
( 1 ) 1

Speculative Checkpointing
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In large scale parallel systems, storing mem-

ory images with checkpointing will involve massive

amounts of concentrated I/O from many nodes,

resulting in considerable execution overhead. For

user-level checkpointing, overhead reduction usu-

ally involves both spatial, i.e., reducing the amount

of checkpoint data, and temporal, i.e., spreading

out I/O by checkpointing data as soon as their val-

ues become fixed. However, for system-level check-

pointing, while being generic and effortless for the

end-user, most efforts have focused on simple meth-

ods for spatial reductions only. Instead, we propose

speculative checkpointing, which is an attempt to

exploit temporal reduction in system-level check-

pointing. We demonstrate that speculative check-

pointing can be implemented as a simple extension

of incremental checkpointing, a well-known check-

pointing optimization algorithm for spatial reduc-

tion. Although shown to be useful and effective,

the overall effectiveness of speculative checkpoint-

ing is greatly affected by the last-write heuristics of

pages, and as such it is difficult to determine the

theoretical upper bound of the effectiveness of spec-

ulative checkpointing in practical applications. In

order to analyze this, we construct a checkpointing
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oracle simulator that allows post-mortem analysis

of maximal temporal reduction in checkpoint time

given an application. The benchmarks show that

speculative checkpointing can reduce up to 32% of

checkpointing time in NAS parallel benchmarks.

1 Introduction

Checkpointing is a well-established method to

achieve fault tolerance. In particular, for parallel

systems an algorithm known as coordinated check-

pointing [9] is used, where the nodes collectively

reach a barrier that could serve as a consistent state

on restart from a checkpoint. While in theory con-

sistent state can be described as a consistent cut

across multiple nodes in a distributed system2, and

give rise to the so-called uncoordinated checkpoint-

ing [9], in reality coordinated checkpointing is em-

ployed for its simplicity and various shortcomings

of uncoordinated checkpointing in large-scale sys-

tems such as cascading rollback.

However, one problem with coordinated check-

pointing in a large scale parallel systems is that,

storing memory images of all the parallel processes

at the barrier point of checkpointing will involve

massive amounts of concentrated I/O from many

nodes, resulting in considerable execution over-

head. For example, a medium-size cluster may

consist of 64-256 nodes with several gigabytes of

memory each, which may increase the checkpoint



2 コンピュータソフトウェア ( 2 )

Figure 1 I/O Contentions in Parallel

Coordinated Checkpointing

size to be nearly a Terabyte. Given that typical

I/O system of a Beowulf cluster may be an NFS

server backed up by a high-performance RAID sys-

tem, the maximal I/O throughput of a checkpoint

(storage) server could typically be approximately

100MB/s. So, in order to checkpoint the entire

memory, it will require 1000 seconds or almost 20

minutes. This overhead will be aggregated if the in-

dividual nodes attempt to individually write to the

checkpoint server, causing effectively random I/O

contentions, causing the overall I/O bandwidth to

dramatically drop.

There have been several work in the past to rem-

edy this situation. For user-level checkpointing,

overhead reduction involves both spatial, i.e., re-

ducing the amount of checkpoint data by having the

user identify only those data that need to be saved

at the consistent cut, and temporal, i.e., spreading

out I/O by checkpointing data as soon as their val-

ues become fixed, i.e., there will be no more writes

to the memory location holding the data until the

next checkpoint.

However, for system-level checkpointing, while

being generic and effortless for the end-user, most

efforts have focused on spatial reductions only..

One well-known algorithm for spatial reduction is

incremental checkpointing [1] [2], where the system

keeps track of writes to memory locations since the

last checkpoint, and saves only those that have been

modified since then at the next checkpoint. This is

typically achieved using VM page fault techniques,

since the granularity of I/O need only be coarse,

and once a write fault occurs for a page after a

checkpoint, further write fault detections no longer

become necessary for that page. There are also

other schemes such as not checkpointing pages that

contain heavily compressible data such as all 0s [7],

or using local HDD or spare memory of other nodes

to store checkpoints locally, so that stable storage

need only be exploited less often [10] [8].. However,

the former is fairly limited to initial startup phases

of applications, while the latter will sacrifice relia-

bility to considerable degree, increasing the cost of

nodes and networks to be substantially high so that

no parts of the checkpoint will not be lost, since loss

of a single portion of the entire checkpointing file

will compromise the entire checkpoint.

