2nd IEEE International Conference on Cloud Computing Technology and Science

Hybrid Map Task Scheduling for GPU-based
Heterogeneous Clusters

Koichi Shirahata*, Hitoshi Sato* and Satoshi Matsuoka*#

*Tokyo Institute of Technology

fCREST, Japan Science and Technology Agency

fNational Institute of informatics

Abstract—MapReduce is a programming model that enables
efficient massive data processing in large-scale computing envi-
ronments such as supercomputers and clouds. Such large-scale
computers employ GPUs to enjoy its good peak performance
and high memory bandwidth. Since the performace of each job is
depending on running application characteristics and underlying
computing environments, scheduling MapReduce tasks onto CPU
cores and GPU devices for efficient execution is difficult. To
address this problem, we have proposed a hybrid scheduling
technique for GPU-based computer clusters, which minimizes
the execution time of a submitted job using dynamic profiles of
Map tasks running on CPU cores and GPU devices. We have
implemented a prototype of our proposed scheduling technique
by extending MapReduce framework, Hadoop. We have con-
ducted some experiments for this prototype by using a K-means
application as a benchmark on a supercomputer. The results
show that the proposed technique achieves 1.93 times faster than
the Hadoop original scheduling algorithm at 64 nodes (1024 CPU
cores and 128 GPU devices). The results also indicate that the
performance of map tasks, including both CPU and GPU tasks,
is significantly affected by the overhead of map task invocation
in the Hadoop framework.

Index Terms—Large-scale data processing;
GPGPU; Job Scheduling;

MapReduce;

I. INTRODUCTION

Nowadays, the data generated by human activities is rapidly
increasing. For example, the IDC white paper has reported that
1800 exabytes of information will be created in 2011 [1]. HPC
applications, such as biology, astronomy, and high-energy
physics, etc., also require to process large amounts of data,
which is typically generated by scientific experiments and
observations, in supercomputers and cloud data centers for
computational analyses. MapReduce [2] is a programming
model for efficient scalable massive data processing in a large
computer cluster. Recent computer clusters employ modern
graphic processing units (GPUs) with compute nodes with
general purpose CPUs [3], since GPUs provide high peak
performance and memory bandwidth for applications with
simple computation patterns, while CPUs offer flexibility and
generality over wide-ranging classes of applications.

GPU-based heterogeneous computer clusters can be used
for a MapReduce execution environment; however, scheduling
map and reduce tasks onto CPU cores and GPU devices for

978-0-7695-4302-4/10 $26.00 © 2010 IEEE
DOI 10.1109/CloudCom.2010.55

733

efficient execution depends on running task characteristics
and underlying computing environments. For example, tasks
which contain data parallelism may suit for GPU execution,
while tasks which contain many branches or synchronizations
may not. The performance of task execution may also vary
according to the resource configurations: the number of CPU
cores and GPU devices, memory size and bandwidth, local I/O
performance to secondary storage systems. Ad hoc scheduling
strategies, such as allocating tasks to only GPU devices, or to
idle CPU cores and GPU devices in a FIFO manner, may
not achieve optimal job throughput and may cause inefficient
resource utilization and energy consumption.

To address this problem, we propose a hybrid map task
scheduling technique for GPU-based heterogeneous computer
clusters. When a client submits a MapReduce job whose
tasks can run on both CPU cores and GPU devices, a master
job scheduler assigns the map tasks onto CPU cores and
GPU devices in order to minimize the overall MapReduce
job execution time by using profiles collected from dynamic
monitoring of map task’s behavior. (We currently employ
the elapsed time of map tasks.) Worker nodes execute the
scheduled map tasks on CPU cores or GPU devices. We
implemented this scheduling technique to an existing widely
used MapReduce system, Hadoop [4].

We evaluated the proposed technique on our GPU-based
supercomputer, TSUBAME, by using a K-means cluster anal-
ysis application. The results show that the proposed technique
achieves 1.93 times faster than the Hadoop original scheduling
at 64 nodes with 1024 CPU cores and 128 GPUs. The results
also indicate that the performance of map task execution,
including both CPU tasks and GPU tasks, is significantly
affected by the overhead of map task invocation from the
Hadoop framework.

