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Abstract

High-performance peer-to-peer transfer between clus-
ters will be fundamental technology base for various Grid
middleware, such as large-scale data transfer in DataGrid
settings, or collective communication in Grid-wide MPIs.
There, two major factors are involved: on one hand net-
work pipes with large RTT × bandwidth typically become
data-starved, resulting in bandwidth loss; on the other hand
when multiple nodes on the clusters attempt simultaneous
transfer, the network pipe could become saturated, result-
ing in packet loss which again may result in bandwidth
degradation in large RTT × bandwidth networks. By dy-
namically and automatically adjusting transfer parameters
between the two clusters, such as the number of network
nodes, number of socket stripes, we could achieve opti-
mal bandwidth even when the network is under heavy con-
tention. In order to arrive at a proper performance model
for automated adjustment, we have conducted several sim-
ulations by which we have discovered that such automatic
tuning would beneficial, but the ideal number of network
pipes does not exactly match the simple transfer model of
traditional peer-to-peer settings between single nodes.

1 Introduction

Large-scale cluster nodes, with individual connectiv-
ity to high-speed WANs, are becoming widespread as
mainstream platforms for Grid computing. There, high-
performance peer-to-peer connectivity of clusters as a

whole is becoming increasingly significant as the fat band-
width on the main backbones is enabling applications with
large data transfers to be much more realistic than the
past. For example, in the CERN DataGrid project[1], one
of whose main purpose is to construct a data processing
fabric for petascale data emanating from different detec-
tors in the LHC experiment, large-scale transfer of mas-
sive data between the compute/data clusters that constitute
the DataGrid fabric would be the norm, as has been as-
sumed by various middleware structures such as the Grid
Datafarm[2]. Another example would be parallel MPIs jobs
running across multiple clusters on the Grid, facilitated by
middleware such as MPICH-G2[3]; there, collective com-
munication as well as MPI-IO calls could result in massive
data traffic between the peer clusters.

However, it has been widely pointed out that the limita-
tion of TCP window size makes it difficult to naively make
the best use of high-bandwidth networks in a wide-area en-
vironment. As such, several schemes have been suggested
to overcome such shortcoming of TCP/IP based networking
infrastructure for Grids, but these schemes focus largely on
improving the performance of peer-to-peer transfer of sin-
gle nodes on each end. When the peers become clusters,
each with its own IP address and connectivity to the net-
work, the proposed scheme may not scale properly, and/or
make best use of the performance, since and all the nodes
will try to grab the maximum bandwidth in an uncoordi-
nated fashion. In fact, performance loss may be catastrophic
in some cases, as we will observe.

Instead, we propose to come up with an efficient transfer
scheme when the peers are such clusters, and coordinating
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the use of the networks between the nodes. The purpose
of this paper is to report on the ongoing work, and specif-
ically focus on the simulation results we have obtained so
far, using the NS network simulator. The results indicate
that such coordinated transfer would especially be benefi-
cial in a (realistic) Grid environment where each network
(cluster) node is running TCP Reno as the congestion con-
trol algorithm, where uncoordinated transfer may result in
significant underutilization of network bandwidth. On the
other hand, simple application of traditional models for de-
termining the optimal network stripes for single-node peer-
to-peer transfer does not seem to directly apply, underesti-
mating the optimal number physically measured in the sim-
ulation. However, it seems difficult to integrate such factors
into the current model directly, suggesting that automati-
cally adaptive tuning methods would be desirable instead
of static determination. We are currently working to repli-
cate the results of the simulation using the newly facilitated
SuperSINET National 10-gigabt backbone here in Japan.

2 Background and Previous Work on High
Performance Data Transfer in TCP/IP
Wide-Area Networks

2.1 TCP

To prevent congestions among multiple TCP streams on
a single network link, TCP regulates the rate of data trans-
fer by controlling TCP window size, reducing the window
when congestion occurs, and increasing it otherwise. The
differences in the control methods give rise to different con-
gestion control algorithms, such as TCP Tahoe, Reno, and
Vegas.