As far as we know, no attempts have been made

to achieve spatial reductions in system-level check-

pointing in order to reduce concentration of I/O. In

order to exploit this unexplored possibility, we pro-

pose speculative checkpointing, which is an attempt

to exploit temporal reduction in system-level check-

pointing. We demonstrate that speculative check-

pointing can be implemented as a simple extension

of incremental checkpointing, and can be used ef-

fectively in clusters with shared stable checkpoint

storage, “spreading out” I/O in a temporal fashion,

overlapping computation and I/O, thereby achiev-

ing considerable reduction in checkpointing over-

head.

Although shown to be useful and effective, the

overall effectiveness of speculative checkpointing

depends substantially dependent on the interac-

tion between the application and the (page) last-

write heuristics employed, and as such it is difficult

to determine the theoretical upper bound of the

effectiveness of speculative checkpointing in prac-

tical applications. In order to analyze this, we

construct a checkpointing “oracle” simulator that

allows proflied analysis of maximal temporal re-

duction in checkpoint time given an application.



( 3 ) Vol. 0 No. 0 1983 3

Figure 2 Consistency Cut in a Distributed

System - Each Processes may in Theory be

Individually Checkpointed at its Cut

The benchmarks show that speculative checkpoint-

ing can reduce up to 32% of checkpointing time

in NAS BT parallel benchmark with perfect last-

write prediction, whereas simple heuristics observe

no speedups.

2 Speculative Checkpoint and its Effi-

cient Design

2.1 Definition of Speculative Checkpoint-

ing

We define speculative checkpointing as follows:

As stated in the previous section, between the in-

tervals of coordinated checkpointing, on each mem-

ory write the user or the system will speculatively

predict whether it will be the last write prior to

the next checkpoint, i.e., there particular memory

location will not change until the next checkpoint,

and thus can be speculatively checkpointed early,

prior to coordinated checkpointing.

We may speculate a memory location in a false

manner in two ways. First is the false positive

case, i.e., the memory location could change even

after it had been speculatively checkpointed: such

a case must be detected and re-checkpointed at co-

ordinated checkpoint time. Another would be fail-

ure to detect the opportunity of speculative check-

pointing: in this case, there are no correctness

issues, just lost opportunity for performance im-

provement. Altogether, if we can achieve good pre-

diction on speculative checkpointing opportunities

for each page, and the application exhibits fairly

non-local memory access characteristics, then we

will achieve high reduction in checkpoint overhead.

2.2 Automation of Speculative Check-

pointing via Extension of Incremental

Checkpointing

Although speculative checkpointing can be per-

formed as a user-level checkpointing technique, we

devise automated techniques to achieve specula-

tive checkpointing, as correctly predicting the “last

write” of a memory location and the associated

checkpointing would be difficult for the reasons

stated above. As a basis, we employ incremental

checkpointing, allowing reduction in both spatial

and temporal properties.

In incremental checkpointing, all data segments

are managed at HW/OS page levels. At the be-

ginning of a checkpoint interval, all pages are write

protected, and will mark any page that detect the

write trap. On coordinated checkpointing, only

those pages that are marked are checkpointed.

We extend the incremental checkpointing to

achieve speculation in the following manner. On

each trap on the interval between the coordinated

checkpoints, instead of merely marking the written

page, the system will execute a prediction function

that embeds some heuristics to determine whether

the page will be subject to speculative checkpoint-

ing at that time, i.e., the page will no longer be

modified until the next coordinated checkpoint. We

call such a heuristics the last write heuristics of the

page. Figure 3 shows when prediction correctly oc-

curs, successfully spreading out the checkpointing

I/O (the total # of pages remain constant irrespec-

tive of speculation).

Figure 4 shows unsuccessful prediction, i.e., when

the last write heuristics has failed, and additional

writes occur after speculative checkpointing for

that page. In order to detect this situation, we
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Figure 3 Successful Last Write Prediction in

Speculative Checkpointing

Figure 4 Failed Last Write Prediction in

Speculative Checkpointing

write protect the page that we had speculatively

checkpointed, and mark the page as being mod-

ified as usual. This page must be written again

on coordinated checkpointing, effectively increas-

ing the number of pages that are written within

a checkpoint interval. In reality, since speculative

checkpoints will be overlapped with application ex-

ecution, this situation is no worse than perform-

ing standard incremental checkpointing, and would

not sacrifice correctness. That is to say, specula-

tive checkpointing is obtained “for free”, and with

good predictive last write heuristics one will get the

benefit of speculative checkpointing.

