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Abstract—GPUs can accelerate edge scan performance of
graph processing applications; however, the capacity of device
memory on GPUs limits the size of graph to process. Efficient
techniques to handle GPU memory overflows, including overflow
detection and performance analysis in large-scale systems, are
not well investigated. To address the problem, we propose a
MapReduce-based out-of-core GPU memory management tech-
nique for processing large-scale graph applications on hetero-
geneous GPU-based supercomputers. Our proposed technique
automatically handles memory overflows from GPUs by dynam-
ically dividing graph data into multiple chunks and overlaps
CPU-GPU data transfer and computation on GPUs as much
as possible. Our experimental results on TSUBAME2.5 using
1024 nodes (12288 CPU cores, 3072 GPUs) exhibit that our
GPU-based implementation performs 2.10x faster than running
on CPU when graph data size does not fit on GPUs. We also
study the performance characteristics of our proposed out-of-core
GPU memory management technique, including application’s
performance and power efficiency of scale-up and scale-out
approaches in terms of the number of GPUs.

Keywords—Large-scale Graph Processing; GPGPU; MapRe-
duce; Out-of-core Algorithms; Big Data Applications

I. INTRODUCTION

Recently extremely large-scale graphs emerge in various
application fields, such as health care, social networks, system
biology, and electric power grids, etc., which typically consist
of millions to trillions of vertices and edges. These large-
scale graphs require fast and scalable analysis using HPC
technologies, by fully exploiting performance of recent su-
percomputers. Moreover, large-scale graphs attract attention to
the Graph500 benchmark [1], which ranks supercomputers by
executing a large-scale graph search problem as an instance
of data-intensive supercomputing applications. On the other
hand, modern supercomputers employ commodity graphics
processing unit (GPU) in addition to general purpose CPU,
since GPU-based heterogeneous supercomputers continue to
attract attention due to their high peak performance and
high power efficiency. In practice, several existing GPU-based
graph processing techniques have also shown that the GPUs
accelerate the performance on several graph applications, such
as Breadth-First Search (BFS) [2], PageRank [3], etc. In our
earlier work [4], we proposed a distributed multi-GPU im-
plementation of a MapReduce-based graph processing, where
we found that our multi-GPU-based PageRank implementation
scales well compared with the multi-core CPU-based imple-
mentation on the TSUBAME2.0 supercomputer [5] using 256
nodes and 768 GPUs.

Although GPU-based heterogeneous supercomputers are
suitable for graph applications, the capacity of device memory

on GPUs limits scalable large-scale graph processing, since
the GPUs typically have smaller memory capacity than the
CPU host. For example, the TSUBAME2.5 supercomputer [6]
employs 1408 compute nodes, each of which equips 3 GPU
devices and 2 CPU sockets, where the capacity of device
memory on each GPU has 6GB, while the CPU host memory
has 54GB. Thus, in order to process larger-scale graphs whose
size exceeds the capacity of GPU memory, data manage-
ment techniques for handling GPU memory overflows are
required. However, such out-of-core GPU data management
techniques with detailed performance studies for large-scale
graph processing are not well investigated. Furthermore, even
if we apply the out-of-core GPU data management techniques,
execution approaches whether we use only the device memory
on GPUs (scale-out) or offload partial graph data to the sec-
ondary CPU memory (scale-up) on a multi-node environment
are considered another important issue in terms of graph
application’s performance and its power efficiency.

In order to address these problems, we propose an out-of-
core GPU data management technique for GPU-MapReduce-
based graph applications. Our proposed technique automati-
cally handles GPU memory overflows by dividing graph data
into multiple chunks and hides CPU-GPU data transfer over-
heads by overlapping computations on GPUs and CPU-GPU
data transfers. We also investigate the balance of the scale-
up and the scale-out approaches, in terms of the density of
GPUs and processing graph data size per node, by comparing
application’s performance and power efficiency.

We conduct experiments on TSUBAME2.5 using up to
1024 nodes (12288 CPU cores, 3072 GPU devices). The results
exhibit that our GPU-based implementation performs 2.81
GE/s (billion edges per second) on a large-scale graph with
234 (17.18 billion) vertices and 238 (274.9 billion) edges. These
results indicate that our GPU-based implementation performs
2.10x faster than the multi-core CPU-based implementation
even when the graph data size exceeds the capacity on multiple
GPUs. We also show that the scale-up approach outperforms
the scale-out approach by 1.71x in power efficiency on the
TSUBAME-KFC supercomputer.

Here we describe a summary of contributions of our work:

• We propose an out-of-core GPU data management
technique for GPU-based-MapReduce-based large-
scale graph processing.

• We demonstrate the scalability of our proposed tech-
nique on heterogeneous large-scale GPU-based su-
percomputers by utilizing several optimization tech-
niques.



• We investigate the balance of scale-up and scale-out
strategies, i.e., the density of GPUs and processing
graph data per node, whose results suggest that the
scale-up approach may help power-efficient graph
processing rather than the simple scale-out approach.

