
Model-Based Resource Selection for Efficient Virtual Cluster Deployment

Shohei Yamasaki†, Naoya Maruyama†, and Satoshi Matsuoka†,‡
† Tokyo Institute of Technology, ‡ National Institute of Informatics

yamasaki@matsulab.is.titech.ac.jp, {naoya.maruyama, matsu}@is.titech.ac.jp

Abstract

When installing virtual cluster on Grid environments,
randomly selecting nodes from arbitrary computing re-
sources can radically increase installation time. This is
because installation time of each node can vary greatly in
heterogeneous Grid environments and the total installation
time of a virtual cluster is bottlenecked by the slowest node.
To achieve fast virtual cluster installation, we propose a
model-based resource selection policy that chooses a near-
optimal hosting node combination to assemble each cluster.
We divide the VM setup process into five logical steps and
construct a performance model for each step. The model
represents the execution time of each step as a linear com-
bination of hardware and software parameters, including
CPU frequency, disk I/O performance, and installing pack-
age size. We have extended our virtual cluster installer,
VPC, to select nodes in the increasing order of predicted in-
stallation time. Experimental results show that the model-
based selection policy is indeed effective, especially when
the package size differs depending on sites. The proposed
policy has shown to reduce the installation time by up to
68% compared to the most naı̈ve policy that selects nodes
in a random order, 60% and 58% to the policies consider-
ing either CPU speed or disk I/O performance, respectively.

1 Introduction

Virtual clusters as job execution platforms for Grid en-
vironments have been receiving much attention as they
can provide user-specific computing environments with-
out destructively interfering with underlying hosting ma-
chines [3, 4, 6]. A virtual cluster is a virtualized computing
cluster that consists of underlying multiple clusters on the
Grid interconnected by physical or overlay networks. By
combining multiple clusters, virtual clusters could achieve
extremely higher performance or better system utilization
compared to each single cluster.

One of the challenges in realizing such Grid resource

sharing is how to efficiently deploy large-scale virtual clus-
ters over heterogeneous environments. The time to de-
ploy virtual machines on each node can be significant over-
head for user jobs, limiting the applicability of virtual clus-
ters only to long-running jobs. Furthermore, selection of
hosting nodes can have huge impact on the total installa-
tion time, especially on heterogeneous Grid environments.
This is because VM installation time of each hosting node
can greatly vary in heterogeneous Grid environments, and
because the total virtual cluster installation time is bottle-
necked by the slowest node. We have actually observed
such variation of installation time, where the difference be-
tween the fastest node and the slowest node was more than
100 seconds even within a single site. Thus, instead of ran-
domly selecting nodes from any available hosting resources,
a more intelligent selection policy prioritizing nodes with
faster installation time is necessary for rapidly constructing
large-scale virtual clusters over heterogeneous Grids.

Some of the issues in the implementation of virtual clus-
ters have been addressed by Krsul [6], Foster [4], and
Nishimura [8], but none of them consider the resource se-
lection policy for heterogeneous environments. VMPlants
by Krsul et al. [6] provides a graph-based VM creation
and customization framework for virtual Grid environments
such as In-VIGO [11], enabling user-specific flexible cus-
tomization. Virtual Workspace by Keahey et al. defines
interoperable interfaces with existing services in the con-
text of the Globus toolkit [4, 5]. Our previous work ad-
dresses efficient, scalable installation of fully-customizable
virtual environments [8]. Although these issues are impor-
tant per se, they assume homogeneous physical hosting en-
vironments, which is rarely the case in large-scale Grid plat-
forms or even within a single datacenter.

To achieve fast virtual cluster installation, we propose
a model-based resource selection policy that selects near-
optimal node combination to assemble each cluster. We
derive a performance model of virtual cluster installation
in our prototype installer VPC [8] by statistical linear re-
gression with pre-stage performance profiles. We divide the
whole VM installation process into five logical steps, and
construct the model for each step. The model represents the

Figure 1. VPC Overview

execution time of each step as a linear combination of hard-
ware and software parameters, including CPU frequency,
disk I/O performance, and installing package size. We de-
termine the coefficient of each variable by multiple regres-
sion analysis using pre-stage performance profiles. Our
model-based policy selects nodes in the increasing order of
predicted installation time, and transparently avoids the in-
stallation time increase due to heterogeneity in the underly-
ing resources.