One drawback of speculative checkpointing is

that, distributed consistency can only be guar-

anteed at (incremental) coordinated checkpointing

Figure 5 Automated Speculative

Checkpointing

time, i.e., restart can only occur from coordinated

checkpoints. This is because any speculative check-

pointing is only partially ahead-of-time, and can be

observed in memory page 4 of Figure 3, where mod-

ified pages have not been checkpointed yet. On

the other hand, this is also an advantage, because

any stable storage writes of speculative checkpoint

pages can be done totally asynchronously. This not

only allows overlap of computation and checkpoint

I/O within a node, but also alleviates the need to

synchronize among the nodes leading to very effi-

cient checkpointing (Figure 5).

3 Implementation of Speculative

Checkpointing

We implementing a prototype speculative check-

pointing system to study the interaction of last

write heurisitcs, checkpointing intervals, and the

applications themselves, identifying how and when

speculative checkpointing would be effective. As we

discuss later, important is the concept of specula-

tive checkpoint “oracle”, i.e., the last write heuris-

tics working perfectly without any mistakes, and

thus prescribing the theoretical limit of optimiza-

tion that can be achieved given the checkpoint in-

terval and the application.
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First, as the base incremental checkpointer, we

currently employ Libckpt [4] for open-source avail-

ability and wideranging OS compatibility. We ex-

tend Libckpt as described above, calling the last

write prediction algorithm on write traps, and if

determined so, calling an asynchronous checkpoint

write routine, and resetting the write protect on the

page. On coordinated checkpointing, the marked

pages that are were not speculatively checkpointed

are merged with those that have been, excluding

those that were recognized as last write speculation

failure, to collectively formulate a single consistent

checkpoint image.

As for the last write predictor, it is built to be

pluggable, so that we could have various last write

predictors depending on the application and the

runtime environment. In fact, the current intent

of the research is to investigate the characteristics

of various heuristics, weighing their tradeoffs with

respect to their precision vs. compile-time / run-

time complexity and overhead.

One heuristics we initially implemented was to

simply consider the writes to pages that are rewrit-

ten infrequently, or more precisely, longer intervals

than that of coordinated checkpointing, as a last

write. This is based on the observation that, if the

program is executing under the same phase, infre-

quently written pages will likely remain so, and as

a result, will incur fewer prediction errors. In some

applications this simple heuristics was surprisingly

useful, as well as being very lightweight and simple

to implement. In our prototype implementation,

the intervals could be measured in terms of check-

point intervals, or prescribed physical time.

On the other hand, drawback of this method is

that, it will be very difficult to detect pages that

would be subject to speculative checkpointing, in

coordination with the physical execution (outer)

loop of the program. As a result, programs that ex-

hibit locality, and as a result demonstrate clear di-

visions between pages that are updated frequently

and those are not touched for a long time, benefit

very little from speculative checkpointing compared

to the original incremental checkpointing. Many

loop-centric scientific programs fall into this cate-

gory, and we judged that we needed much better

prediction heuristics for such applications.

The second heuristics is to observe that within a

phase of a large, scientific computation, memory ac-

cess patterns per each loop will not usually drasti-

cally change. So, a formidable strategy would be to

analyze the memory access pattern of a loop (typ-

ically outermost one), and to use the analysis data

to perform the last write prediction. The advan-

tage is that the prediction precision may be quite

high, even for memory pages that get modified for

every loop. The drawback, especially when per-

forming dynamic instrumentation is the overhead

of analysis and/or taking memory traces and pre-

dicting the pattern of access per each loop. Either

resorting to sophisticated static analysis, or em-

ploying recent techniques in low-overhead profiling

[11], coupled with various stride analysis could pro-

vide with sufficient power to perform such analysis

sufficiently. Here, we still must weigh the overhead

of each methodology, and consider the overhead vs.

the possible gains by speculative checkpointing.

There are other predictive methods possible as

well. In the next section we investigate whether

the first simple heuristics will be effective and not,

and why.

4 Evaluation of Speculative Check-

pointing with a Simple Last-Write

Predictor

We evaluate the effectiveness of our speculative

checkpointer using the simple last-write predictor

as mentioned above. The evaluation cluster we em-

ployed has the following specs:

• Cluster Nodes: APPRO 1124i (1U Dual
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Athlon) × 16

• CPU: AthlonMP 1900+ (1.6Ghz) × 2 per

node

• Memory: 768MB DDR(PC2100 256MB × 3)

• Network: 1000Base-T

• OS: linux2.4.22

• Compiler: gcc v2.95.4

We set up a single NFS server to serve as a check-

point sever for all the nodes. Bulk write on the

server from a single node is measured to be around

30 MB/s.

Because the fully parallel version of the check-

pointer that deals with in-flight MPI messages at

coordinated checkpoint time is not fully completed

yet, we emulated the parallel execution in the fol-

lowing fashion, effectively eliminating the effect of

this shortcoming, and allowing us to avoid the ef-

fect of the speculative checkpoint “spreading out”

the checkpoint I/O, and whether the simple heuris-

tics is effective in achieving that goal, as well as not

mispredicting so as to cause overhead.