II. GRAPH PROCESSING ON GPUS

Modern supercomputers employ commodity graphics pro-
cessing unit (GPU) in addition to general purpose CPU, since
GPU-based heterogeneous supercomputers attract attention
due to their high peak performance and high power efficiency.
GPU-based techniques are also applied to various graph appli-
cations to accelerate edge scan performance; however, the size
of graphs in most of the existing GPU-based graph processing
techniques is limited by the capacity of GPU memory. In this
section, we describe the existing graph processing techniques
on GPUs and point out the issues for processing large-scale
graphs on GPUs.

A. Existing Graph Processing Techniques on GPUs

Several existing GPU-based graph processing techniques
have shown that GPU accelerates performance on several graph
algorithms, such as BFS [2], [7], [8], [9], PageRank [3], etc.
Several graph processing frameworks are also accelerated by
using a single GPU [10], [11], [12]; however, most of these
efforts focus on algorithms for a single GPU. Thus, the size
of processing graphs in these algorithms reaches around 10
million vertices and 60 million edges.

Several efforts focus on the use of multiple GPUs on a
single node for BFS [13], [14], [15], PageRank [15], [16]
etc., in which the size of graphs to process reaches around 50
million vertices and 100 million edges. However, these work
do not consider communication between multiple nodes nor
show the scalability when the graph data exceeds on the CPU
memory capacity on a single node.

As for the efforts on multi-node multi-GPU environments,
GPU-based implementations of sparse matrix vector multi-
plication for PageRank [17], [18] and BFS [19] have been
proposed. We have proposed a multi-GPU implementation
of a MapReduce-based PageRank algorithm for large-scale
computing environments [4], which processes a graph with
1.1 billion vertices and 17.2 billion edges using 768 GPUs.
However, these implementations cannot handle GPU memory
overflows due to heavy CPU-GPU data transfer overheads.

B. Issues for Processing Large-scale Graphs on GPUs

One of the significant issues for processing large graphs
on GPUs is considered that how to manage graph data whose
size exceeds the capacity of GPU memory with minimal per-
formance overheads. As explained in the previous section, the
GPU memory generally has the smaller capacity than the CPU
memory, and computation on GPUs requires to transfer data
between the CPU memory and the GPU memory. Thus, when
we naively apply graph algorithms to GPUs, data transfers
dominantly disturb efficient graph processing. In particular,
when the size of the graphs exceeds the capacity of the device
memory on GPUs, the number of data transfers drastically
increases for executing dependent graph kernels.

We can certainly overcome the GPU capacity limitation
problem by using multi-node multi-GPU environments. In-
deed, several existing efforts have shown good weak-scaling
performance of graph processing on GPU-based large-scale
environments; however, these techniques still have the limit
on the size of the graphs below the device memory capacity
on GPUs. Although out-of-core GPU memory management
techniques may help the problem by utilizing secondary host
memory volumes, best approaches with detailed performance
studies whether we use only device memory on the GPUs
(scale-out) or offload partial graph data to the secondary
CPU memory (scale-up) on a multi-node environment are not
well investigated in terms of graph application’s performance
and power efficiency. Moreover, optimization techniques for
out-of-core GPU memory management techniques to achieve
good weak scalability on large-scale environments should be
investigated, since graph algorithms generally include irregular
data accesses to sparse data sets, whose situations introduce
significant performance overheads and disturb scalable large-
scale graph processing.

III. RELATED WORK

A. Out-of-core CPU processing

There are several work on out-of-core graph processing
on CPU. As for CPU-based graph processing on a single
node, several techniques, such as a sequential I/O optimiza-
tion [20], a data placement optimization [21], and a data
prefetch optimization [22], have been proposed. These work
focus on the utilization of a single node. Thus, distributed
computing environments are not supported. Pearce et al. [23]
have proposed an out-of-core CPU large-scale graph pro-
cessing technique for distributed computing environments.
Their technique introduces a graph partitioning strategy and
applies to their multithreaded algorithm using distributed ex-
ternal memory; however, this algorithm cannot be straight-
forwardly applicable to GPUs, since this algorithm is highly
designed for utilizing multi-core CPUs. The MapReduce [24]
programming model has been proposed for processing big
data applications with automatic memory/storage hierarchy
encapsulation, and Hadoop [25] is one of the widely used
MapReduce implementation. MR-MPI [26] is a MPI-based
MapReduce implementation on CPU, which employs an out-
of-core processing technique including in the sort phase after
inter-node data exchanges. These MapReduce implementations
are designed for CPU-based distributed environments, while
our work focuses on GPU-based environments.