To evaluate the proposed model-based resource selec-
tion policy, we have extended the resource selection func-
tions of our virtual cluster installer VPC. Preliminary exper-
iments with the extended VPC show that the model-based
selection policy is indeed effective, especially when the in-
stalling package size differs depending on sites. The pro-
posed policy has shown to reduce the installation time by
up to 68% compared to the most naı̈ve policy that randomly
select nodes, 60% and 58% to the policies considering ei-
ther CPU speed or disk I/O performance, respectively.

2 Overview of the VPC Virtual Cluster In-
staller

VPC is a virtual cluster installer that achieves efficiency,
scalability, and yet simultaneously fine-grained customiza-
tion of virtual clusters [8]. Unlike other typical virtual clus-
ter installer that assumes the existence of pre-built appro-
priate VM images [5, 6], VPC can dynamically instantiates
VMs from scratch by using an existing package-based clus-
ter management system, such as Lucie [12] and Rocks [9].
As such, it completely eliminates manual preparation of
VM images and allows the user to easily enjoy much finer-
grained customization. Furthermore, VPC reduces software
installation time in common cases by dynamically creating
VM images, which are virtual disk image where frequently-
requested software is installed, but yet not fully configured.
VPC automatically determines the packages to install in

hardware specification
[hardware]
NumberOfNodes: 32
CPUArch: x86
CPUSpeed: 3GHz
RAM: 2GB
Disk: 8GB
software specification
[software]
User: root:1abcdefgh$rV6Rh...
User: shohei:1abcdefgh$6DEi2...
Hostname: vc%02d
Network: 192.168.10.128/25
Packages: gcc mpich python...

Figure 2. A sample install request to create
32-node virtual cluster

VM images by finding frequently-appearing packages in
user-request history, thus requiring no manual configura-
tion. We further reduce installation time by exploiting a
scalable pipelined data distribution technique for deploying
installing packages and VM images [7]. Experimental re-
sults show that VPC can install a 50-VM virtual cluster in
43 to 148 seconds; with VM images in place, the installation
times are further reduced to 27 to 63 seconds. Further ex-
periments show that VPC can install with a 200-VM virtual
cluster in as fast as 40 seconds. Extrapolation with these re-
sults suggest high scalability of VPC: installation of even a
thousand-VM virtual cluster could be done in less than two
minutes.

Figure 1 illustrates the overview of the system archi-
tecture, which consists of three key components, includ-
ing master node, head node, and VM hosting nodes. The
master node receives user requests, and schedules and dis-
patches installation requests to the head nodes. The head
node for each site manages the VM hosting nodes, where
user-customized VMs are actually scheduled to run. In the
rest of this section, we describe the installation flow in VPC
that is relevant to the performance models presented in the
next section. More detailed information on VPC itself can
be found in [8].

2.1 Install Request Submission

As illustrated in Figure 1, the user initiates a virtual clus-
ter installation by sending a request to the master node. The
request consists of hardware and software specifications,
each of which describes the requirements of either hardware
or software. The hardware specification includes CPU type
and speed, RAM amount, disk space, and the number of
nodes. The software specification describes OS kernel and
other user-level packages to be installed. The structure of
the software specification depends on the particular cluster
installer being used. Figure 2 is an example of configuration
file when installing a 32-node virtual cluster.

2.2 Virtual Cluster Creation for a User
Request

When receiving a user request, the master node initiates
virtual cluster creation using appropriate VM hosting nodes
on which the user-customized VMs actually run. To do so,
the master node contacts the head node for each site for
VM hosting nodes that satisfy the hardware specification in
the user request, and selects appropriate VM hosting nodes.
For each selected host, the master node requests the head
node to create the requested VMs on the VM hosting nodes,
and contacts the base cluster installer to install the requested
software specified in the software specification to the VMs.

2.3 Software Installation onto Virtual
Cluster Nodes

When receiving the installation request from the master
node, the head node in each site identifies the VM image
with whom the given request shares the largest common-
ality in installed packages. The missing packages in the
VM images are fetched by the cluster installer on the head
node from the nearest package repository. To avoid network
bandwidth bottleneck in the head node, VPC exploits O(1)
pipelined data transfer for every data distribution.

On each VM hosting node, a fresh VM instance is run-
ning and waiting for the head node’s installation request.
After the VM image and remaining packages are made
available from the head node, the VM mounts the VM im-
age as its base file system, and uses the employed cluster in-
staller to install the remaining packages into the file system.
Finally, the cluster installer performs the system configura-
tion specified by the user request.