• We execute the same serial code on all the ma-

chines.,

• We perform artificial MPI barrier at the be-

ginning of their execution,

• We do not perform synchronization at each

speculative checkpointing of individual nodes.

Each checkpoint is stored onto the checkpoint

server.

• We perform global MPI barrier at each coordi-

nated checkpoint time. Checkpoints are taken

in parallel to the checkpoint NFS server.

As the benchmark program, we employed a pro-

gram called MEMWRITE which basically linearly

scans 300MB region of memory, updating every

byte, and circling through them twice. The way

our predictor works, when adjusted properly this

will likely result in high prediction accuracy, and

as a result, good distribution of checkpointing via

speculation lowering the overall checkpointing over-

Figure 6 MEMWRITETotal Checkpointing

Time

head due to checkpoint server congestion. For re-

alistic benchmarks, we ran the serial version of all

the NAS parallel benchmarks. 2.3 independently

parallel on all the nodes, but synchronized to emu-

late MPI parallel execution (our prototype version

does not currently support direct MPI execution

due to problems with spawn()). For brevity we

show the results of BT Class A, which is representa-

tive for exhibiting cases where simple predictions do

not work, if not causing any overhead. The results

are shown in Figures 6 and 7: For MEMWRITE,

the coordinated checkpointing interval is set to 120

seconds, and there is one speculative checkpoint

at the middle, i.e., 60 seconds before/after coordi-

nated checkpointing. The last heuristics is “there

have been no writes in the last two (coordinated

checkpoint) intervals ’’. There were 8 checkpoints

taken in 944 seconds of execution (when without

checkpointing), totaling 196876 (4 Kbyte) pages,

of which 49678 or about 1/4th were taken spec-

ulatively. For NPB BT, execution time without

checkpointing is 2357.6 seconds. Because both co-

ordinated and speculative checkpoints are embed-

ded in the code, there are no explicit time intervals;

we perform 10 coordinated checkpoints, and 200

speculative checkpoints during each interval. A to-

tal of 1,471,516 pages had been checkpointed, but

no pages were subject to speculative checkpoints

under the same last write heuristics.
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Figure 7 Total Checkpoint Time of NAS BT

CLASS A

First, we achieve considerable reduction in total

checkpoint time for MEMWRITE. As mentioned

above, this is because of almost perfect prediction

of the simple last write heuristics, in that the same

page is either only written once, or none at all be-

tween two checkpoint intervals. As a result, by set-

ting the heuristics parameters so that any modified

page would be subject to speculative checkpointing,

we effectively cause a situation where the check-

point ‘trails’ the linear memory writes.

On the other hand, for NPB, many applications

exhibited no loss but little gain compared to the

original incremental checkpointing. BT Class A

is shown here as a typical example. Other apps

demonstrated minor speedups, but not really sig-

nificant. There could be two reasons for this: one

is that our simple last-write heuristics was not a

good match for NAS PB. The other possibility is

that, no matter what heuristics we employ, specu-

lation will yield very little effect, i.e., most memory

cannot be checkpointed ahead of time for NAS PB.

To elaborate on these two possibilities, the former

is a matter of devising a better heuristics, as has

been mentioned earlier. The latter is more serious,

in that no matter how perfect we improve the pre-

diction algorithm, we may not attain any benefits

at all.

5 The Checkpoint “Oracle” Last-

Write Prediction

As discussed so far, instead of blindly attempt-

ing to develop a better, more effective last-write

heuristics function, we need to answer the ques-

tion: “Will speculative checkpointing be effective if

perfect last-write prediction?” For this purpose, we

have built a tool called the “oracle” simulator, that

will determine the theoretical maximum on the ef-

fectiveness of a perfect last-write predictor. That

is to say, the tool will take a proper trace of mem-

ory accesses as would a predictor tool as described

above, but rather, will record every memory access

to determine, for every page, the timing of their last

write before the next coordinated checkpoint. The

set of timing values represent an oracle, i.e. what

the perfect last-write prediction heuristics would be

predicting for each page. Then, by replaying the

program, the heuristics will make perfect determi-

nation of the last writes based on the log.