In most TCP/IP settings TCP Reno is widely used. Reno
controls the window size in two phases. The first phase
is the slow start phase, where the TCP window size is in-
creased exponentially until a packet loss occurs. When a
loss occurs, or if the TCP window size reaches some con-
stant value, the window size is halved, and subsequently
Reno transcends into the second phase, i.e., the congestion
avoidance phase. Here, TCP window size is increased one
by one, and if a packet loss occurs, TCP window size is
halved, and this is repeated each time packet loss occurs.
The lost packets are retransmitted, but when timeout occurs
on this retransmission, then Reno starts to the first (slow
start) phase. Figure1 illustrates typical behaviour of TCP
window size control in TCP Reno.

2.2 Exploiting TCP Bandwidth in Wide-Area Net-
works

The problem of TCP over high-latency and high-
bandwidth networks is largely caused by the limitation of
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Figure 1. TCP Reno congestion window size
change over time

TCP window size, and the subtle interactions between the
congestion control algorithms. For example, in the early
days of TCP/IP stack implementations, the upper limit of
TCP window size was restricted to 64 kilobytes, due to
memory restrictions of the machines. This severely restricts
bandwidth, because data cannot sufficiently fill the network
pipe before the receiver ack. Due to the recent exponential
growth of the backbones as well as local router bandwidth,
such restrictions quickly proved to be insufficient. As a re-
sult, various schemes have been proposed to utilize the net-
work bandwidth fully:

1. Increase the upper limit of TCP window size. Most
TCP/IP implementations now facilitate window scal-
ing options, allowing the maximum window size to
be set substantially large. This is not perfect, how-
ever; firstly, for extremely high-bandwidth networks,
the TCP window size becomes substantial—the rule of
thumb is twice that of the RTT × bandwidth, which
could amount to 10s to 100s of megabytes for networks
with large delays. More serious problem is that, there
will be increased probability of packet loss, and when
it happens, it will take considerable amount of time for
the slow start to recover the appropriate window size.
There are recent extensions to TCP/IP stacks to alle-
viate the latter problem partially, such as High Speed
TCP (HSTCP)[4]. Nonetheless, the latter could be se-
rious because competing transfers emanating from dif-
ferent nodes in a single cluster may result in increased
packet loss.

2. Use more bandwidth-eager UDP instead of TCP. UDP
by itself does not embody any congestion control algo-
rithm. Most recent high-performance network transfer
work based on UDP literally “blasts” the UDP pack-
ets eagerly, without any congestion control, and com-
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pensates for the lost packets later[5, 6]. The problem
is that, it will devastate most competing TCP trans-
missions, as well as likely causing excessive packet
losses between competing UDP transfers for inter-
cluster peer-to-peer settings.

3. Transfer data in parallel, or so-called “striping”. Ba-
sically, one opens multiple sockets, stripes data, and
transfers data in parallel. This overcomes the limita-
tion of TCP window size restrictions and associated
problems, since a packet loss only results in partial
degradation of transfer bandwidth in only one of the
striped TCP connections. Moreover, it can be imple-
mented at the application level[7], or at the library
level[8]. The problem is that the ideal striped size dif-
fers depending on network bandwidth and congestion
status, and could in fact result in “overstriping” when
multiple nodes are involved simultaneously.

2.3 Problems when Clusters are Peers

The common problem with all of the above schemes
when they are applied naively to inter-cluster peer-to-peer
transfer is that, they all attempt to optimize the transfer
based on individual peer-to-peer basis between the nodes
of the cluster peers, and do not account for other nodes at-
tempting to transfer at the same time, using exactly the same
strategy. As a result, this may result in excessive packets be-
ing stuffed to the network pipe, without appropriate conges-
tion control. This will likely be very evident for the UDP-
based transfers, but could also be serious for other schemes.

Feng[9] also recently addressed the problem of peer-to-
peer data transfer between two large clusters on the Grid.
The work simulated large clusters at two US national labs
Los Alamos and Sandia, as well as the network in-between.
Data transfer was simulated on NS[10] using both TCP
Reno and TCP Vegas and compared. The overall result
is that, TCP Vegas was relatively robust with respect to
increase in the number of nodes, but for Reno, the win-
dow size became excessively large for the available (shared)
bandwidth during the slow start phase, and successively re-
sulted in considerable packet loss due to congestion. More-
over, the problem became more serious as the network
bandwidth increased.