II. BACKGROUND
This section introduces the brief overviews of MapReduce
and GPGPU as the bases of our work.
A. MapReduce

MapReduce is a programming model for large-scale data
processing in a computer cluster. By applying an uniform

IEEE
computer
® psouety

operation to distributed key-value pairs, MapReduce utilizes
data access locality and achieves scalable data processing. The
process consists of three phases: map, shuffle, and reduce. The
map phase generates intermediate key-value pairs from initial
key-value pairs. Then, the shuffle phase generates a list of
values for the same key. Finally, the reduce phase aggregates
values in a list for a key and generates the final output key-
value pairs. Application users only have to write map and
reduce functions, while the system parallelizes the applica-
tion transparently; therefore, MapReduce conceals underlying
computing resource complexities and provides high produc-
tivity for data-intensive applications such as data analysis and
machine learning, etc.

Several systems, such as Google MapReduce [2],
Hadoop [4], Phoenix [5], and Mars [6], implements the
MapReduce model. Google MapReduce is the original im-
plementation, which includes a distributed file system and a
MapReduce framework itself. Hadoop is well-known for an
open-source-based Java software framework that implements
a clone of the Google MapReduce system. Phoenix provides
programming APIs and runtime systems for shared memory
systems. Mars is a generic framework for GPUs, which
enables application users to implement data- and computation-
intensive tasks correctly, efficiently, and easily on GPUs. Our
study focuses on Hadoop, since Hadoop is widely used in
academic and industrial domains.

Hadoop consists of several components, mainly Hadoop
Distributed File System (HDFS) and Hadoop MapReduce.
HDEFS is a distributed file system that employs a master-
worker model. A master node, called NameNode, manages
information related to file system namespace, such as directory
tree and meta data of stored files, etc., while worker nodes,
called DataNodes, accommodate actual file data. A single file
is divided into several chunks (typically 64 MB). Then, the
divided chunks are stored across DataNodes and replicated
to different DataNodes (typically 3 times). On the other
hand, Hadoop MapReduce provides a MapReduce execution
environment on top of HDFS, whose environment also em-
ploys master-worker model, JobTracker as a master node and
TaskTrackers as worker nodes. JobTracker is responsible to
manage submitted jobs, while TaskTrackers execute actual
map and reduce tasks in the submitted jobs. Thanks to the
localized data accesses provided by HDFS, Hadoop achieves
scalable data processing for large computer clusters.

B. GPGPU

GPGPU (General-purpose computing on GPU) [3] is a tech-
nique to apply commodity GPUs, which is typically used for
running specific graphic operations, to general purpose com-
puting in applications traditionally handled by CPUs. Recent
advancement of GPU, in architecture by adding programmable
stages and higher precision arithmetic to the rendering pipeline
and in programmability by providing integrated development
environments embodied as CUDA [7] and OpenCL [8], en-
ables application programmers to use stream processing on
non-graphics data.

734

Master Node

Client Node

Java App

JobTracker

Worker Node
TaskTracker

Worker Node
TaskTracker

Fig. 1. Overview of MapReduce job scheduling in Hadoop

GPU suits for parallel computing, since the architecture em-
ploys SIMD-based processing; therefore, GPU achieves much
higher perk performance and memory bandwidth than CPU by
using tens of thousands of fine-grain threads. However, com-
putation in GPUs requires to transfer data from main memory
in a host compute node to global memory in a GPU device
and introduces significant overheads to applications running
on GPU devices. Moreover, applications with many branches
and synchronizations may cause inefficient execution on GPU
devices, whereas CPU suits general purpose computation and
plays a main role in data transfer to GPU devices and in post-
and pre-processing in a host compute node. Note that GPU
cannot work as a stand-alone system.