3 Modeling of the Virtual Cluster Installa-
tion in VPC

To derive a model for virtual cluster installation, we first
create a node-level model that predicts the installation time
at each node. The model for the whole installation of a
virtual cluster takes the maximum of the node-level model,
since the total installation time is determined by the slowest
node. We construct the node-level model by dividing the
process into five logical steps, and fitting a linear model to
pre-stage performance profiles by multiple regression anal-
ysis. In this section, we first describe the process decompo-
sition into the sub steps, and next the linear modeling of the
time in each step.

Figure 3. VPC Steps within a Site.

3.1 Logical Steps in the Virtual Cluster
Installation

We decompose the installation process into the following
five steps, as illustrated in Figure 3:

Step 1: Package Download As the head node receives a
virtual cluster installation request from the master
node, it decides which VM image to use and down-
loads the requested packages missing in the image
from the local package repository.

Step 2: Package Transfer The head node transfers the
downloaded packages to every hosting node.

Step 3: Package Installation Each VM hosting node
mounts the VM image, and installs transferred pack-
ages into the image. Note that our current model
assumes that the VM images are already staged to
each node.

Step 4: Configuration After the package installation, each
node executes configuration scripts for the standard
system properties, such as host name and IP address,
as well as, for particular packages.

Step 5: Reboot After the node finishes installing the user-
requested VM image, it boots the VM with the cus-
tomized image.

In Step 3, we do not consider the time for VM image trans-
fer, assuming that every VM image is already staged to each
node. The reason for this for our VPC in particular is be-
cause each node locally caches the transferred VM image
within each local disk, and because the “cache miss” at the
first use of an image is likely to be a rare event in the long
run due to an effective caching algorithm. Of course, this
assumption would not be valid if VM images are not reused

Table 1. Models for the installation steps
Step Names Assumed Models

Package
α1(PkgSize) + λ1Download

Package α2(PkgSize)
Transfer +β2(TransferOrder) + λ2

Package α3(PkgSize) + γ3(CPUFreq)−1

Installation +δ3(DiskWrite)−1 + λ3

Configuration α4(PkgSize) + γ4(CPUFreq)−1

+δ4(DiskWrite)−1 + λ4

Reboot α5(PkgSize) + γ5(CPUFreq)−1

+ε5(DiskRead)−1 + λ5

many times, but in that the user request would vary signifi-
cantly.

However, because VPC only generates images whose
package combination is frequently requested in user-request
history, our assumption is likely to be valid in common
cases. Experimental evaluation remains a subject of future
work.

3.2 Model of Each Installation Step

Our model represents the execution time of each step as
a linear combination of hardware and software parameters,
including CPU frequency, disk I/O performance, installing
package size, and the package transfer order of each node.
We obtain performance profiles using our virtual cluster in-
staller VPC and determine the coefficients in the models by
multiple regression analysis.

Table 1 shows the linear model for each step. PkgSize
is the size (MB) of packages to be added to the VM im-
age for a given user request, TransferOrder is the order of
each VM hosting node when packages are transferred from
the head node in a pipelined fashion, CPUFreq is CPU fre-
quency (GHz), DiskRead is disk read speed (MB/s), and
DiskWrite is disk write speed (MB/s). We use these val-
ues as parameters because they vary depending on hosting
nodes and particular installation requests. As of current, we
assume that other possible parameters that potentially af-
fect the installation time, such as network bandwidth and
latency within a site, are uniform, and do not include them
in the models. It is worth noting that our modeling can ac-
commodate the difference of network performance among
sites since we derive a different model for each site.

We have conducted 200-node virtual cluster installa-
tion experiments using VPC on our PrestoIII cluster. The
PrestoIII cluster consists of four different types of machines

Table 2. PrestoIII cluster node specifications.
CPU (freq.) RAM HDD

Type 0 Athlon2000+ (1.6GHz) 1GB IDE
Type 1 Opteron242 (1.6GHz) 2GB IDE
Type 2 Opteron280 (2.4GHz) 4GB SATA
Type 3 Opteron250 (2.4GHz) 2GB SCSI

Table 3. Result of Multiple Regression and
Adjusted Coefficients of Determination.

