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Abstract

Heterogeneous supercomputers with combined
general-purpose and accelerated CPUs promise to be
the future major architecture due to their wide-ranging
generality and superior performance / power ratio.
However, developing applications that achieve effective
scalability is still very difficult, and in fact unproven
on large-scale machines in such combined setting. We
show that an effective method for such heterogeneous
systems so that the porting from applications written
with homogeneous assumptions could be achieved. For
this goal, we divide porting of applications into several
steps, analyze performance of the kernel computation,
create processes that virtualize the underlying proces-
sors, tune parameters with preferences to accelerators,
and balance the load between heterogeneous nodes. We
apply our method to the parallel Linpack benchmark
on the TSUBAME heterogeneous supercomputer.
We efficiently utilize both 10,000 general purpose
CPU cores and 648 SIMD accelerators in a combined
fashion—the resulting 56.43 TFlops utilized the entire
machine, and not only ranked significantly on the
Top500 supercomputer list, but also it is the highest
Linpack performance on heterogeneous systems in the
world.

1 Introduction

Although massively-parallel homogenous supercom-
puters using low power CPUs and/ or multi-core CPUs
such as BlueGene/L [8] are one promising road to
petascale, another approach is heterogeneous super-
computers. They consist of general purpose CPUs
and more specific, dedicated programmable accelerated
processors. CPUs offer flexibility and generality over
wide-ranging classes of applications, while accelerators
provide high performance / power ratio for specific
computation patterns, so their combined use would be
ideal. Several research or commercial projects have

taken diverse approaches for heterogeneous architec-
ture; AMD Torrenza and a vector acceleration project
by HP [4] connect heterogeneous resources via front
side bus, although their scalability in massive scale is
unproved. An example of petascale heterogeneous su-
percomputers will be the IBM Roadrunner that will
combine AMD Opteron CPUs and the Cell Broad-
band Engines[7] to be built in 2008 and will boast 1.6
PetaFlops.

The largest heterogeneous supercomputer to date is
our TSUBAME supercomputer, installed at Tokyo In-
stitute of Technology in April 2006. TSUBAME is also
currently the fastest supercomputer in Asia Pacific,
based on 5,240 dual-core Opteron CPUs (10,480 CPU
cores) and 648 SIMD vector accelerator boards from
ClearSpeed[1]. The peak performance of Opterons is
approximately 50.4TFlops, and that of 360 accelerator
boards is 52.2TFlops, totaling 102.6TFlops of comput-
ing resources.

The major issues that arise on heterogeneous super-
computers are how users can develop programs that ef-
fectively use the hybrid computing resources. Despite
the fairly long history in supercomputers with vector
acceleration options such as the CM-5 and the Meiko
CS-2, and the recent high interest on SIMD-vector pro-
gramming, there have been little results in scalability
of tightly-coupled, parallel code on large heterogeneous
machines. On the software side, recent research in
pursuing easy programming with heterogeneity has fo-
cused on small scale (often a single node) systems only,
including Sequoia [10], CUDA[2] and Accelerator[18].
We note that such difficulty is rather fundamental; the
vast differences in the architecture between CPUs and
accelerators not only make programming challenging
in terms of coding, but also make proper load balanc-
ing difficult. Even a small deviation from the opti-
mally balanced load may have adverse effect on the
overall scalability, especially for tightly-coupled paral-
lel codes. As a result, previous results have been for
loosely-coupled codes, and/or small scale computation.

Our work, however, demonstrates that combined us-
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Figure 1. HPL performance on two TSUBAME
nodes. In ‘+n Acc’, we use n accelerator
boards in addition to CPUs.

age of resources can be achieved with high efficiency
and scaling with existing tightly-coupled parallel codes.
Our approach consists of 4 steps, namely (1) carefully
analyze and model the kernel of the code, (2) create vir-
tual processes to emulate apparent homogeneity with
underlying heterogeneous resources, (3) parameter tun-
ing with preferences to accelerators, and (4) load bal-
ance taking heterogeneity and overhead for accelera-
tors into account. We demonstrate the effectiveness
of our approach by modifying the High Performance
Linpack(HPL)[17] for heterogeneous systems consist-
ing of massive numbers of general-purpose and accel-
eration CPUs, and demonstrate its efficiency and scal-
ability on TSUBAME.

