communica-
tion with other threads. When peformance difference be-
tween threads is not caused by the inherent load imbalance
of the application itself, but is caused by the performance
difference between nodes or loads, the communication oc-
curs only for the first chunk of iterations, and remain static
afterwards. As such, we expect performance gain for pro-
filed scheduling compared to dynamic or guided scheduling
that must access to shared data to calculate next iteration
space every time.

3.2 Page Migration Based on Page Reference
Count

There is no explicit method for a programmer to specify
data placement with the current OpenMP standard, origi-
nally intended for shared memory environment. There have
been proposals to improve OpenMP data placement local-
ity on NUMA or SDSM environment: [1, 8] proposes di-
rectives to specify explicit data placement; [6] presents a
scheme to align the threads with data with affinity direc-
tives; [10] migrates pages to a node on which the thread
that most frequently access the data on the page reside using
hardware page reference counters. For our work however,
because we aim to employ loop re-partitioning, such static
techniques would be difficult to apply directly.

Moreover, counting every page reference without hard-
ware support would result in considerable overhead in a
SDSM environment. Instead, we count the number of page
faults at the SDSM level, that is, the number of times when
non-local memory has been accessed, and migrate the page
to the node with the most number of (dynamic) remote ref-
erences to the given page. Because we lose precision over
direct counting of page references with hardware support,
there is a possibility of increase in actual references to re-
mote pages due to page migration. However, because we
are targetting SPMD applications, we can assume that mem-
ory access pattern in kernel parallel loop will not typically
change over each iteration. As such, we may safely assume
that our approximated reference couting will have sufficient
precision for our purpose.

In the current prototype, variables subject to migration
and its size must be specified with directives. Because page
reference information that affects page migration is largely
caused by accesses in the (rather stable) main loop that is
dominant with respect to the overall performance, we ex-
pect that good locality can be attained if the compiler can
reduce the # of false sharings (which is achievable with ap-
propriate loop partitions.)

4

4 Related Work

Nikolopoulos et al. proposed a data placement tech-
nique for dynamic page migration based on precise page
reference counting in a parallel loop of OpenMP programs
using hardware page reference counter supported by SGI
Origin 2000[10]. Based on the accurate value of page ref-
erence counter during the proper code section, exact and
timely page migration is attained. The results show that
their method show better performance than dynamic page
migration supported by OS with some programs of NPB.
Our proposal will extend their results to commodity clus-
tering environment where such hardware support does not
exist.

Harada et al. implemented home reallocation mech-
anism base on the amount of page data changes to
SCASH[4]. In their method, the system detects the node
which has made the most changes of each page at every
barrier synchronization point, then alters the “home” node
of the page to be that node to reduce remote memory access
overheads. The evaluation results with SPLASH2[14] LU
benchmark shows that their execution performance is ad-
vantageous over static home node allocation mechanisms,
including optimal static placement on up to 8 nodes.

5 Conclusion and Future Work

We reported our ongoing work on a dynamic load bal-
ancing extention to Omni/SCASH which is a implementa-
tion of OpenMP on Software Distributed Shared Memory,
SCASH. We aim to provide a solution for solving inher-
ent and dymamic load imbalance of application programs,
namely load imbalance between nodes caused by multi-
user envirionment, performance heterogeneity in nodes, etc.
Static approaches for such situations would not be adequate
and instead, we propose dynamic load balancing mech-
anism with loop re-partitioning based on runtime perfor-
mance profiling for target parallel loops, and page migra-
tion based on efficient approximated page reference count-
ing during the target loop sections. Using these techniques
we expect that user programmers can achieve non-optimal
load balance corrected by the runtime environment without
explicit definition of data and task placement.

We are in the final stages of our prototype development,
and expect to perform evaluation in the near future. In the
evaluation, firstly, we will compare the effect of page mi-
gration to round-robin placement which is the default page
placement of SCASH, and also with manual optimal data
placement. Then, we will analyze the effect of loop re-
partitioning with respect to the inherent load imbalance of
the application. Since loop re-partitioning significantly af-
fects the locality of data, it is important to investigate the

balance between frequency of loop re-paritioning and page
migration.

References

[1] J. Bircsak, P. Craig, R. Crowell, J. Harris, C. A. Nelson, and
C. D. Offner. Extending OpenMP for NUMA Machines:
The Language. InProceedings of Workshop on OpenMP Ap-
plications and Tool (WOMPAT’2000), July 2000. San Diego,
USA.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance Evaluation
on Modern Processors.The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall
2000.

[3] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP
on IBM SP for the NAS Benchmarks. InProceedings of
Supercomputing ’00, Nov. 2000. Dallas, USA.

[4] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto,
and T. Takahashi. Dynamic home node reallocation on soft-
ware distributed shared memory system. InProceedings of
IEEE 4th HPC ASIA 2000, pages 158–163, may 2000.

[5] H. Harada, H. Tezuka, A. Hori, S. Sumimoto, T. Takahashi,
and Y. Ishikawa. SCASH: Software DSM using High Per-
formance Network on Commodity Hardware and Software.
In Proceedings of Eighth Workshop on Scalable Shared-
memory Multiprocessors, pages 26–27. ACM, May 1999.

[6] A. Hasegawa, M. Sato, Y. Ishikawa, and H. Harada. Op-
timization and Performance Evaluation of NPB on Omni
OpenMP Compiler for SCASH, Software Distributed Mem-
ory System (in Japanese). InIPSJ SIG Notes, 2001-ARC-
142, 2001-HPC-85, pages 181–186, Mar. 2001.

[7] D. S. Henty. Performance of Hybrid Message-Passing and
Shared-Memory Parallelism for Discrete Element Model-
ing. InProceedings of Supercomputing ’00, Nov. 2000. Dal-
las, USA.

[8] J. Merlin. Distributed OpenMP: Extensions to OpenMP for
SMP Clusters. InInvited Talk. Second European Workshop
on OpenMP (EWOMP’00), Oct. 2000. Edinburgh, Scotland.

[9] http://www.myri.com/.

[10] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Poly-
chronopoulos, J. Labarta, and E. Ayguadé. Is Data Distri-
bution Necessary in OpenMP? InProc. of Supercomputing
2000, Nov. 2000. Dallas, TX.

[11] M. Sato, H. Harada, and Y. Ishikawa. OpenMP compiler
for Software Distributed Shared Memory System SCASH.
In Proceedings of Workshop on OpenMP Applications and
Tool (WOMPAT’2000), July 2000. San Diego, USA.

[12] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An
Operating System Coordinated High Performance Commu-
nication Library. In P. Sloot and B. Hertzberger, editors,
High-Performance Computing and Networking ’97, volume
1225, pages 708–717. Lecture Notes in Computer Science,
Apr. 1997.

[13] http://www.top500.org/.

5

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. InProceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

6