Step Names Models with Determined Coefficients R2

Package
0.312× PkgSize + 0.72 0.99Download

Package 0.022× PkgSize 0.99Transfer +0.04× TransferOrder + 0.14

Package 0.784× PkgSize + 56× (CPUFreq)−1

0.92Installation +308× (DiskWrite)−1 − 47

Configuration 0.016× PkgSize + 1.1× (CPUFreq)−1

0.56
+13× (DiskWrite)−1 − 0.8

Reboot 0.045× PkgSize + 9.9× (CPUFreq)−1

0.47
+62× (DiskRead)−1 + 6.7

as listed in Table 2. We have created 31 patterns of virtual
clusters whose installation sizes ranges from 0MB to 30MB
by 5MB increments, and measured the installation time for
each virtual cluster 50 times.

Table 3 shows the results of multiple regression and anal-
ysis with Adjusted Coefficients of Determination. A coef-
ficient of determination R2 is a statistical measure of how
well the regression line approximates the real data points.
R2 of 1.0 indicates that the regression line perfectly fits the
data. In each step except the last two steps, R2 is greater
than 0.9, which means that the models approximate the real
data points well. However, both the configuration and re-
boot steps have relatively lower coefficient values. The
low accuracy of the configuration step has little effect on
the overall installation time modeling, because the ratio of
the time in the overall configuration step is typically very
small. On the other hand, in our performance profiles, the
reboot step can occupy more than 30% of the total installa-
tion time; thus, the accuracy of the reboot step does matter
in the overall modeling effectiveness. Further analysis re-
mains a subject of future work.

Figure 4. The extensions for the existing VPC.

4 Evaluation of the Model-based Resource
Selection Policy

To evaluate the effectiveness of the model-based re-
source selection policy, we have implemented the policy
within our virtual cluster installer, VPC [8], as well as other
simple policies for comparison. This section describes the
overview of the extensions for the VPC and presents exper-
imental results showing the effectiveness of our proposed
method.

4.1 Overview of the Extensions for the
VPC

We extended the node selection function in the VPC for
implementing our model-based policy as well as other sim-
pler three policies. As illustrated in Figure 4, the head node
in each site collects from each VM hosting nodes such in-
formation as CPU frequency and disk I/O performance, and
sends it to the master node. The head node also notifies the
master node of the VM images already transferred over the
site. This information allows the master node to determine
the size of additional packages that must be dynamically
downloaded.

Our node selection policies include FIFO, CPU, DISK,
and MODEL. The FIFO policy is the most naı̈ve method
in which the master node selects VM hosting nodes in a
random order, and is the default policy in the current VPC.
The CPU and DISK policies select VM hosting nodes in the
decreasing order of CPU and disk I/O performance, respec-
tively. With the MODEL policy, the master node predicts
the virtual cluster installation time for a given user request,
and selects the nodes with the fastest predicted installation
times.

4.2 Experimental Methods

We compare the four selection policies by varying both
the number of VMs and the sizes of additional packages to
VM images. To evaluate the installation time with multiple
sites, we partition a single cluster into two clusters, and use
them as two emulated sites. Each of the two sites, called
SITE0 or SITE1, consists of 50 VM hosting nodes with
three different VM images. We evaluate three patterns of
additional package sizes, 50, 100, and 150 MB, by chang-
ing the sizes of VM images. We also vary the number of
VMs to be 5, 25, 50, and 75.

As an experimental environment, we use our PrestoIII
cluster consisting of 256 Linux machines, and partition
them into two emulated sites. The specification of each
node is one of the four types listed in Table 2. As shown in
the table, the PrestoIII cluster is not a typical homogeneous
cluster, but has performance heterogeneity due to its partial
system upgrades. The site SITE0 consists of nodes of type
0 and 1, and its head node is of type 0. The types of nodes
in site SITE1 include of type 1, 2, and 3, and its head node
is a type 1 node. We use a type 3 node for the master node.
Each hosing node runs the Linux kernel v2.6.16 with Xen
v3.0.2-2 patch applied, while the head nodes and the master
node run the standard Linux kernel v2.6.12.6. All the nodes,
including the VM hosting nodes, the head nodes, and the
master node, are connected to 13 gigabit Ethernet switches,
which are then interconnected by two gigabit switches.

4.3 Experimental Results

We have conducted two types of experiments using the
prototype system: one is the situation where every node
uses the same VM image, and another is where images
are different between sites. The former situation can oc-
cur when both sites have been used in a similar way in its
history, while the latter can occur each site has hosted dif-
ferent kinds of virtual clusters. We present the result of each
experiment in the rest of this section.