Without careful strategy and tuning, HPL perfor-
mance even becomes slower due to introduction of ac-
celerators as shown in Figure 1; the graph compares
the performance in a ‘CPU-only’ case and with accel-
eration on two TSUBAME nodes. When we adopt im-
proper granules of compute size (‘Bad granularity’ in
the graph) or ignore the overhead of introducing accel-
erators (‘Bad load balance’), the overall performance
lags behind CPU-only case. With careful parameter
configurations (‘Good configuration’), HPL with accel-
erators gets significantly faster than CPU-only. And
in fact it scales on TSUBAME with varying number
of node configurations, up to the scale of the full ma-
chine, achieving 56.43TFlops on more than 10,000 CPU
cores and 648 accelerators, a significant improvement
from our CPU-only result of 38.18TFlops. As far as
we know this is the first time that a heterogeneous su-
percomputer has been ranked high (9 to 16th) on the
Top500 list[3].

2 TSUBAME: The Heterogeneous 100
TeraFlops Supercomputer

NEC/Sun TSUBAME is a ‘fat-node’ supercomputer
cluster that consists of 655 SunFire X4600 compute
nodes. Each compute node has 16 2.4 GHz AMD
Opteron CPU cores, with 32 GBytes of shared mem-
ory, while storage server nodes total 1.6PBytes in raw
capacity. Both the computing and storage nodes have
Voltaire InfiniBand 4x HCAs, interconnected in a re-
stricted fat tree topology with two core switches and
six edge switches, 288-port Voltaire ISR9288, as shown
in Figure 2. Each node is connected to one of edge
switches via two 10Gbps InfiniBand links, and switches
are mutually interconnected via 24 trunked InfiniBand
links. On each compute node, 64bit SuSE Linux Enter-
prise Server with kernel 2.6.5 runs. Users invoke their
jobs via the Sun N1 Grid Engine scheduler, though our
large scale experiments are done in a dedicated situa-
tion.

Among the 655 TSUBAME compute nodes, 648 are
equipped with the ClearSpeed Advance X620 Accel-
erator Boards [1] on their PCI-X slots. Each board
hosts two ClearSpeed CSX600 SIMD processors, each
of which has 96 SIMD processing elements; its theoreti-
cal peak performance is 80.6GFlops (double precision)
at 210MHz clock speed 1. A board also hosts 1GB
DDR-SDRAM, which CSX600 processors can directly
access. Since the memory is separated from host mem-
ory, communication of input/output data via PCI-X
is necessary. A notable feature of the boards is low
power; consumption of a board is only about 25W, or
total of 16kW for the entire 648 boards, consisting less
than 2% of the power consumption of TSUBAME while
offering 50% of the overall compute power. Currently
ClearSpeed provides following usages; a SIMD paral-
lel programming language Cn, CSXL library for basic
linear algebra (BLAS), mainly used in this paper, and
CSFFT library for fast Fourier transformation. Re-
cently molecular dynamics package is also provided.

In heterogeneously accelerated supercomputers such
as TSUBAME, we may be are faced with two types
of heterogeneity, namely intra-node heterogeneity and
inter-node heterogeneity. The former is that acceler-
ated nodes have both general purpose CPUs and SIMD
accelerators that have different characteristics, with
promise of generality and low power/space consump-
tion. We may be faced the latter for less technical
reasons; if part of nodes are equipped with acceler-
ators and others are not, we have to take difference
between accelerated and non-accelerated nodes. This

1The clock speed is configurable up to 250MHz, but faster
clock may make computational results unstable
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Figure 2. Overview of the TSUBAME Architecture. Currently, shaded SunFire nodes are equipped
with ClearSpeed accelerators.

was the case with TSUBAME, since only about 55%
of the nodes were equipped with accelerators until Oc-
tober 2007. In general, computer centers with large
scale clusters may come across similar situations, for
changes of commercial products or reasons of the bud-
get. Therefore techniques to tackle this situation are
becoming important for efficient large scale computing.
In more general cases, the numbers and/or the type of
accelerators may differ among the nodes.