Several programming environments, such as CUDA [7]
and OpenCL [8], etc, focus on GPU computing. CUDA
is a widely-used programming environment, which provides
C- and C++-based programming environment for NVIDIA
CPUs with high level abstraction in a SIMD-style. CUDA
is applied to various applications such as chemistry, sparse
matrix, sorting, searching, and physical modeling, etc. in order
to accelerate their computing performance.

III. HYBRID MAP TASK SCHEDULING

We propose a technique to accelerate map tasks by using
hybrid scheduling onto CPU cores and GPU devices in a GPU-
based heterogeneous computer cluster. Figure 1 shows how
MapReduce job scheduling works in the Hadoop framework.
When a MapReduce job, typically written in Java, is submitted
to the system, the JobTracker schedules map and reduce tasks
in the MapReduce job to idle CPU slots on the TaskTrackers,
then the tasks run on the assigned CPU slots. In order to
introduce the hybrid map task scheduling to the Hadoop
framework, we have to consider the following problems:

e« How to invoke C- and C++-based CUDA codes from
Hadoop in order to execute map tasks on GPU devices.

o How to schedule map tasks onto CPU cores and GPU
devices in order to minimize job execution time

This section presents the invocation technique of CUDA code
and the hybrid map task scheduling algorithm in the Hadoop
framework.

Streaming Pipes
TaskTracker TaskTracker
Child Ch‘ild
Tésk Tal'sk
Child JVM Child J\/.M

C++ Wrapper Library

C++ Map or Reduce

Streaming
Process

Fig. 2. Hadoop Streaming (left) and Hadoop Pipes (right)

A. Comparison of CUDA code invocation techniques from
Hadoop

Our proposed technique requires to execute a map task
on both CPU cores and GPU devices. To achieve this hy-
brid execution feature, we investigate CUDA code invocation
techniques from Hadoop. The Hadoop framework, including
HDEFES and Hadoop MapReduce, is currently implemented in
Java. Thus, user applications are also typically implemented in
Java by using the Hadoop libraries. On the other hand, CUDA
provides a C- and C++-based programming environment.
Therefore, we have to translate a Java program to a CUDA
code. We have several solutions to invoke CUDA codes from
the Hadoop framework: Hadoop Streaming, Hadoop Pipes, and
Java Native Interface (JNI).

« Hadoop Streaming
Hadoop Streaming (Figure 2 left) is an API that allows
application users to write their map and reduce func-
tions in languages other than Java. Using Unix standard
streams as the interface between Hadoop and user’s
program, application users can use any languages with
standard I/O operations to implement their MapReduce
programs.

« Hadoop Pipes
Hadoop Pipes (Figure 2 right) is a C++ interface to
Hadoop MapReduce. Unlike Streaming, Pipes uses sock-
ets as the channel over which the TaskTracker commu-
nicates with the process running the C++-based map and
reduce functions without using JNI.

o INI
JNI is a native programming interface that allows Java
code running in a Java Virtual Machine (JVM) to invoke
or to be invoked by applications and libraries written
in other programming languages such as C, C++, and
assembly. Using JNI as a code translator between Java
and other languages, application users can enjoy various
benefits: invoking platform specific features and program
libraries which the standard Java class library does not
support. Several existing libraries [9], [10] wraps CUDA
code invocation by using JNI.

Hadoop Streaming supports wide-ranging map and reduce

programs written in any languages with the standard I/O;
however, application users have to write parser codes of

735

Client Node Master Node

CPU App
Binary

GPU App
Binary

Worker No

JobTracker

/

Fig. 3. Overview of our proposed hybrid scheduling technique

the standard I/O manually, which may introduce complex
programmability. By contrast, Hadoop Pipes does not require
to parse data via the standard I/O, since the runtime can
communicate with key-value abstractions by using the Hadoop
Pipes library. JNI may provide transparency to map and reduce
programs by encapsulating the differences between Java and
CUDA codes; however, such native method invocations usu-
ally introduce significant overheads, since accesses to Java data
structures in JNI, such as methods and fields, have to invoke
functions via JNI’s interfaces indirectly. In addition, JNI-based
applications require platform-specific libraries, which may ruin
pure Java portability.