4.3.1 The Same VM Image for Both Sites

Figure 5 and Figure 6 compare the installation times when
using the same image in both sites. The model policy re-
duced the whole virtual cluster installation times by up to
38% compared to the FIFO policy, 20% to the CPU policy,
and 11% to the DISK policy.

The reason of the slowest installation with the FIFO pol-
icy is that our PrestoIII cluster include several nodes with
degraded disk I/O performance. Further examination of the
results revealed that the FIFO policy had one of the slowest
nodes at the very beginning of the node list, thus resulting
in much slower performance even in the 5-node case.

Figure 5. Comparison of the 4 policies: pack-
age size 50 MB in both sites.

Figure 6. Comparison of the 4 policies: pack-
age size 100 MB in both sites.

4.3.2 Different VM Image for Each Site

As shown in Figure 7 and Figure 8, the model policy re-
duced the whole virtual cluster installation time by up to
68%, 60%, and 58% to the FIFO, CPU, and DISK policies,
respectively. The results indicate that the proposed model-
based policy is effective especially in the case that the size
of the VM image used varies among sites.

With the CPU and DISK policies, although they are not
bad selection policies in the case that the same VM images
are used in both sites, the installation time increased greatly
in the case that different VMs images are used, while with
the proposed model the installation time did not increase as
much as the other policies. The most effective situation for
the MODEL policy was when the package size is 150MB

Figure 7. Comparison of the 4 policies: pack-
age size 150 MB in SITE0 and 50 MB in SITE1.

in the site SITE0, the package size is only 50MB in the
site SITE1, and 50 VMs are installed. The model-based
policy takes into consideration the difference in installation
package sizes and therefore it uses only the nodes in SITE1,
where only 50MB of packages are to be installed. However,
the CPU and DISK policies do not consider the large dif-
ference in package installation sizes between the two sites,
installing a virtual cluster using nodes in both sites. As a
result, the CPU and DISK policies increase the installation
time due to the additional 100MB package installation com-
pared to the MODEL policy.

It is also worth noting that in the case of 75-VM virtual
cluster, the installation time with the MODEL policy was
nearly the same as the other policies since each site only
has 50 VMs, and constructing a 75-VM cluster requires the
use of both sites irrespective of the used policy.

5 Related Work

While several virtual cluster installation approaches have
been proposed, most of them do not pay particular attention
to scalability and heterogeneity with increasing number of
nodes. Examples of such previous research include envi-
ronment customization [6, 8] and interoperability with ex-
isting infrastructure [2, 4, 5]. Although these issues are im-
portant per se, they assume homogeneous physical hosting
environments, which is rarely the case in large-scale Grid
platforms.

More closely related to our work, Sotomayor et. al
proposed an accurate resource allocation method for vir-
tual computing environments [10]. Job execution time ac-
counting in typical batch job schedulers include the time
for staging executables to compute nodes, since the staging

Figure 8. Comparison of the 4 policies: pack-
age size 150 MB in SITE0 and 100 MB in
SITE1.

cost is typically very small compared to its execution time.
However, deploying a virtual cluster can take significantly
longer, thus including its time in execution time accounting
can be unfair for the user. Sotomayor et. al proposed a VM-
aware resource accounting method by estimating the time
to deploy virtual machines on a single cluster. Similar to
us, their estimation uses the information of the size of the
VM image and the number of VMs to deploy. Unlike us,
they assume homogeneous performance of compute nodes.
Thus, their estimation would not be as accurate as ours in
the presence of significantly different speeds of disk I/O.

Another project related to our work is French
Grid’5000 [1]. Grid’5000 is built on a large collection of
computing clusters distributed across WANs, and provides
an on-demand customizable physical testbed for Grid com-
puting research [1]. Although it installs systems on multiple
distributed sites, it does not take the performance hetero-
geneity into account but rather relies on user specifications.

