
Data Management on Grid Filesystem for Data-Intensive Computing

Hitoshi Sato
Tokyo Institute of Technology

hitoshi.sato@is.titech.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology

matsu@is.titech.ac.jp

Abstract

In parallel computing environments such as HPC clus-
ters and the Grid, data-intensive applications involve large
overhead costs due to a concentration of access to the files
on common nodes. To avoid this problem in traditional dis-
tributed filesystems, users have to distribute the file access
manually. However, such solution has some difficulties for
users in the Grid environment. We propose a data man-
agement mechanism for data-intensive computing on Grid
filesystem. Our technique improves the file access perfor-
mance by automatically scheduling the file access and the
data management on the filesystem. The filesystem is based
on dynamically configured node groups corresponding to
the network topology. Utilizing the configuration, it moni-
tors file access to detect concentrated situations, creates the
file replica, and schedules its placement and access. We ap-
plied the proposal technique to the Gfarm, a filesystem that
scales to the Grid. We emulate real application workloads
using a job scheduler and confirmed a speedup of factor
3.7 compared with a filesystem without automatic file ac-
cess distribution techniques.

1. Introduction

Data-intensive applications on the Grid, such as high-
energy physics, astronomy, life-science, etc., require to
share and process a large amount of data generated by ex-
periments or observations among multi-sites. In the envi-
ronments, network shared filesystems, such as NFS, AFS,
and cluster filesystems[4][3][5], are widely used to provide
data accessibility and single system image, but there are
some difficulties in using traditional distributed filesystems
on the Grid . Some data-intensive applications involve large
overhead costs due to a concentration of access to the files
on common nodes. To avoid this problem in exsisting dis-
tributed filesystems, users have to distribute the file access
manually. However, such solution is difficult for users in
the Grid environment. To solve this problem, we propose a
data management mechanism for data-intensive computing

on Grid filesystem. Our technique improves the file access
performance by automatically scheduling the file access and
the data management on the filesystem. The filesystem is
based on dynamically configured node groups correspond-
ing to the network topology. Utilizing the configuration, it
monitors file access to detect concentrated situations, cre-
ates the file replica, and schedules its placement and access.
We applied the proposal technique to the Gfarm, a filesys-
tem that scales to the Grid. We emulate real application
workloads using a job scheduler and confirmed a speedup
of factor 3.7 compared with a filesystem without automatic
file access distribution techniques.

2. Problem of Filesystems on the Grid

There are a lot of advantages in the use of the network
filesystem to federate resources on the Grid. It can provide
not only data sharing among multi-sites but also single sys-
tem image. The requirements of the filesystem on the Grid
are mainly considered Security and Scalability.

NFS based filesystems combined with security mecha-
nisms [6] support secure data sharing on a wide area net-
work. However, these systems basically consist of a single
node, causing possible performance bottleneck. Therefore,
filesystems of this kind aren’t suitable for the usage on the
Grid in the point of scalability.

Striping parallel filesystems[4][3][5] are mainly used on
HPC cluster environments to gain better I/O performance.
All files are divided into fixed-size chunks, and each chunk
can be placed in any storage node. However, the perfor-
mance of these filesystems can often be limited by the net-
work bandwidth, and most of these filesystems don’t sup-
port security mechanisms that should satisfy the require-
ments on the Grid.

Grid Datafarm[7] is an architecture for petascale data in-
tensive computing on the Grid. This system not only pro-
vides data sharing on the Grid but also schedules programs
on nodes where the corresponding segments of data are
stored to utilize local I/O scalability, rather than transfer-
ring the large-scale data to compute nodes. However, users
need to manage data in the filesystem manually to improve

I/O performance in the heterogeneous resources. Moreover,
even if one assume the use of the filesystems such as Grid
Datarfarm, the situation that a concentration of file access
from many clients to a single node and that access to file on
remote sites may occur, which can be a performance bottle-
neck for applications running on the filesystems.

3. Data Management on the Grid Filesystem

To solve the problem described in Section 2, we propose
a data management mechanism on grid filesystem to sup-
port data-intensive computing. Our main target application
is the one that has write once and read only workload. We
applied our proposal to Gfarm[2], which is a reference im-
plementation of Grid Datafarm Architecture. Currently, our
system is based on the version 1.2 of Gfarm.

���� �������	
� �
� ����������

Figure 1 shows the overview of our target filesys-
tem. The filesystem consists of three components:
“client”(Gfarm Parallel I/O API), which offers interfaces
for the filesystem, “metadata server”(gfmd and LDAP),
which manages metadata of all files, and “I/O node”(gfsd),
which maintains file fragments (We refer the “fragment” as
“section”). First a client attempts to query the metadata
server about a location of fragments of the file to which the
client needs to access. This process is done by using Gfarm
Parallel I/O API. Then, the metadata server selects an I/O
node and notifies the node to the client. After that, the
client access to the node. In addition , our technique uses a
monitoring system on the metadata server(file system mon-
itor(gfads)) and the I/O nodes(I/O node monitor(gfsd am)).
The filesystem monitor watches access to each file section
on the filesystem to detect the concentration of access and
the I/O node monitor watches resources on nodes (e.g. load,
availability of the storage) to utilize them for scheduling file
access and data management.