B. Out-of-core GPU Processing

There are several work on out-of-core GPU processing
algorithms in a wide range of application fields, such as
BFS [9], stencil [27], rendering [28], etc. These work have
shown GPU accelerations by using out-of-core techniques;
however, the scope of these applications are limited on specific
algorithms. Out-of-core GPU sorting algorithms, such as a
sample-based sorting [29] and a merge-based sorting [30],
have been also studied; however, these algorithms are designed
for a single node execution. These work also have not well
investigated on load balancing issues for highly skewed data
such as real world graphs. There also exists work on I/O
issues from a GPU to filesystems [31]; however, they have



not conducted experiments on realistic large-scale applications
such as graph processing.

C. MapReduce on GPUs

The MapReduce model can provide out-of-core processing
with simple application interfaces. There exists a generalized
graph processing algorithm for the MapReduce model called
GIM-V (we explain the details in Section IV) and its Hadoop-
based implementation [32]. However, the implementation does
not show good performance due to heavy overheads derived
from the Hadoop framework. In our earlier work [4], we pro-
posed a distributed multi-GPU-MapReduce-based graph pro-
cessing implementation, and found that our multi-GPU-based
PageRank implementation outperforms the Hadoop-based im-
plementation considerably on TSUBAME2.0. GPMR [33] is
a multi-GPU MapReduce library supporting out-of-core GPU
execution on distributed computing environments. However,
the sort phase in GPMR is executed on CPUs when the size of
input data exceeds the capacity of the GPU memory, instead of
executing on GPUs. Besides, the performance studies on CPU
vs. GPU comparison have not been sufficiently conducted,
especially in the out-of-core situation.

IV. MAPREDUCE-BASED GRAPH PROCESSING: GIM-V

GIM-V (Generalized Iterative Matrix-Vector multiplica-
tion) [32] is a general expression of matrix-vector multiplica-
tion with iterative operations for MapReduce-based large-scale
graph processing. Let M = (mi,j) be a matrix of size n× n,
and v = (vi) be a vector of size n, where i, j ∈ {1, ..., n}.
Matrix-vector multiplication is described as follows:

M × v = v′ where v′i =

n∑
j=1

mi,jvj

Here the above expression is described by using three opera-
tors: combine2, combineAll, and assign:

combine2: Multiply mi,j and vj .
combineAll: Sum the results of combine2 for vertex i.
assign: Update vi to the new result v′i.

By introducing the operator ×G, we can define the GIM-V
algorithm as follows:

v′ = M ×G v

where v′i = assign(vi, combineAll i({xj | j = 1..n,

and xj = combine2 (mi,j , vj)}))

We iterate the above operation until satisfying a convergence
condition defined by graph algorithms such as PageRank, Ran-
dom Walk, and Connected Component, etc. We can describe
these graph algorithms by defining the above three operators.

As an example, here we describe the PageRank algo-
rithm [34], which is a well-known algorithm for scoring rela-
tive importance in web pages, Let p be a PageRank eigenvector
of n web pages; the PageRank algorithm satisfies the following
characteristic equation:

p = (cET + (1− c)U)p

where c denotes a dumping factor, set to 0.85 in typical
configuration, E denotes a row-normalized adjacency matrix,

Algorithm 1 GIM-V Stage 1.
Require: Matrix M = {(idsrc, (iddst,mval))},

Vector V = {(id, vval)}
Ensure: Partial vector V ′ =

{(idsrc, combine2(mval, vval))}
1: Stage1-Map(Key k, Value v);
2: if (k, v) is of type V then
3: Output(k,v); //(k: id, v: vval)
4: else if (k, v) is of type M then
5: (iddst,mval)← v;
6: Output(iddst, (k,mval)); //(k: idsrc)
7: end if
8: Stage1-Reduce(Key k, Value v[1..m]);
9: saved kv ← [ ];

10: saved v ← [ ];
11: for all v ∈ v[1..m] do
12: if (k, v) is of type V then
13: saved v ← v;
14: Output(k, (“self”, saved v));
15: else if (k, v) is of type M then
16: Add v to saved kv //(v:(idsrc,mval))
17: end if
18: end for
19: for all (id′src,mval′ ∈ saved kv) do
20: Output(id′src, (“others”, combine2(mval′, saved v)))
21: end for

Algorithm 2 GIM-V Stage 2.
Require: Partial vector V ′ = {(idsrc, vval′)}
Ensure: Result vector V = {(idsrc, vval)}

1: Stage2-Map(Key k, Value v);
2: Output(k, v);
3: Stage2-Reduce(Key k, Value v[1..m]);
4: others v ← [ ];
5: self v ← [ ];
6: for all v ∈ v[1..m] do
7: (tag, v′)← v;
8: if tag == “self” then
9: self v ← v′;

10: else if tag == “others” then
11: Add v′ to others v;
12: end if
13: end for
14: Output(k, assign(self v, combineAllk(others v)));

and U denotes a matrix with all elements set to 1/n. In
order to acquire the next PageRank eigenvector pnext, we
initialize pcur and set all the elements to 1/n, then we calculate
pnext = (cET +(1−c)U)pcur. We continue the multiplication
until p converges. The three operations are defined as follows:

combine2 (mi,j , vj) = c×mi,j × vj

combineAll i(x1, . . . , xn) =
(1− c)

n
+

n∑
j=1

xj

assign(vi, vnew) = vnew

The GIM-V algorithm can be implemented using two
MapReduce stages: GIM-V Stage1 and Stage2, whose pseudo
codes are shown in Algorithm 1 and 2. The GIM-V Stage1 per-