As already discussed, we have several approaches to
introduce heterogeneity into supercomputers. TSUB-
AME’s approach to equip accelerators on PCI-X slots
has the following advantages. First, it is more
portable; accelerators tightly coupled with general pur-
pose CPUs, such as AMD Torrenza, are attractive for
their superior bandwidth, but they heavily depend on
CPU architecture. Secondly, it is power and space effi-
cient; if we combine separately designed systems, such
as PC cluster and a vector machine, we may suffer from
double power consumption and space. On the other
hand, ClearSpeed boards consume only 2% of power
of the TSUBAME system and no additional racking
space.

3 HPL and Preliminary Experiment

3.1 HPL and its Performance on a Homo-
geneous Environment

Our target program for porting, High performance
Linpack (HPL), is a MPI based parallel benchmark
that solves dense linear equations Ax = b of order N .
HPL computes LU decomposition of the matrix A with
partial pivoting. Then it obtains a solution x by back-
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Figure 3. (Left) Process grid with P ×Q = 2×3
processes. (Right) Two dimensional block
cyclic distribution of N × N matrix on 6 pro-
cesses. Block size is B.

ward substitution computation. The amount of com-
putation of the whole algorithm is (2/3)N3 +O(N2).

HPL computing processes conceptually compose a
process grid of size P × Q, on which the matrix is
distributed according to two-dimensional block cyclic
distribution as in Figure 3. Here, we let N and B
be size of matrix and size of block, respectively. Al-
most all of the computation time of HPL is occupied
by the LU decomposition, where an iteration of the
outermost loop corresponds to a block column. On
the k-th iteration, HPL performs panel decomposition,
panel broadcast, row exchange communication, and up-
date [17]. The overall computation amount for panel
decomposition is O(N2B), while communication (due
to panel broadcast and row exchange) is O(N2(P+Q)).
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The update phase is usually the most time consuming
at O(N3), being dominated by matrix multiplication.

To discuss porting HPL to heterogeneous architec-
ture, the following properties have to be taken into ac-
count. First, HPL performance is largely determined
by that of matrix multiply (dgemm). Thus the com-
mon strategy for high performance is to use the fastest
basic linear algebra software (BLAS) optimized for pro-
cessors, such as GOTO BLAS library[12] or Intel MKL
in the case of x86 architecture.

Next, HPL distributes tasks equally to all processes
since it is designed for homogeneous architecture. As
processes are tightly coupled by data dependencies, the
overall performance is degraded if speeds of processes
are uneven. HPL introduces an optimization called
‘look-ahead’, which overlaps computation and panel
broadcast communication. Although it makes HPL
more tolerant to communication latency or temporary
delays of processes, it alone does not solve heteroge-
neous speeds among processes.

We evaluated the original HPL with 10,368 CPU
cores on 648 TSUBAME nodes without acceleration
using GOTO BLAS. Its results was 38.18 TFlops with
matrix size N = 1, 334, 160 on P×Q = 36×144 = 5184
processes, achieving the efficiency of 76.6% with run-
time of 11.5 hours. HPL provides many tuning param-
eters, such as broadcast topology and block size; the
parameters in this evaluation, in which eight processes
with two threads each are invoked on each node, are
shown in Table 1. The result was ranked No. 7 on the
Top500 list in June 2006.

3.2 Kernel Performance on CPUs and ac-
celerators

Performance of HPL is largely determined by ker-
nel BLAS libraries. Here we compare characteristics
of GOTO BLAS for Opterons and CSXL for Clear-
Speed accelerators. The former is one of the fastest
BLAS libraries for Intel/AMD processors developed
by K. Goto. Graph (1) in Figure 4 shows its perfor-
mance with four threads, denoting multiplications of
M ×B and B ×M matrices, where M is usually much
larger than B. This kind of computation is dominant in
HPL. We see the performance ranges from 15.5 to 17.6
GFlops, which are 81 to 92% efficiency with respect
to the 19.2 GFlops peak performance of four 2.4GHz
Opteron cores. An interesting characteristic is the sta-
bility of performance for varying B and M compared
to CSXL described next.

CSXL for ClearSpeed accelerators consists of a
wrapper (.so) running on the host CPU and com-
puting component (.csx) running on the accelerator.