As discussed above, we have several techniques to invoke
CUDA codes from the Hadoop framework. Considering that
CUDA extends C and C++ programs and Hadoop Pipes pro-
vides C++-based interfaces for user MapReduce applications,
we use Hadoop Pipes for our proposed technique.

B. Hybrid Map Task Execution on CPU cores and GPU
devices

We assume that application binary programs can run on
both CPU cores and GPU devices in Hadoop Pipes. Figure 3
shows the overview of our hybrid scheduling technique. When
a client submits a MapReduce job to the JobTracker by spec-
ifying CPU and GPU binaries, the JobTracker firstly assigns
the map tasks to idle slots and executes the assigned tasks on
the available slots. while TaskTrackers monitor the behavior of
each running map task: the elapsed time of a map task and the
used CPU cores and GPU devices, etc. Using these available
profiles, the JobTracker decides which map tasks run on which
devices (CPU cores and GPU devices) and binds the decided
map tasks to the corresponding application binary programs,
i.e., CPU map tasks use a CPU binary program, and GPU
map tasks use a GPU binary program. Then, TaskTrackers
execute given map tasks by using the specified binary program.
After the map phase, reduce tasks are invoked based on the
map results. Since both CPU and GPU map tasks have the
same output format, map tasks running on GPU devices never
influence the reduce phase.

C. Scheduling Strategy

The basic idea of the proposed scheduling algorithm is
to minimize the elapsed time of a submitted MapReduce
job. To achieve this algorithm, we allocate map tasks based
on the performance ratio between CPU and GPU map task
executions. We collect profiles of map tasks and calculate the
average elapsed time of the finished map tasks for CPU cores
and GPU devices respectively. Applying the collected profiles
of map tasks dynamically, we can adapt our hybrid scheduling
on a heterogeneous environment. Since the performance of
map tasks depends on running application characteristics and
underlying computing environments, we execute both CPU
and GPU map tasks simultaneously in the initial phase in
order to collect profiles as many as possible and to allocate
successive tasks to fast processors.

D. Scheduling Algorithm

In order to minimize the elapsed time of a submitted
MapReduce job in a GPU-based heterogeneous computing
environment, we introduce a performance model of map task
executions. Let N be the number of map tasks, n be the
number of CPU cores, and m be the number of GPU devices.
We denote the performance ratio of a GPU map task execution
to a CPU map task execution as «, which we call the
acceleration factor, and the mean elapsed time of the finished
map tasks on GPU devices as t. We assume that each map
task uses a single available slot exclusively, i.e., a single CPU
core or a single GPU device. Based on these parameters, the
acceleration factor, «, is described as follows:

mean map task execution time on CPU cores

“= mean map task execution time on GPU devices
Note that, by using acceleration factor, o, we denote the mean
elapsed time of the finished map task on CPU cores as « - t.
Here, let = be the number of map tasks running on CPU cores,
and y be the number of map tasks running on GPU devices.
We can model the estimated total map task execution time
(including both CPU and GPU map tasks) as follows:

}i.t}

x
= it
fy) =max{> a2
Using the above parameters, we determine the number of
CPU map tasks, x, and the number of GPU map tasks, vy,
to minimize the overall elapsed time of a MapReduce job as
follows:

Minimize
f(z,y) (D
Subject to
_ Toat Y.
f,y) =max{~ -t -t} @)
r+y=N 3)
z,y >0 4

736

Client Node
JobClient Master Node
ml JobTracker
CPU App |GPU App
Binary Binar
Worker Nod
orker Node Slotl
TaskTracker m
) [Siot 1 Task1
cal DL'l* C++ Wrapper
Gpu |[| GPU CPU App
s Binar:
Slot 2 -
\
Fig. 4. Overview of our prototype implementation

The objective function (1) minimizes the elapsed time of a
submitted MapReduce task, i.e., the elapsed time of x CPU
map tasks and y GPU map tasks as described in (2). We
introduce additional constraints: (3) and (4). Constraint (3)
states that the sum of CPU and GPU map tasks is constant
and is equal to the total map tasks. Constraint (4) avoids the
number of CPU and GPU map tasks to be negative. Note
that our current hybrid scheduling algorithm does not consider
reduce tasks, since reduce tasks typically run on all available
slots at the same time; therefore, the hybrid scheduling cannot
optimize the resources.