Fig. 1. Overview of our out-of-core multi-GPU MapReduce framework.
Blue boxes represent operations called on CPU, and green boxes represent
operations running on GPUs. The dashed boxes on the left side represent
operations initialized by the dashed box on the right side.

forms the combine2 operation by combining mij of the matrix
M and vj of the vector v, and outputs key-value pairs, where
the key denotes the source vertex id i and the value denotes the
partially combined result xj = combine2(mij , vj). Then the
output of the GIM-V Stage1 is forwarded to the input of the
GIM-V Stage2. The GIM-V Stage2 combines all partial results
from the GIM-V Stage1 by applying combineAlli(xj | j =
1 . . . n), and assigns the new vector vnew to the old vector vi
by applying assign(vi, combineAlli(xj | j = 1 . . . n)). These
two MapReduce operations are iterated until the application-
specific convergence criterion is met.

V. OUT-OF-CORE GPU MEMORY MANAGEMENT FOR
GPU-MAPREDUCE-BASED GRAPH PROCESSING

A. Basic Idea

Our out-of-core GPU memory management technique is
designed on top of the MapReduce model, since the MapRe-
duce model can transparently encapsulate memory hierarchies
by providing automatic memory management from the system.
Before describing our proposed data management technique,
we introduce the target multi-GPU MapReduce framework.

Figure 1 shows an overview of the framework. The basic
architecture of the framework remains the same as our previous
proposal [4], but we use a different implementation here. We
firstly read key-value pairs as input data from a distributed
file system to CPU memory on multiple nodes and keep the
data on CPU memory. Next we sort and reorder the input key-
value pairs by key to obtain a set of values for a key. Note
that we may skip the sorting process for Map operations. Then
users call Map, Shuffle, or Reduce operations based on user-
specific application workflow. When the Map or the Reduce
operations are called, the input data are processed on GPUs
inside the framework with user-provided operations. When the
Shuffle operations are called, the input data are exchanged
between multiple nodes based on system-provided or user-
provided splitters by using MPI all-to-all communications.
Finally, output data are transferred onto the CPU memory on
each node. Our framework is flexibly designed so that the users
can define multiple Map and Reduce operations and call the
Map, Shuffle, and Reduce operations in an arbitrary order. The
users can also write applications with iterative computations by
writing loop syntax with user-provided convergence criteria.
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Fig. 2. Overview of our stream-based out-of-core GPU memory management.
Upper blue bars represent input chunks on CPU memory to be processed.
Purple bars represent data transfers from CPU memory to GPU memory,
green bars represent computations on GPUs, and light blue bars represent
data transfers from GPU memory to CPU memory, respectively.

The above technique includes a significant limitation that
the framework cannot handle GPU memory overflows. Thus
we simply extend the above framework based on two straight-
forward ideas, streaming processing on GPUs and GPU-based
external sorting. By dividing input data into multiple chunks
and by processing each chunk one by one in a stream, we apply
overlapping techniques between computation and data transfer
for hiding data transfer overheads as much as possible.

B. Stream-based GPU MapReduce processing

Figure 2 shows an overview of our streaming processing
technique for GPU-based Map and Reduce operations. In order
to optimize data transfer between CPU and GPU, we overlap
three operations: data transfer from CPU memory to GPU
memory, the Map and Reduce operations on GPU, and data
transfer from GPU memory to CPU memory, otherwise we
suffer additional CPU-GPU data transfer overheads for each
Map or Reduce operation. Note that our stream-based memory
management provides additional benefits that hide CPU-GPU
data transfer from the Map and Reduce operations on the GPU
even if the size of input data fits the capacity of the GPU
memory. The detailed instructions of our stream-based CPU-
GPU memory management technique are shown as follows:

STEP1: Divide input key-value data into d chunks evenly,
where d denotes the number of chunks. We deter-
mine the number of chunks dynamically so that
each chunk fits on the GPU memory.

STEP2: Create s CUDA streams, where s denotes the
number of streams, and allocate s buffers on GPU
for the chunks of the input key-value data; a single
buffer is linked to a single CUDA stream.

STEP3: Repeat streaming processing d times; transferring
a chunk of the input key-value data from CPU to
a buffer on GPU, running the Map and Reduce
operations on GPU, and transferring output from
the buffer on GPU to CPU. These three opera-
tions are overlapped using asynchronous function
calls (i.e. cudaMemcpyAsync function with pinned
memory).

We set the s parameter to three by default in order to overlap
the above three operations. We dynamically update the d



parameter to fit the size of input data chunks on the capacity
of GPU device memory.