���� ����������
� �
��� �
�� �
��
��
�
� ����������

The nodes that compose the filesystem are divided into
several groups based on the network topology. The aim of
this division is to improve performance of file access to hide
the heterogeneity of the Grid and to utilize the locality that
has similarity among the node group. This grouping is done
as follows. First we define group size � as below.

��� � �
�

����� �

�
�

������
� ��������

where � is a set of filesystem nodes that compose a group,
� is a set of network links in the group � , ��� is a network

METADATA SERVER

CLIENT

I/O NODECreation and deletion
of file replica

gfsd

gfads

gfsd gfsd gfsd gfsd

File access

Acquisition of
file access
destination

gfsd_am gfsd_am gfsd_am gfsd_am gfsd_am

gfmd LDAP

Work as scheduler, monitor, and introspector

METADATA SERVER

CLIENT

I/O NODECreation and deletion
of file replica

gfsd

gfads

gfsd gfsd gfsd gfsd

File access

Acquisition of
file access
destination

gfsd_am gfsd_am gfsd_am gfsd_am gfsd_am

gfmd LDAP

Work as scheduler, monitor, and introspector

Figure 1. Overview of our proposal system

bandwidth, and ���� is a round trip time of the network.
Based on this expression, distance � between two groups
�� and �� are defined as follows.

����� ��� � ���� � ���

Using this expression, the filesystem nodes are diveded into
several groups in the following steps: (1) Initialize groups
that are composed of each filesystem node, (2) Calculate
distance between groups using (1), (3) Select two groups
whose distance are minimized and merge them into a single
group, (4) Iterate the steps (2) and (3) until the minimum
of the distance exceeds a threshold defined by the system
previously. In the current implementation, the threshold is
set at 0.01.

���� �
���
�
� ��� ������ ��
� ������

Under the node groups described in section 3.2, the
metadata server schedules a file access destination from a
client as follows: (1) If a target file exists on a local storage
of a client, select the client node, (2) If a target file doesn’t
exist on a local storage of a client, and (2-i) if the target file
exists on a node in a same group with the client, then select
the node, or, (2-ii) if the target file dosen’t exist on a node
in a same group with a client, select any node that main-
tain the target file. If there exist several nodes that maintain
the same file replica, the metadata server queries the nodes
about load average and selects the node that advertize the
minimum load average as the destination.

���� ���� ����������
� �
� ����������

Detection of concentration of filesystem node access
The metadata server also monitors file access to detect a
concentration of file access. This is conducted at each file
section when the metadata server schedules an access des-
tination. It records the tharget file and section name, the

client of the request, the scheduled I/O node, and the time.
Using these information, our technique detects a concen-
tration of file access as follows. First, the system defines
an interval of monitoring time and a threshold for detecting
a concentration previously. In the current implementation,
the monitoring time is set at 180 ���. Next, it counts the
file access during the interval from last file access. Then,
we calculate a value as access state using following expres-
sion: 	����� �
	
� � �	
��

�	�
�	�
�� �
��
. If the value of the

access state is higher than the threshold, the metadata server
decides the state as“ access concentration”and attempts
to replicate the file to another I/O node.

Replication of files When a concentration of file
access is detected by the metadata server, the file
section is replicated. The replication is done by
calling Gfarm API (gfarm url section replicate to or
gfarm url section replicate from to) and the instruction
is as follows: (1) If the scheduled node belongs to the
same group that the client belongs to, replicate the file
between the group, (2) If the scheduled node belongs to
the different group that the client belongs to, replicate
the file between any two groups. In other words, if the
concentration occured by flash requests inside a group, the
system increases the replica within it, and if the concen-
tration occured by flash requests from different group, the
system pulls the file near the group that the client belongs
to.

Deletion of the file replicas When the metadata server
doesn’t detect a concentration of access to file section, repli-
cas of the file are deleted according to the value of the ac-
cess status. This process is conducted under the condition
that the existence of the file is guaranteed.

4. Experiment

���� �
� !���������� "��#��

To prove the validity of our proposal, We applied the data
management mechanism to Gfarm and deployed a testbed,
on which we executed a sample data-intensive program us-
ing a job scheduling system (Condor[1]). The focuses of
the experiment are the effect of the detection of concentra-
tion and the data management. Figure 2 shows the config-
uration of the testbed, which consists of two separate clus-
ters (PRESTO III located on Tokyo Institute of Technol-
ogy (Titech) in Tokyo, and KOUME located on National
Institute of Advanced Industrial Science and Technology
(AIST) in Tsukuba). We deployed our prototype on this fed-
erated environment: A metadata server is allocated to one
of the PRESTO III nodes, and clients and I/O nodes are al-
located to other cluster nodes of PRESTOIII and KOUME.