Although TCP Vegas proved to be more robust, its mixed
use with TCP Reno is known to result in poor performance
(which will be quite general, given existence of network
nodes outside the transfer)[11, 12] . As such, the use of TCP
Vegas will not be desirable for high-performance transfers
in realistic settings.

3 Coordinated Striping for Peer-to-Peer
Transfer between Clusters

Based on the discussions, we propose the use of striping
properly coordinated across the cluster nodes as a viable
scheme of maximizing network utilization when the peers
are large-scale clusters. Here, we have two parameters of
control: the number of nodes that participate in the parallel
transfer, and the number of network stripes for each node.
Assuming that the latter is the same across all the nodes, the
total number of stripes connecting the two peer clusters is
naturally the product of the two numbers. By coordinating
across the nodes and automatically adjusting the total num-
ber of stripes depending on network status, we may sustain
maximal throughput from the network, avoiding excessive
packet loss and the resulting TCP slow start which would
hamper throughput significantly.

The questions then are: a) What is the optimal number
of stripes, i.e., can we apply the standard network model ap-
plicable to single node peer-to-peer transfer to clusters, b)
when we automatically adjust the total number of stripes,
do the two parameters have differing effects, or is it just that
their product merely matters, i.e., it is irrelevant whether we
adjust the number of nodes or stripes per node. A) is impor-
tant since if the model is applicable, controlling the number
of stripes would become rather straightforward, since the
ideal number can be derived simply from the observed RTT.
For b), if the product only matters it will be much easier to
control the number of stripes, since in fact we may alter the
number of stripes straightforwardly amongst the nodes to
reach the ideal number.

Although the final goal is to actually construct such a
peer-to-peer transfer framework for the Grid, the goal of
this paper is to identify the above questions, and investigate
if the assumptions on the questions would hold. For such
purposes, we have conducted extensive simulations, the re-
sult of which will be presented in the next section.

4 Simulating Data Transfer Between Clus-
ters on the Grid

4.1 Simulation using the NS Network Simulator

In order to investigate the above issues, we simulate data
transfer between clusters on the Grid under various configu-
rations using NS (Network Simulator)[10]. NS is a discrete
event simulator dedicated to simulating various network be-
haviors, and often employed for development and verifica-
tion of new network protocols, analyzing queuing systems,
etc. NS provides various protocols for different network-
ing layers, such as low-level unicast/multicast protocols, as
well as standard TCP protocols such as TCP, HTTP, FTP,
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Table 1. Simulation Parameters of Cluster
Nodes

TCP Packet Size 1KByte
Upper Limit of TCP Window Size 64 packets
Transfer Size (per node) 8Mbyte
Bandwidth to Router 100Mbps

etc. NS also allows simulation of different network topolo-
gies. In our simulations, we employed version 2.1b8 of NS.

router router

cluster cluster

0.3ms
100Mbps

0.3ms
100Mbps

Figure 2. simulated network topology

4.2 Simulated Cluster Peer-to-Peer Environment

Figure2 illustrates the simulation network configuration
we employed for Peer-to-Peer cluster data transfer. Param-
eters for each cluster node are shown in Table 1. Each
cluster node transfers data to the corresponding node of the
other cluster peer using a direct inter-node peer-to-peer TCP
stream. The sizes of transmitted data are identical among
the nodes (8MBytes), and the data on each node are striped
to be the same size in the manner identical to PSockets[8].
We varied the network latency between the routers from
10ms to 320ms, and the network bandwidth from 1.5Mbps
to 1000Mbps, although made the node to router bandwidth
to be constant at 100Mbps. We also assume that the router
queues are FIFO. We limit the duration of simulation to 100
seconds, since network instability was not observed for all
cases.