C. Out-of-core GPU Sorting

We introduce a GPU sorting implementation to the frame-
work for handling GPU memory overflows. The implementa-
tion consists of a combination of existing GPU-based out-of-
core and in-core algorithms. As for out-of-core GPU sorting,
we employ an existing sample-based out-of-core sorting algo-
rithm for GPUs proposed by Ye et al. [29], while as for in-
core GPU sorting, we employ the radix sort algorithm based
on Thrust library [35]. Out-of-core GPU sorting is conducted
when the size of input data exceeds the GPU memory capacity.
Otherwise, in-core GPU sorting is conducted.

Figure 3 shows an overview of the out-of-core GPU sorting
algorithm. Sample-based parallel sorting uses t−1 samples as
splitters to partition the input data set into several data chunks,
where t denotes the number of sample points. The chunks can
be put on GPU memory by considering the size of chunks
and the capacity of GPU memory. We determine the number
of chunks dynamically by checking the available amount of
memory and the input data size at the beginning. If the input
data is too large to fit on the GPU, our framework divides the
input data into d chunks based on the available GPU memory
capacity and the input data size. The detailed instructions of
the out-of-core GPU sorting algorithm are shown as follows:

STEP1: Randomly select c keys as sample candidates from
input keys on CPU host memory.

STEP2: Sort the c sample candidates. Then, pick the (k+
1) ·c/d th sample points and set the points to t[k],
where k ∈ [0, d− 1]. Here d denotes the number
of chunks. We set t[d− 1] to the maximum limit
value on the host memory.

STEP3: Divide the input data set into d chunks on the
host, each of which contains n/d elements evenly,
where n denotes the number of input keys.

STEP4: Copy each chunk onto GPU memory, sort each
chunk using the in-core sorting algorithm, and
split each chunk into d buckets using splitters
based on the sample points on the GPU.

STEP5: Swap the buckets among chunks on the host, so
that elements in the (i+1)th chunk are no smaller
than those in the ith chunk.

STEP6: Copy each chunk onto the GPU and sort one by
one using the in-core sorting algorithm on the
GPU.

We straightforwardly use the GPU-based radix sorting as
the in-core GPU sorting algorithm. Our out-of-core sorting
algorithm differs from the existing out-of-core GPU sorting
proposed by Ye al. [29] in that we present less CPU-GPU data
transfer overheads by simplifying the data dividing strategy
than the existing algorithm, since we observe good load
balance when we set c to larger numbers than one thousand.

We implement a stream-based overlapping feature for GPU
sorting and CPU-GPU data transfers, whose instructions are
shown in Step 4 and 6. The Thrust library uses default
CUDA stream and does not presently have a mechanism
for controlling execution steams. In order to overlap with
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Fig. 3. Overview of the out-of-core GPU sorting algorithm. Blue boxes
represent operations called on CPU and green boxes represent operations
running on GPUs. Red vertical bars represent splitters based on sample points.

the default stream, we create multiple streams by cudaS-
treamCreateWithFlags with cudaStreamNonBlocking flag, a
new feature enabled from CUDA 5.0. cudaStreamNonBlocking
flag enables overlapping with default stream. In Step 5, we
also implement pointer-based swapping algorithm with low-
overheads. Pointers of buckets are swapped instead of the
payload.

D. Optimizations

In order to achieve good weak-scaling performance on
large-scale GPU-based heterogeneous supercomputers, we ap-
ply several optimization techniques to the framework with our
out-of-core GPU memory management technique. Here we
describe the details of the optimization techniques.

1) Data Structure: We employ a compact data structure
similar to CSR (Compressed Sparse Row) for sparse matrix
formats, which consists of an array of unique keys, values,
and indices of first values for unique keys, for compressing
redundant data and for achieving efficient Map and Reduce
processing. For instance, if a Kronecker graph in the Graph500
benchmark is given as input data, we can compress duplicate
keys to around 1/16, since the graph includes 16 edges per
vertex on average. We firstly reorder input key-value pairs by
using the out-of-core GPU sorting algorithm. Then we apply
the scan (prefix sum) operation to the sorted keys in order to
calculate indices of first values for unique keys. Finally, we
compact the duplicated keys by using the unique operation.

2) Shuffle: We implement Shuffle operation for redistribut-
ing intermediate data onto each node based on system-provided
or user-defined splitter function. We implement range-based
and hash-based splitters as system-provided splitters. We pro-
vide a default splitter as the range-based splitter, where each
node takes charge of a range of the number of data. Instead
users can also implement customized splitters. We observe the
range-based splitter performs good load balance for skewed
graphs generated in the same way as the Graph500 benchmark
by randomizing vertex indices. Although load balance depends
on the input graph structure, our Shuffle operation can extend
to other splitters by customization according to the input graph
structure.