In practice, because we replay the program, we

do not need to record the exact timing of the writes.

Instead, we need to know how many writes oc-

cur between each coordinated checkpoint interval in

relevance to speculative checkpointing. As such, by

merely recording how many speculative checkpoints

have been made overall when a write to a page oc-

curs per each page, we may determine whether the

write is the last write before a coordinated check-

point on replay.

More specifically, our speculative checkpointing

“oracle” simulator performs the followings:

1. The user inserts calls to coordinated check-

point and (the start of) speculative checkpoint

in his program. Of particular importance is to

insert the proper calls in the dominant loop.

2. We first execute the record phase: the sys-

tem executes the program with all its mem-

ory pages protected with mprotect(2). Also,
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a counter is kept per page, which are all ini-

tialized to zero.

3. When a page is written to, SIGSEGV occurs

which the system will catch; the count will be

assigned with the number of times the specu-

lative checkpoint routine had been called, and

the write protect is turned off for that page.

When speculative checkpoint occurs, all pages

become write protected.

4. When coordinated checkpointing occurs, all

the counters are saved per page, and they be-

come write-protected again.

5. After the program finishes execution, we re-

execute it but now as a replay phase. The pro-

gram would be executed as a normal program

under speculative checkpoint enabled, with the

last write predictive function as follows. We

keep a global counter to indicate how many

speculative checkpoints had occurred after the

last coordinated checkpoint.

6. Upon speculative checkpoint, we compare

the counter (that had been recorded to in

the record phase) of each write-modified page

against the global counter. If it matches, then

this means that there will no more writes to

the page after this speculative checkpoint (oth-

erwise, the value of the page counter will be

greater), and thus the write was the last write;

thus, we speculatively checkpoint the page un-

der this perfect information.

7. Upon coordinated checkpoint, we check if the

write had been a last write in a similar manner

as above. If it is then we checkpoint the page.

Since this is a coordinated checkpoint, we have

to barrier synchronize all the processors at this

point.

6 Performance Evaluation under the

Table 1 Checkpoint time for BT CLASS A

with Perfect Last Write Prediction

1 2 4 8 16

proc proc proc proc proc

w/o

speculative 37.37 125.23 929.11 1882.57 5367.00

checkpoint

w/

speculative 39.1 112.13 659.25 1288.26 4549.85

checkpoint

Figure 8 Checkpoint time for BT CLASS A

with Perfect Last Write Prediction

Oracle Simulator

We now compare speculative checkpointing with

perfect last write prediction to simple coordinated

checkpointing without speculation, in order to de-

termine the theoretical limits of the effectiveness.

For brevity, we present the results of NAS BT as

shown in Table 1and Figure 8

As can be seen in the table, speculative check-

pointing yields shorter execution time, with up to

32% improvement with 8 processors. This is con-

trast to the previous, simpler last write heuristics

where we observed essentially no gain in perfor-

mance, indicating that with improved heuristics,

we could attain substantial performance gains.

With 16 processors, improvements become

smaller; this may be due to I/O contention caused

by overlaps in speculative checkpointing amongst
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multiple processors. By slightly shifting the timings

for speculative checkpointing amongst the proces-

sors, we may reduce such contentions—recall that,

speculative checkpointing allows for full asynchrony

between the foreground user process and check-

pointing.

7 Conclusion and Future Work

We proposed speculative checkpointing, that al-

lows for temporal distribution of checkpointing to

avoid I/O concentration, and show how it can be

easily implemented as an extension of coordinated

checkpointing that achieves spatial distribution, by

speculatively checkpointing a page ahead of time

when we predict that the page will not be rewrit-

ten until the coordinated checkpointing time (last

write).

Although speculative checkpoint is safe in that,

misprediction of the last write will not compromise

the correctness of the program, benchmarks indi-

cate that last-write heuristics could impact per-

formance improvements. In order to investigate

whether the case we observe no speedup is due

to whether poor heuristics, or rather no speedup

is fundamentally possible, we constructed an “or-

acle” simulator that allows for perfect prediction

via profiling and replay. There, we found that,

for NAS parallel benchmarks that have observed

no speedups with a simple heuristics observed con-

siderable speedup. This indicates that, with bet-

ter predictive functions with various analysis tech-

niques could greatly improve performance for high

I/O contentious checkpoint servers.

Future work includes research into a better last

write predictor without extensive profiling; support

for full checkpoint of parallel MPI processes.
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