Based on the determined number of map tasks, = and
y, the scheduler allocates CPU and GPU map tasks to the
corresponding slots. The scheduler applies this algorithm by
using the collected profiles in the heartbeat messages sent from
worker nodes and holds the updated results.

IV. IMPLEMENTATION

We implemented our proposed mechanism in Hadoop ver-
sion 0.20.1 as a prototype. Figure 4 shows the overview of our
prototype implementation. The rest of this section describes
the detailed implementation of Hadoop and our extensions for
the proposed hybrid scheduling.

A. CUDA code invocation from Hadoop Pipes

As discussed in previous section, We use Hadoop Pipes for
implementing our prototype. In the Hadoop framework, the
MapReduce job invocation process consists of several steps.
First, a user program launches a job as a Job instance and
invokes a JobClient instance. Then, the JobClient instance
submits the job to the JobTracker. After submitting the job,
the JobTracker allocates map and reduce tasks to idle slots
on TaskTrackers. Each TaskTracker launches child JVM pro-
cesses and runs the allocated tasks on the assigned slots.

In the case of Hadoop Pipes, each C++ wrapper process,
running map and reduce tasks, establishes a permanent socket
connection to the child JVM process by passing a port number
of the given execution environment. During the task execution,
the JVM process sends input key-value pairs to the C++

wrapper process. Then, the wrapper process starts user defined
map and reduce functions and passes the output result key-
value pairs to the JVM process after the computation. From
the TaskTracker’s point of view, this behavior can be seen as
if the TaskTracker child process executes the map or reduce
codes by itself.

Our prototype requires to invoke a map task on both CPU
cores and GPU devices; therefore, we prepare a C++-based
CPU map task code and a CUDA-based GPU map task code,
both of which the JVM process can communicate with by
passing key-value pairs via the standard I/O. By specifying
both CPU and GPU binary programs at the program invocation
from command line, users can run map and reduce tasks on
both CPU cores and GPU devices, while the scheduler controls
the task execution by binding specific tasks to corresponding
binary programs: CPU map tasks to a CPU binary program
and GPU map tasks to a GPU binary program.

In order to implement the above mechanisms, we add a task
management feature in Hadoop, whose feature consists of two
steps: specifying CPU and GPU map task binary programs and
allocating CPU and GPU map tasks. First, users on a client
submit a MapReduce job by specifying both CPU and GPU
binary programs. Then, the client sends the submitted job,
including CPU and GPU task information, to the JobTracker.
Each TaskTracker manages their idle slots, i.e., idle CPU
cores and GPU devices, and periodically sends a heartbeat
message to the JobTracker in order to ask tasks to run on
the TaskTracker. Meanwhile, the TaskTracker notices the idle
slots, i.e., whether CPU cores or GPU devices are idle or not,
to the JobTracker. Each TaskTracker also collects application
and resource profiles: the elapsed time of running map tasks,
the number of CPU cores and GPU devices, and the device
number of GPUs that map tasks run on, etc. We include these
profiles in a heartbeat message. Then, when the JobTracker
receives the heartbeat message, the scheduler decides the map
task allocation by using our proposed algorithm based on the
information collected from the heartbeat messages sent from
TaskTrackers, including the information such as which slots
the previous map tasks used, how long the previous tasks took
for computation, etc. The decided task allocation is sent to
the TaskTracker with task information. Then, the TaskTracker
invokes the corresponding map task binary program based on
the information.