3) Thread Assignment Policy on GPUs: We apply a
thread assignment optimization on GPUs for handling the
skew of vertex degrees on large-scale graph processing. We
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Fig. 4. Warp-based thread assignment onto 2D thread block on GPU. The
mesh in the left side represents keys, and the mesh in the right side represents
values corresponding to each key. Each warp is assigned to a portion of values
corresponding to a key. Multiple warps are assigned to values whose length
are larger than the warp size.

consider the following three strategies for assigning threads
onto vertices and edges.

1) Thread-based Assignment: Assign one thread per
vertex.

2) Warp-based Assignment: Assign one warp per ver-
tex. The warp size on recent GPUs is set to 32.

3) Thread Block-based Assignment: Assign one thread
block per vertex. The thread block size on recent
GPUs (e.g. NVIDIA Tesla K20X) is set to 1024.

The strategies 2) and 3) are expected to achieve good per-
formance on GPUs by utilizing massive amounts of threads;
however, these strategies require to write CUDA-specific de-
scriptions, such as threadIdx, blockDim etc., in the user-
defined Map and Reduce operations. On the other hand, the
strategy 1) can work on both CPUs and GPUs without any
special descriptions. We employ the strategy 2) since the
warp size is expected to be close to the average number of
edges per vertex for wide range of graphs. For example, in
graphs used in the Graph500 benchmark, the average number
of edges per vertex is set to 16. As another example in
real world graphs, the average number of edges per vertex
in the Facebook friend network reaches around 130. For
graphs with a large average number of edges, the strategy
3) is expected to achieve good performance. We set the
thread block size as (max tbs/ws,ws, 1) and the grid size
as (nv/blockDim.x, 1, 1) for the strategy 2), where max tbs
denotes the maximum number of threads per thread block, ws
denotes the warp size, and nv denotes the number of vertices
per GPU.

E. Implementation of GIM-V-based Graph Algorithm on GPU

We demonstrate an implementation of the PageRank
algorithm on top of the GPU-based MapReduce framework
with our proposed out-of-core GPU memory management
technique. We implement two stages of MapReduce (Map1-
Reduce1 and Map2-Reduce2 phases) based on the GIM-V
algorithm explained in Section IV. First, Map1 phase simply
passes input key-value pairs to Reduce1 phase. Next, the
Reduce1 phase conducts the combine2 operation. Then, Map2
phase simply passes the results of key-value pairs to Reduce2
phase. Finally, the Reduce2 phase conducts the combineAll
and assign operations. In the Reduce1 and Reduce2 phases,
we apply the warp-based thread assignments onto key-value

scans: lines 11 to 18 and lines 19 to 21 in Algorithm 1 for the
Reduce1, and lines 6 to 13 in Algorithm 2 for the Reduce2.
We use shared memory for efficient warp-based key-value
scans. We also apply warp shuffle operations to the combineAll
operations for fast reduction. The warp shuffle operation is a
new feature of the NVIDIA Kepler compute architecture.

VI. EXPERIMENTS

In order to understand the efficiency of our out-of-core
GPU memory management technique for GPU-MapReduce-
based graph processing, we run a PageRank application based
on the GIM-V algorithm on the TSUBAME2.5 supercom-
puter [6]. TSUBAME2.5 mainly consists of 1408 compute
nodes, each of which has 2 sockets of Intel Xeon X5670
(Westmere EP, 2.93GHz, 6 cores) CPU, 54GB of DDR3 main
memory, 3 devices of NVIDIA Tesla K20X GPU with 6GB
of discrete GDDR5 memory connected to PCI-Express 2.0 ×
16 buses, and 2 cards of QDR InfiniBand HBA (40Gbps)
connected to the dual rail interconnect network with full
bisection fat tree, and runs on SUSE Linux Enterprise 11 SP1.
We use up to 1024 compute nodes of TSUBAME2.5 in the
experiments. We use Kronecker graphs generated in the same
way as Graph500 benchmark, using the recursive matrix (R-
MAT) procedure with the following initiator parameters: (A, B,
C, D) = (0.57, 0.19, 0.19, 0.05) and an average vertex degree of
16. We describe the size of the graphs as SCALE, the logarithm
base two of their number of vertices. We use Open MPI 1.4.2
with GNU GCC 4.3.4 for the MPI implementation, and CUDA
driver 5.0, CUDA runtime 5.0, and thrust 1.7.0 for the GPU
implementation.

A. Comparison with CPU-based implementation

We compare our proposed GPU-based implementation with
a CPU-based implementation in order to investigate the effi-
ciency of GPU acceleration when the size of graph exceeds
the capacity of device memory on GPUs. In order to make
fair comparisons, we extend our GPU-based implementation
to support multi-node multi-CPU environments as well. Our
implementation employs a hybrid parallelization technique
using MPI and OpenMP. MPI is used for parallelization
between compute nodes (or processes) in the same way as
our GPU-based implementation, whereas OpenMP is used for
parallelization of Map, Reduce, and Sort operations inside a
single node (or process). Our implementation parallelizes the
Map and Reduce operations in a straightforward manner by
using a simple fork-join model. In the Sort operation, we
use OpenMP-based parallel sorting in the Thrust library. We
use Thrust’s OpenMP sorting instead of parallel STL sorting,
since parallel STL sorting is not compatible with the CUDA
compiler which we use in the CPU-based implementation.