5 Simulation Results

5.1 Single-Node Transfers—Determining Opti-
mal Number of Stripes

We first determine the optimal number of stripes in a
single node (i.e., non-cluster) peer-to-peer data transfer set-
ting. Figure9 shows the data transfer time when we alter the
number of stripes, assuming that the inter-router network
bandwidth is 100Mbps. Different series varies the network

delay. We observe that, for all cases the transfer time ini-
tially decreases as we increase the number of stripes, but at
some point (approximately 50 stripes) we actually observe
increase in transfer time. This is likely because the opti-
mal TCP window size is overestimated during the slow start
phase, causing excessive congestion. Figure3 illustrates this
in another measurement. The graph shows the amount of
data transmitted versus amount of data whose packets had
been retransmitted packets for single-node transfer with the
number of stripes being fixed at 52. We observe that, after
3 seconds from the beginning of transfer, there is signifi-
cant rise in the data being retransmitted; this implies that
the window size exceeded the optimal value after 3 seconds,
causing significant packet loss.
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Figure 3. Data Transmitted / Retransmitted be-
tween Single Nodes with 52 Stripes over Time

5.2 Multiple Node Transfers

Figure4 shows the correlation between network latency
and the optimal number of stripes, assuming the network
bandwidths of 1.5Mbps, 5Mbps, and 10Mbps. Again, the
optimal number of stripes is the number of stripes that fin-
ished data transfer the fastest. We observe that, the graphs
are generally very irregular, and it is difficult to determine
the trend given the network bandwidth/delay and the num-
ber of nodes. This is especially evident when the network
latency is small.

Figure5 illustrates the data transfer time of different
number of stripes over the 1.5Mbps links with varying la-
tency. Here, we observe that, the variance of data transfer
over differing number of stripes is much greater for short-
latency networks compared to longer ones. Thus, for low-
bandwidth and low-latency networks, striping is less essen-
tial, and in fact “overstriping” will have adverse effect on
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Figure 5. Single-Node Data Transfer Time for
1.5Mbps
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Figure 6. Single-Node Data Transfer Time for
10Mbps
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Figure 7. 8-Node Data Transfer time for
10Mbps

bandwidth utilization.

Now we move onto the real heart of the issues, i.e.,
multi-node peer-to-peer transfers. For 10Mbps, we observe
the difference between the single-node and 8-node settings.
Here, the network bottleneck is entirely between the routers,
since the aggregate node-router bandwidth is 800Mbps on
each end. For single node, we see in Figure6 that the trans-
fer time steadily decreases, until there is a small ‘rift’ upon
which the above overstriping occurs. On the other hand, for
8-node configuration in Figure7, we observe catastrophic
loss in performance when we exceed the optimal number of
stripes. This verifies that, even with striping, uncoordinated
transfer that would saturate the network will have unaccept-
able performance due to explosive increase in packet loss.

The single-node series in the Figure 8 graph shows
the situation where bandwidth increases to 100Mbps and
1000Mbps, and the optimal number of stripes increases as
network latency grows. This implies that the number of
stripes will increase as the delay-bandwidth product grows.

As for multi-node setting, 100Mbps and 1000Mbps be-
have differently. 100Mbps behaves much like the 10Mbps
case, where overstriping causes catastrophic bandwidth loss
as we observe in Figures 11 and 13, whereas graphs in
1000Mbps Figures 10, 12, and 14 remain rather simi-
lar. This is largely because in the latter case the bottle-
neck resides in the network between the nodes and the
router (100Mbps), and as a result individual node satu-
rates its bandwidth at the level where their aggregate largely
matches the inter-router bandwidth. This suggests that, we
must be aware of the actual network topology and the asso-
ciated bandwidth of not only the trunk network, but also the
cluster interconnect to the router and the outside world.
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Figure 8. Optimal number of stripes for
100Mbps, 1000Mbps
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Figure 9. Single-node data transfer time for
100Mbps
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Figure 10. Single-node data transfer time for
1000Mbps
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Figure 11. 8-node data transfer time for
100Mbps
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Figure 12. 8-node data transfer time for
1000Mbps