PRESTO III Cluster

Prototype Filesystem

Client

I/O node

Job Scheduler

Metadata Server

Client

I/O node

Client

I/O node

Client

I/O node

Client

I/O node

KOUME Cluster

Job Submission Job execution

Figure 2. Configuration of the testbed

Table 1. Performance of each cluster

PRESTO III KOUME

num. of nodes 60 (120CPU) 5 (10CPU)
CPU Opteron 242 Pentium III 1400MHz

�� ��
Memory 2GBytes 2GBytes

OS Linux 2.4.27 Linux 2.4.20
Network 1000Base-T 100 Base-T

The specification of the cluster nodes and the network are
shown in Table 1 and Table 2. We installed a Condor job
scheduling system on PRESTO III and deployed one of the
PRESTO III nodes as a job scheduler and other PRESTO
III nodes as job submission hosts and job execution hosts.

On this environment, we submitted 100 jobs that open,
read, and close files from one of the PRESTO III nodes to
the job scheduler continually. The target files are placeed on
the KOUME nodes. Therefore, the files are accessed from
the job execution nodes via the filesystem. The file is com-
posed of a single section and the size of the file is 128MB.
We set the following experiment conditions: (1) norep: The
filesystem doesn’t configure the nodes as groups nor man-
age the data, (2) same config: The filesystem configures all
nodes as a single group statically and manage the data, (3)
auto config: The filesystem configures the nodes as several
groups dynamically using the methods described in section
3.2 and manage the data, (4) diff config: The filesystem
configures the nodes as several groups statically and man-
age the data, (5) oracle: The same condition as (1), but
the data are distributed onto the local storage of all cluster
nodes. In(4), We configure all nodes of KOUME as a group
and the nodes of PRESTO III that is conncected to a single
switch as a group. In the configuration (4), we compose 4
groups (7, 17, 16, 20 nodes) in PRESTO III. The parameter
for the concentration detection is set at 0.1.

Table 2. Network performance
PRESTO III KOUME PRESTO III

nodes　 nodes - KOUME

rtt �msec.� 0.083 0.055 6.63
bandwidth
�Mbits/sec� 973 908 73.0

Table 3. Average elapsed time [sec.]

norep same auto diff oracle
config config config

　 average 31.6 6.50 8.50 6.19 0.954

���� �
� !���������� $��#���

Table 3 shows average elapsed time of each condition
and Figure 3 shows the relation between elapsed time of
each job and accumulated number of the nonterminated
jobs, which represents the behavior of the jobs. First, we
compare “oracle” case with “no rep” case. These results
indicate that all jobs access the data on the local storage
of their node on PRESTO III in “oracle” case because the
elapse times of all jobs are the range of 0.8 - 1.0 ���, and
that all jobs access the data on the storage of KOUME in
“no rep” case because they are over 29.8���.

The effect of the node grouping are shown by the com-
parison of “same config”, “auto config” and “diff config”
cases. In static node grouping methods, the different group
configuration shows better performance than the same node
group configuration. The result gives that static node group-
ing corresponding to the network topology can work effec-
tively because access to files on remote sites can be reduced
by the grouping. On the other hand, the dynamic node

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

elapsed time [sec.]

n
u
m
.
o
f
jo
b
s

no_rep

same_group

auto_config

diff_group

oracle

Figure 3. Behavior of each job in the exp.

grouping method shows worse performance than other two
methods for average elapsed time in Table3 and the time
at 29.8��� in Figure3, which indicates that the method has
overhead and doesn’t work efficiently especially during ini-
tial state. However, Figure3 shows that the dynamic node
grouping method shows better performance than other two
methods in the range of 0.8 - 2.0 ���, which indicates that
the dynamic node grouping method increases the localiza-
tion of file access.

Finally, we compare with “auto config”, “oracle”, and
“no rep” cases. Our proposal shows 3.7 times speedup than
the “no rep” case. However, it shows 8.9 times speed down
than the “oracle” case. The cause of the result is that the dy-
namic grouping method increases the average elapsed time
by the maximam elapsed time of the jobs that access the
data on KOUME. Therefore we need to further study the
data management and transfer algorithms to utilize the lo-
cality on the Grid .

5. Conclusion

We propose a data management mechanism for data-
intensive computing on Grid filesystem, which improves the
file access performance by automatically scheduling the file
access and introspecting the data placement. We applied
the proposal technique to the Gfarm and emulate real ap-
plication workloads using a job scheduler. We confirmed
a speedup of factor 3.7 compared with a filesystem with-
out automatic file access distribution techniques. Follow-
ings are the future work: (1) Further studies about the data
management and transfer algorithms , (2) Evaluation on the
large Grid environment with real applications.

.

References

[1] Condor project homepage. http://www.cs.wisc.
edu/condor.

[2] Gfarm. http://datafarm.apgrid.org/.
[3] Lustre. http://www.lustre.org.
[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.

PVFS: A parallel file system for linux clusters. In Proceed-
ings of the 4th Annual Linux Showcase and Conference, pages
317–327, Atlanta, GA, 2000. USENIX Association.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles, pages 96–108, Bolton Landing,
NewYork, October 2003. ACM Press.

[6] D. Maziéres. Self-certifying File System. PhD thesis, Mas-
sachusetts Institute of Technology, May 2000.

[7] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi.
Grid datafarm architecture for petascale data intensive com-
puting. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, pages 102–
110, 2002.