6 Conclusion

6.1 Summary

To realize a fast virtual cluster installation on heteroge-
neous Grid environments, we have presented a performance
model that predicts the virtual cluster installation time, and
have proposed a model-based resource selection policy. We
divide the whole installation time of a virtual cluster into
five logical steps, and derive a model for each step. Each
step is represented as a linear combination of software and
hardware parameters, including CPU speed, disk I/O perfor-
mance, and installing package sizes. To evaluate the effec-
tiveness of the model in installation time reduction, we have

extended our virtual cluster installer VPC to select nodes
in the increasing order of predicted installation time. Ex-
periments using the extended VPC showed that the model-
based selection policy is indeed effective, especially in a
heterogeneous situation where the installation package size
differs depending on sites. The proposed policy has shown
to reduce the installation time by up to 68% compared to
the most naı̈ve policy that randomly select nodes, 60% and
58% to the policies considering either CPU speed or disk
I/O performance, respectively.

6.2 Future Work

Modeling VM Image Transfer Time As we have dis-
cussed in Section 3.1, our current installation model does
not consider the time for VM image transfer, assuming that
every VM image is already staged to each node. We will
experimentally evaluate the installation time including the
VM image transfer and examine effects on the accuracy of
our installation model.

Modeling Package Distribution from Remote Reposi-
tories We have assumed that each site has a locally-
mirrored package repository. However, in addition to the
site-wide repository configuration, the user might require
remote non-mirrored repositories as well. In such a case,
our model must reflect the network performance to the re-
mote repositories.

Resource Selection Considering Performance Charac-
teristics of Each Job This paper has addressed the re-
duction of time from when the install request is submit-
ted until the time when its cluster is available to login and
launch jobs. We are also considering further improving
node selection by matching the performance characteris-
tics of each job and underlying resources. For example,
network-bottleneck jobs should be scheduled on tightly-
coupled clusters with relatively small inter-node latencies.
On the other hand, CPU-bottleneck jobs could improve the
total performance by exploiting larger number of nodes with
little overhead due to longer inter-node latencies.

Acknowledgments

This work is supported in part by the Ministry of Edu-
cation, Culture, Sports, Science, and Technology, Grant-in-
Aid for Scientific Research on Priority Areas, 18049028.

References

[1] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, R. Namyst, P. Primet, and O. Richard. Grid’5000:

a large scale, reconfigurable, controllable and monitorable
Grid platform. In International Workshop on Grid Comput-
ing, Seattle, USA, Nov 2005.

[2] W. Emeneker and D. Stanzione. Dynamic virtual cluster-
ing. In Proceedings of the IEEE International Conference
on Cluster Computing (Cluster’07), pages 84–90, Septem-
ber 2007.

[3] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid com-
puting on virtual machines. In Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 550–559, 2003.

[4] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer,
and X. Zhang. Virtual clusters for grid communities. In
CCGRID ’06, pages 513–520, Singapore, May 2006.

[5] K. Keahey, I. Foster, , T. Freeman, X. Zhang, and D. Galron.
Virtual workspaces in the grid. In Euro-Par, pages 421–431,
2005.

[6] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo. Vmplants: Providing and managing virtual ma-
chine execution environments for grid computing. In Pro-
ceedings of the 2004 ACM/IEEE conference on Supercom-
puting, pages 7–18, Pittsburgh, PA, November 2004.

[7] A. Manabe. Disk cloning program ‘dolly+’ for system man-
agement of pc linux cluster. In Computing in High Energy
Physics and Nuclear Physics, 2001.

[8] H. Nishimura, N. Maruyama, and S. Matsuoka. Fast, Scal-
able, Fully-Customizable Installation for Virtual Clusters. In
CCGrid’07, pages 549–556, 2007.

[9] P. M. Papadopoulos, M. J. Katz, and G. Bruno. Npaci rocks:
Tools and techniques for easily deploying manageable linux
clusters. In Proceedings of the International Conference on
Cluster Computing, 2001.

[10] B. Sotomayor, K. Keahey, and I. Foster. Overhead matters:
A model for virtual resource management. In First Interna-
tional Workshop on Virtualization Technology in Distributed
Computing (VTDC’06), Nov 2006.

[11] A. Sumalatha, C. Vineet, C. Puneet, F. Renato, F. Jose,
K. Ivan, M. Andrea, T. Mauricio, Z. Jian, Z. Ming, Z. Lip-
ing, and Z. Xiaomin. From virtualized resources to virtual
computing grids: the In-VIGO system. Future Generation
Computer Systems, 21(6):896–909, 2005.

[12] Y. Takamiya. Large-Scale Configuration Management and
Installation of Commodity Clusters. PhD thesis, Tokyo In-
stitute of Technology, March 2006.