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70

da
ta

 tr
an

sm
is

si
on

 ti
m

e(
se

co
nd

s)

number of stripes

10ms
40ms
80ms

160ms
240ms
320ms

Figure 13. 16-node data transfer time for
100Mbps
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Figure 14. 16-node data transfer time for
1000Mbps

5.3 Comparison with Simple Modeling, and Pro-
posals for Dynamic Parameter Tuning

We briefly compare our results with a simple model of
optimal stripe number and sizing. We denote the roundtrip
time as RTT , the bandwidth as bandwidth, the upper limit
of TCP window size as max wnd size, and the number of
stripes as stripe. If no packet losses occur, the amount of
data transferred is stripe × max wnd size, and the avail-
able data in flight on the link is RTT × bandwidth. If we
fully utilize the link, the optimal number of stripes would
be as follows:

RTT × bandwidth

max wnd size

For example, for 100Mbps bandwidth and 160ms RTT,
the optimal number of stripes would be 6. However, in
the simulation, the optimal number of stripes measured was
10; as such there is definitely a non-negligible discrepancy.
Moreover, the formula denotes that the optimal number of
stripes is proportional to RTT, but is not so in the simulation,
especially for the case when the available theoretical maxi-
mum bandwidth is small, where optimal number of stripes
may not be monotonically increasing along with growth in
the network delay.

Although we have not fully confirmed the results of our
simulation with live measurements (we have conducted sev-
eral experiments, but due to problems with the misbehaving
gigabit switch our results were not conclusive), nonethe-
less it does seem to indicate that it is difficult to apply the
simple model above for determining the optimal number of
stripes. Instead, we propose the following three possible ap-

proaches, all of which adjust the maximum stripe size dy-
namically in a coordinated fashion across the nodes:

• Tune the parameters such as the number of nodes dy-
namically during transfer, using observable dynamic
values of the transfer (e.g., packet loss ratio), and ap-
ply an extended and corrected model to derive new pa-
rameters.

• Tune the parameters such as the number of nodes
dynamically during transfer by running a simulation
(such as the one we have conducted for this paper)
alongside the actual transfer. This may allow more ac-
curate and faster compliance with the optimal setting,
but could be more difficult to manage.

• Determine the parameters such as the number of nodes
dynamically during transfer, using periodic observable
dynamic values of the transfer (e.g., packet loss ratio)
and searching the database that indicates the optimal
values. The database may be constructed from real ob-
servation or from simulation. This may have the ben-
efit of both accuracy and lightweight of the schemes
above.

6 Conclusion and Future Work

For inter-cluster peer-to-peer transfer in Grid settings,
we pointed out that traditional means of high-performance
data transfers between single node peers may cause subopti-
mal performance due to uncoordinated bandwidth optimiza-
tion of individual peer pairs. Although some may claim that
striped transfer could alleviate the problem to some degree,
we nonetheless claimed that even so some situations the
packet loss could have devastating effect on performance.
We have actually confirmed this in our simulation, and es-
pecially when the available bandwidth between the routers
are much smaller than the aggregate bandwidth of the nodes
to the router, the optimal number of stripes per node is much
smaller than single-node peer-to-peer transfers, and in fact
“overstriping” the transfer results in catastrophic degrada-
tion of performance. Moreover, the optimal number does
not match the simple model of stripe determination, and as
such we suggested several schemes where basically the to-
tal number of network stripes emanating from the cluster is
controlled in coordinated and dynamic fashion.

As a future work, we plan to employ the new Super-
SINET Japanese academic multi-gigabit networking infras-
tructure to conduct physical experiments to verify the va-
lidity of our simulation. Already we have connected some
of our fleet of clusters to SuperSINET, including the 512-
processor Presto III[13]. Also, based on the findings we
plan to extend the data transfer portion of our GFarm Data-
Grid system in order to incorporate the necessary control
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and dynamic parameter tuning scheme we have suggested
above, and measure the results. Our results hopefully will
be applicable to numerous inter-cluster peer-to-peer trans-
fers in general, including Grid middleware tools such as
GridFTP.
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