Figure 5 shows the results of the weak-scaling performance
of our CPU- and GPU-based implementations on TSUB-
AME2.5, where the x axis denotes the number of compute
nodes and the y axis denotes the performance in ME/s (million
edges per second) in each stage. Each node has the constant
problem size: SCALE 23 for running on 1 CPU and 1 GPU
and SCALE 24 for running on 2 CPUs, 2 GPUs, and 3 GPUs.
Note that the size of graphs in the configurations exceeds the
capacity of device memory on GPUs. For example, the size
of a SCALE 23 graph exceeds the capacity of device memory
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Fig. 5. Results of weak scaling performance, where SCALE 23 for running
on 1 CPU and 1 GPU per node and SCALE 24 for running on 2 CPUs, 2
GPUs, and 3 GPUs per node.

on a GPU, and the size of a SCALE 24 graph also exceeds
the aggregate capacity of device memory on 2 and 3 GPUs.
Here we describe the GPU-based implementation as nGPU(s),
where n denotes the number of GPU devices per node, and the
CPU-based implementation as mCPU(s), where m denotes the
number of CPU sockets per node. We use up to 1024 nodes in
both nGPU(s) and mCPU(s) experiments; we vary the number
of GPUs per node from 1 to 3, while we use 12 threads per
node using 1 or 2 socket(s) in mCPU(s). We see that our
implementation on 3GPUs achieves 2.81 GE/s (billion edges
per second) on SCALE 34 on 1024 nodes (12288 CPU cores
and 3072 GPUs). The results also exhibit 2.10x performance
improvement compared with 2CPUs on SCALE 34 on 1024
nodes.

Figure 6 shows the performance breakdown on SCALE
31 on 256 nodes, where the y axis denotes the elapsed time
in milliseconds. We divide a single GIM-V iteration into five
phases; Map, Shuffle, Reduce, Sort, and Others. Map and
Reduce phases include the time for Map and Reduce kernel
executions and CPU-GPU data transfer. Shuffle phase includes
the time for inter-node data transfer and its preparation. Sort
phase includes the time for sorting in each Map, Shuffle, and
Reduce phase. Others includes the time for the rest of the Map,
Shuffle, Reduce, and Sort phases. The results exhibit that the
elapsed times for Map, Reduce, and Sort phases in 3GPUs
achieve 1.41x, 1.49x, and 4.95x faster than those on 2CPUs
respectively. The reason for this performance improvement
is considered that our implementation hides CPU-GPU data
transfer overheads efficiently in Map, Reduce, and Sort phases
by stream-based asynchronous computation.

We analyze further breakdown of Map and Reduce phases
in a single GIM-V iteration. Figure 7 shows the results,
where Map n and Reduce n denotes each Map or Reduce
phase in GIM-V Stage n. As we see in Algorithm 1 and 2
in Section IV, Map1 and Map2 operations only pass input
vertices or edges data to the next phase, Reduce1 operation
combines a vertex and connecting edges for all vertices and
passes to the next phase, and Reduce2 operation combines all
edges connecting to a vertex into an updated vertex for all
vertices. Thus, we expect Reduce1 and Reduce2 operations
to be accelerated compared to Map1 or Map2 operations by
using GPUs, since Reduce1 and Reduce2 operations include
actual computation kernels as opposed to Map1 and Map2
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Fig. 6. Results of performance breakdown on SCALE 31 using 256 nodes.
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Fig. 7. Results of Map and Reduce phases on SCALE 31 using 256 nodes.

operations. The results in Figure 7 indicates that Map1 and
Map2 operations are accelerated 1.41x, Reduce1 operation
is accelerated 1.56x, and Reduce2 operation are accelerated
1.33x respectively by using 3 GPUs per node compared with
2 CPUs per node. As expected, Reduce1 operation is more
accelerated than Map1 and Map2 phases; however, we also
see that Reduce2 operation is not accelerated as much as the
other phases. We consider the result comes from not fully
overlapping CPU-GPU communication, since the computation
time in Reduce2 operation is not sufficiently large.