(1) GOTO BLAS 4threads
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Figure 4. Performance of matrix multiply by
GOTO BLAS library and CSXL library (beta
2.50, beta 2.21). Matrix sizes are (M ×B) and
(B × M).
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Table 1. HPL parameters used in evaluation with 10,368 CPU cores
Matrix size 1334160 Panel broadcast 1ring
Block size 240 Look-ahead depth 1

Process mapping Row-major Swap Mix (threshold=240)
# of processes 36× 144 Matrix form L1 trans, U trans

Panel factorization Right-looking Equilibration yes
NBMIN, NDIV 4, 2 Alignment 8 double words

When a BLAS function is called, the wrapper sends
the input matrix data to the accelerator via the PCI-X
bus, then the accelerator computes and returns results
to the CPU. For efficiency, the wrapper overlaps com-
putation and communication. It also has a facility to
dispatch the computation to both the CPUs and the
accelerator.

Since CSXL performance has been largely improved
by software update, we examined two versions used in
Section 5. Figure 4 includes the performance of ma-
trix multiply of CSXL for version beta 2.50 (2). For
reference, that of beta 2.21, older and slower version
is also shown (3). We see beta 2.50 achieves about
60GFlops with M = 10, 368 and B ≥ 864. We also see
that despite their high performance for large matrices,
they degrade significantly with smaller matrices un-
like GOTO BLAS; they exhibit only about 20GFlops.
We consider this degradation is due to communication
overhead over the PCI-X bus and the startup cost of
SIMD-Vector computation. The sensitiveness to ma-
trix sizes of CSXL suggests that we require finer tuning
in heterogeneous setting.

4 Making Tightly-Coupled Applica-
tions Scalable on Heterogeneous Su-
percomputers

4.1 Coping with Heterogeneity

HPL, like many tightly-coupled parallel applica-
tions, assumes the underlying computational elements
to be homogeneous. However, for heterogeneous super-
computers such as TSUBAME, we are faced with intra-
node and inter-node heterogeneity, though the latter
has been relieved recently. Both cause load imbalances
leading to inefficiency, and overall performance poten-
tially being worse than non-accelerated cases, as we see
in Section 1.

Although there have been various proposals for
tightly-coupled numerical algorithms for heterogeneous
compute nodes, none we have seen to date have dealt
with these two types of heterogeneity at the same time

at scale. In fact, a typical method of simply assigning
data regions of different sizes according to processor
performance would not work well, due to the divergent
characteristics of general purpose CPUs vs. acceler-
ators. Rather, we propose to cope with the problem
with a methodology consisting of the following steps.
Although it is currently difficult to automate the entire
process, it has proven to be a good guideline for mas-
sive scalability on TSUBAME, as well as serving as a
basis for future automation we are currently working
on:

Step 1 Analyze the performance models of general
purpose CPUs and accelerators, in particular their
computational kernels. Obtain analytical and/or
empirical performance models according to prob-
lem sizes and other parameters.

Step 2 Create virtual processes of equal granularity
to abstract out the differences between general
purpose CPUs and accelerators, so that tightly-
coupled programs with homogeneity assumptions
could be almost directly executed. Since accelera-
tors would usually be faster than general purpose
CPUs but less flexible, a single accelerator would
correspond to multiple instances of virtual pro-
cesses. Here some general purpose CPUs may have
to supplement other parts of accelerator-based vir-
tual process where accelerators themselves cannot
execute or would be very slow.

Step 3 Since accelerators prefer larger data sizes, we
tune the parameters so that the compromise be-
tween the general purpose CPUs and accelerators
are reached. In the case of HPL, we also remove
parts of code where granularity is sacrificed.

Step 4 Balance the load taking inter-node hetero-
geneity into account, by configuring the number
of virtual processes among accelerated and non-
accelerated nodes. We also have to take care of
overheads caused by introducing accelerators, such
as CPU loads for PCI-X communication.
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4.2 Applying the Methodology to HPL

As Step 1 for HPL, we consider the performance
characteristics of general-purpose CPUs and accelera-
tors, in particular to handle intra-node heterogeneity.
One important point in the analysis is the Flops/ Byte
ratio of kernel computation, which is dgemm (multipli-
cation) of matrices of sizes M ×B and B ×M ′, where
B is the predefined block size and typical smaller than
M and M ′. The amount of computation is O(MM ′B)
while data size is O(MM ′); so the Flops / Byte ratio
is O(B). The ratio is reasonably high as long as we
adopt sufficiently larger B. Therefore in the following
steps, we can expect that a large block size would work
well to drive CSXL efficiently, which is also empirically
confirmed in Section 3.2.

As already mentioned, CSXL library can dispatch
computation to accelerators and CPUs. However, this
alone cannot account for inter-node heterogeneity di-
rectly. Rather, our approach is to use process virtual-
ization to the control granularity of each process, while
using dispatching as a supplemental method.

For Step 2, Figure 5 illustrates our virtual process
configuration, albeit for a smaller number of nodes for
simplicity. Here, we assume that only two nodes in the
right are equipped with accelerators among the four.
We introduce two kinds of virtualized processes: CPU
processes and SIMD processes, each of which would be
regarded as homogeneous process elements for the over-
arching homogeneous HPL. CPU processes behave in
the same way in original HPL; they are linked with
GOTO BLAS library and all computations are done on
CPUs. SIMD processes also behave similarly, but only
exist on nodes with accelerators. They off-load ker-
nel BLAS computation onto accelerators, while other
computations such as panel factorization are done on
general-purpose CPUs.

We assign appropriate numbers of virtual processes
so that workload per process is nearly equivalent, so as
to support inter-node heterogeneity. In the figure, an
accelerated node contains six virtual processes, while a
non-accelerated node have only four.

Such virtualization requires that a single accelera-
tor to represent several processes; however, naive im-
plementation of this would be difficult, since the cur-
rent ClearSpeed accelerators do not have the multi-
processing capabilities of general purpose CPUs. To
solve this problem, we implement a SIMD server, which
is a daemon process linked with the CSXL library
and invoked per available accelerator for direct access.
It arbitrates matrix multiply requests from multiple
SIMD processes, and calls the dgemm of CSXL library
on its behalf, achieving time-sharing usage of accel-

erators. For optimization, a SIMD server and SIMD
processes share matrix data with mmap system call to
reduce the copying of data per function call.

4.3 Accelerator-Centric Granularity Tun-
ing

As Step 3 of our methodology, we conduct parame-
ter tuning so that CSXL receives preference from suffi-
ciently large granularity, as GOTO BLAS is much more
resilient to changes in the parameters. We basically
reuse HPL parameters described in Table 1, but the
block size B and process granularity have to be care-
fully tuned in order to achieve the best compromise to
balance the intra- and inter-node heterogeneity. Ac-
tually, this step is conducted in parallel with Step 4,
since the granularity and the number of processes are
related tightly. We describe how we have tuned the
parameters in our experiments with CSXL beta 2.50
and beta 2.51 2.

Block size: If the block size B is small, CSXL perfor-
mance degrades significantly as shown in Section
3.2, thus the overall performance suffers consid-
erably. On the other hand, B being too large is
generally harmful for HPL and is thus avoided be-
cause it increases computational costs other than
matrix multiplication such as panel factorization.
Thus we have to take a compromise; by conduct-
ing empirical performance analysis and modeling,
we decided on B = 864 with beta 2.50, which is
about significantly larger than our CPU-only ex-
periment, where B = 240.

Process granularity: We have another ‘knob to
turn’, process granularity, as GOTO BLAS allows
multiple threads to exist within a single process.
When the number of threads per CPU process
(hereafter T ) is smaller, granularity of data set per
process also gets smaller, which makes CSXL per-
formance worse in SIMD processes. On the other
hand, T being too large would make load balanc-
ing among nodes more difficult. With extensive
preliminary measurements, we decided on T = 4,
while it was two in our CPU-only experiment.

Additionally in HPL, we found that modification
to code was necessary for the following reason. Our
preliminary experiments indicated that heterogeneous
HPL performance was much lower than expected, as
the dgemm function calls became unexpectedly ‘frag-
mented’. The fragmentation has been hardwired into

2beta 2.51 is a minor updated version of 2.50, and its perfor-
mance is similar
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Figure 5. Virtual process configuration to harness CPUs and accelerators

HPL for the look-ahead optimization that overlaps
between computation and communication; HPL re-
peatedly checks existence of messages after a small
amount of dgemm computation. Whereas this works
well with GOTO BLAS, it is disastrous for performance
of CSXL. Instead, we have implemented a simple so-
lution by creating a separate thread per process that
makes dgemm function calls for a large granule matrix
portions. During that, the main thread calls the com-
munication function. Thus we avoid the fragmentation
of dgemm calls while keeping the look-ahead optimiza-
tion alive.