B. Results of Out-of-core GPU Sorting

In order to investigate the efficiency of the out-of-core GPU
sorting technique explained in Section V-C, we compare the
performance of our our-of-core GPU sorting implementation
with STL sort and Thrust OpenMP sort on TSUBAME2.5
using a single node. The objective of this experiment is to
understand the effectiveness of the use of GPUs in the Sort
operation when the input key-value data exceeds the capacity
of GPU memory. Figure 8 shows the results, where the x axis
denotes the input number of key-value pairs in millions and the
y axis denotes the sorting rate on key-value pairs in millions
per second. Note that the blue vertical bar between 100 and
150 on the x axis denotes the border that the size of input data
exceeds the capacity of device memory on a GPU when the
input data increase. The results exhibit that our implementation
performs 2.53x faster than STL sort at 285 million of the
input key-value pairs. These results indicate that GPU can
accelerate sorting performance even though the size of input
data exceeds the memory capacity on a GPU; however, we
also see the performance degradation in our implementation
when the size of input data becomes large. This degradation
is largely caused by the nature of the out-of-core GPU sorting
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Fig. 9. Results of performance of scale-up and scale-out strategies on
TSUBAME2.5.

algorithm; We conduct the in-core GPU sorting when the size
of input data fits the capacity of the device memory on a
GPU, while conducting the out-of-core GPU sorting only when
the input data exceeds the GPU memory capacity. The out-
of-core GPU sorting algorithm introduces several additional
instructions, such as multiple repetitions of chunk-based in-
core GPU sorting and data transfers between CPU and GPU
compared with the in-core GPU sorting; however, GPU sorting
still has performance benefits even for large data sets that
exceed the capacity of GPU device memory.

C. Balance between Scale-up and Scale-out approaches

In order to investigate execution approaches whether we
should use only device memory on GPUs (scale-out) or offload
partial graph data to secondary CPU memory (scale-up) on a
multi-node environment, we conduct performance studies on
the balance of the number of compute nodes and GPUs per
node. We vary the number of GPUs per node from 1 to 3
and use two patterns of the number of nodes: 512 and 1024.
Then we set the three configurations: a) 1 GPU per node on
1024 nodes (1024 GPUs in total), b) 2 GPUs per node on
512 nodes (1024 GPUs in total), and c) 3 GPUs per node on
512 nodes (1536 GPUs in total), and compare the edge scan
performance of each configuration. Figure 9 shows the results
of the experiment, where the x axis denotes the size of graphs
in SCALE and the y axis denotes the performance in ME/s
(million edges per second). We see that the configurations b)
and c) exhibit 0.81x and 0.97x of the performance compared
with the configuration a). The results indicate that we can
obtain competitive performance results when we use a large
number of GPUs per node in a small number of nodes.
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Fig. 10. Results of the performance and the power efficiency on scale-up
and scale-out strategies on TSUBAME-KFC.

Furthermore, we also investigate the power efficiency on
scale-up and scale-out approaches on TSUBAME-KFC, each
of which has 2 sockets of Intel Xeon E5-2620 v2 (Ivy Bridge
EP, 2.10GHz, 6 cores) CPU, 64GB of DDR3 main memory,
4 devices of NVIDIA Tesla K20X GPU with 6GB of discrete
GDDR5 memory connected to PCI-Express 2.0 × 16 buses,
and 1 card of FDR InfiniBand HBA (56Gbps) connected to a
single rail interconnect network, and runs on CentOS release
6.4. We use Open MPI 1.7.2 with GNU GCC 4.4.7 for the MPI
implementation, and CUDA driver 5.5 and CUDA runtime 5.5
for the GPU implementation. We use a SCALE 27 graph and
measure the elapsed time and the mean power consumption
using GPUs. Figure 10 shows the results of the performance
and the power efficiency using three configurations: d). 32
nodes with 1 GPU per node, e). 16 nodes with 2 GPUs per
node, and f). 8 nodes with 4 GPUs per node. Note that the three
configurations use the same number of GPUs (i.e. 32 GPUs)
in total. The results show that the simple scale-out approach
d) performs the best in the three configurations in edge scan
performance. On the other hand, the scale-up approaches e)
and f) perform better power efficiency than the scale-out
strategy, by 1.53x and 1.71x respectively. These results suggest
that the scale-up approach should be considered as an option
for the architectures of next generation supercomputers, since
the power efficiency is considered as one of the most important
problems for future large-scale computing environments.

VII. CONCLUSIONS

We propose an out-of-core GPU memory management
technique for large-scale MapReduce-based graph applica-
tions. The proposed technique handles memory overflows from
GPUs by automatically dividing graph data into multiple
chunks and overlaps CPU-GPU data transfer overheads as
much as possible. Our experimental results on TSUBAME
2.5 using 1024 nodes (12288 CPU cores, 3072 GPUs) exhibit
that our GPU-based implementation performs 2.10x faster than
the CPU-based implementation on a graph with 17.18 billion
vertices and 274.9 billion edges. We reveal that our GPU-
based approach with out-of-core GPU data management can
accelerate the Map and Reduce phases by fully overlapping
CPU-GPU data transfer and by applying several optimizations.
We also show that the scale-up approach performs better power
efficiency than the simple scale-out approach.

Our future work includes the use of Non-Volatile Memory
such as flash for handling the larger size of graph data than



the CPU memory capacity. We plan to investigate efficient
hierarchical memory management techniques that utilize three-
level memory layers including GPU device memory, CPU host
memory, and Non-Volatile Memory.
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