4.4 Load Balancing Considering Inter-
Node Heterogeneity

As Step 4, we determine the number of CPU and
SIMD processes to be invoked on both non-accelerated
and accelerated nodes. First, since the number of
threads per CPU process T is four, four (= 16/T ) CPU
processes are invoked to utilize the 16 CPU cores on a
non-accelerated node. At first glance, it might seem
reasonable to invoke identical number of CPU pro-
cesses on an accelerated node as well. Unfortunately,
we found this does not work well in practice, as a SIMD
server consumes 40-60% of a CPU load for communi-
cation with accelerators, severely degrading the overall
performance (‘Bad load balance’ in Figure 1). In order
to eliminate this overhead, we assign a semi-dedicated
CPU to be the SIMD server, and decrease the number
of CPU processes by one, which is three in our case.
On the other hand, this introduces idle CPU cores on
accelerated nodes due to relatively large process granu-
larity. To exploit the idle cores, we let CSXL on SIMD
servers use both accelerators and idle cores.

After the number of CPU processes, we determine
SIMD processes by considering the balance between
performance of accelerators and CPUs. We found that,

thanks to tuning in Step 3, a simple method based
on the peak performance of CSXL fairly works well.
We also consider the performance of idle cores used by
SIMD servers. After all such consideration, the number
of SIMD processes on a accelerated node is four with
beta 2.50 (it is three with beta 2.21).

5 Experimental Results

We have conducted large scale experiments on the
whole TSUBAME four times including the homoge-
neous (CPU-only) case, as shown in Table 2. With our
methodology and tuning to cope with heterogeneity,
we have achieved 56.43TFlops on 648 nodes and 648
accelerators with CSXL beta 2.51. It is 47.8% faster
than 38.18TFlops in the CPU-only case, and each ac-
celerator contributes for speedup of 28.2GFlops. In
the thrid experiments in spring 2007, we have shown
that our methodology achieves good acceleration even
in ‘inter-node heterogeneous’ case. Our result is cur-
rently the highest Linpack performance for the hetero-
geneous systems in the world.

In the rest of this section, we show detailed results of
the third and the fourth experiments, unless explicitly
stated. First, we show the retation between the number
of accelerators and performance. In Figure 6, ‘Full Acc’
corresponds to homogeneously accelerated cases. ‘Half
Acc’ corresponds to the inter-node heterogeneous cases,
where half of the nodes are accelerated; exceptionally,
360 (55%) are accelerated in the case of 648 nodes. The
left graph in the figure shows speeds in TFlops, and the
right shows relative performance normalized to ‘CPU
only’.

When all the nodes are accelerated, the performance
improves by a factor of 48 to 52% over the CPU-only
case. Interestingly, the right graph shows that the
speedup is almost linear with the number of acceler-
ated nodes, though the number of runs are not suffi-
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Table 2. History of our Linpack experiments on the whole TSUBAME system.
spring 2006 autumn 2006 spring 2007 autumn 2007

# of CPU cores 10368 10368 10368 10368
# of accelerators 0 360 360 648
CSXL version - beta 2.21 beta 2.50 beta 2.51
Matrix size 1334160 1148160 1057536 1123200

Speed (TFlops) 38.18 47.38 48.88 56.43
Speedup to CPU-only 0% +24.1% +28.0% +47.8%

Rank in Top500 7th 9th 14th 16th

cient yet. As far as we have observed, these results
indicate that we are properly handling inter-node het-
erogeneity, and that an increase in accelerated nodes
allow extrapolated acceleration. This observation sug-
gests us that further acceleration that introduces sev-
eral accelerator boards or several kinds of accelerators
per node is promising, though we will have to consider
additional communication overhead with accelerators.

Next, Figure 7 shows the relationship between the
matrix size and HPL performance on 40 nodes. The
performance is obviously better with larger N in all
cases, which is natural due to characteristics of HPL.
We also notice that the tendency is stronger in accel-
erated cases, because of characteristics of CSXL that
favors larger granularity as shown in 3.2. In fact, ac-
celerated cases are slower than ‘CPU only’ when the
matrix size is about 90,000 or less. This indicates that
our methodology has room for improvement, so that
load balancing is optimized according to data sizes.

6 Related Work

Heterogeneous parallel computing has a longer his-
tory, especially for heterogeneity in CPU clock speed.
To execute data parallel program on hybrid CPUs, a
traditional approach is to assign proper sizes of data to
each CPU [5, 6]. However, since many existing codes
are designed for homogeneous systems, porting them
requires heavy modification.

Our approach, which virtualizes and controls the
number of processes per node, is more relevant to
AMPI on Charm++[14], although it would entail sim-
ilar problems as the untuned version of our HPL
when applied to environments with accelerators. The
Charm++ team has started to accommodate the Cell
processor. Kishimoto et al.[15] have constructed a per-
formance model of HPL on hybrid CPUs that allows
to determine tuning parameters automatically by us-
ing feedback from measurements on each class of CPU.
The model takes the matrix size and the number of
processors on nodes into account; however, with accel-
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Figure 6. HPL performance on TSUBAME in
heterogeneous setting. Half the nodes are
equipped with accelerators in ‘Half Acc’, and
all the nodes are accelerated in ‘Full Acc’.
The left graph shows speeds, and the right
one shows relative performance normalized
to ‘CPU only’ case.
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Figure 7. HPL performance on 40 nodes with
varying matrix sizes N .

erators, we have observed that tuning space gets much
broader. It would be interesting to adapt their model
to support accelerators.

Although heterogeneous architectures with acceler-
ators are considered promising, research projects on
scalability of heterogeneous supercomputers are still
rare. Recently scientific computations on SIMD and/or
multi-core processors, including general purpose GPU
(GPGPU) and Cell Broadband Engine, have attracted
considerable attention. There have been many reports
on successful classes of algorithms on GPUs[11, 13, 16]
and Cell BE[9], however, most of projects focus on sin-
gle processor/ node systems, though low degree of par-
allelism is involved.

Not only design and implementation of algorithms,
but some recent projects pursue easy programming.
Sequoia by Fatahalian et al.[10] is a programming sys-
tem that supports processors with different memory hi-
erarchy. Although it supports portable programming
for Cell BE and ordinary CPUs, porting existing paral-
lel codes requires rewriting them heavily to conform to
Sequoia’s divide-conquer style. CUDA[2] allows pro-
grammers to write C-like programs in a SIMD style,
and Accelerator by Tarditi et al.[18] provides high-level
matrix/vector operations, which are automatically ex-
ecuted on a GPU. Currently, the above projects also
focus on single node systems, thus scalability of accel-
erated computation has been unproven. On the other
hand, our focus is to prove scalability of our method-
ology on large scale machines.

7 Conclusion

Heterogeneous supercomputers with combined
general-purpose CPUs and accelerators are expected
to be one of the major architectures in the near future
for their generality and superior performance / power
ratio. We have shown the methodology whereby such
supercomputers can be harnessed, and demonstrated
its effectiveness with a large scale Linpack evaluation.
By using the TSUBAME supercomputer equipped
with 10,480 Opteron cores and 648 ClearSpeed SIMD
accelerators, we have obtained 56.43TFlops Linpack
performance, which was ranked as 16th in Top500
ranking in November 2007. This result is currently
the highest Linpack performance on heterogeneous
systems in the world.

We have demonstrated scalability of our techniques,
however, dispatching of tasks at the library level re-
quires that the application Flops / Byte ratio to be
moderately high, which was the case for HPL. The
question then is, is our methodology generally applica-
ble to wide-ranging classes of applications? We believe
so, as the situation will not be so different for other
classes of problems where computational kernels may
be different, but still the workload being divisible. In
fact, we are currently working on applying our meth-
ods to other applications based on multi-dimensional
FFT kernel. Although we have shown a step-by-step
methodology that would serve as a guideline, for gen-
eral applications, we need to tune the load in an auto-
mated fashion, perhaps at runtime. We also hope that
our work will expand the research area of applications
to identify their feasibility in heterogeneous architec-
tures.
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