If the TaskTracker node has multiple GPU devices, we
have to manage which map tasks run on which GPU devices.
since many current operating systems do not support resource
management features for GPU devices; therefore, resource
contentions to specific GPU devices may occur. This situation
can be avoided by introducing the GPU device management
to the TaskTrackers, i.e., which map tasks run on which
GPU devices on the TaskTracker node. Hence, we set the
GPU device number at the invocation of a GPU binary
program. This GPU device usage information is also sent to
the JobTracker in the heartbeat message. Thus, the JobTracker
can recognize the GPU device usage of all TaskTracker nodes.
Based on these profiles, the JobTracker allocates map tasks to

737

Master Node
m 3. Get # of Map Tasks,
JobTracker E= onCPU || onGpuU 1 | TaskTrackers, CPUs, GPUs
4. Calculat
TaskScheduler M
on CPU

= |

Worker Node E
DLl

TaskTracker & Task
Em., d Running on cPU or GPU,
7. Run Map Tasks s¥l| GPU Device ID, Runtime

Map task scheduling workflow of our prototype implementation

5. Assign Map Tasks

2. Send profiles of Available Slots,
GPU Device ID, Mean RunTime

II—T

1. Each task has Profiles of

6. Send Map Tasks

Fig. 5.

idle GPU devices in a round-robin manner.

B. Map Task Scheduling

We implemented the proposed hybrid scheduling technique
to the JobTracker and the TaskTrackers. Figure 5 shows the
map task scheduling workflow of our prototype implementa-
tion. As described in the previous section, each TaskTracker
fetches a new map task to the JobTracker every time the slots
on the TaskTracker are idle. Then, the JobTracker allocates
CPU or GPU map tasks to the TaskTrackers according to
the results of the proposed scheduling algorithm. In order to
allocate these map tasks efficiently, the scheduler calculates the
mean elapsed time of the finished CPU and GPU map tasks
and the acceleration factor of map tasks. Since the acceleration
factor is unknown at the start time, the scheduler allocates
map tasks to the available CPU cores and GPU devices.
When the JobTracker receives a heartbeat message, which
includes a query of map task allocations to available slots
on the TaskTracker, the scheduler calculates the mean elapsed
time of CPU and GPU map tasks and the acceleration factor.
Based on the results, the scheduler allocates the remaining map
tasks to idle slots by using the proposed algorithm. Here, the
scheduler checks the progress of map tasks and the availability
of CPU cores and GPU devices on the TaskTrackers. If the
TaskTrackers do not have available CPU or GPU slots, the
scheduler waits to allocate map tasks to the TaskTrackers
until the slots become available. We minimize the idle time
by reducing the situation that map tasks running on fast
processors wait for tasks running on slow processors to finish.

V. EXPERIMENTS

In order to evaluate the validity of our proposed hybrid map
task scheduling algorithm, we conduct performance studies by
using a cluster analysis application. This section presents the
results of our experimental studies based on our prototype.

A. Target Application

We use a cluster analysis application, K-means, in this
experiment, since K-means is a common technique for data
analysis and a typical MapReduce application. The K-means
application works as follows:

TABLE 1
SPECIFICATION OF A SINGLE COMPUTE NODE

CPU Dual Core AMD Opteron 880 (2.4 GHz)
of cores 16
Main MEM 32GB
GPU NVIDIA Tesla S1070 (T10-based card x 4)
shared by 2 compute nodes
of cards 2
of cores per card 240 cores (1.29 - 1.44 GHz)
Global MEM per card 4GB
Interconnect SDR Infiniband x 2
PCI-Express Bandwidth 2GB/s
oS Linux 2.6.16

1) Select a value K. Here, we divide data instances z;(i =
1,...,n) to K clusters.

For each data instance z;, assign a cluster in K clusters
randomly.

Based on the clusters assigned to data instances x;,
calculate the centroid V;(j = 1,..., K) of each of K
clusters.

Calculate distances between the data instance x; and
each centroid Vj. Then reassign the data instance x; to
the closest cluster.

Recalculate each centroid V;(j = 1,..., K) of each of
K clusters and iterate the above process until the cluster
assignment converges for all data instances.

We implemented both CPU and GPU version [11] of K-means
applications; we use C++ for the CPU version and CUDA for
the GPU version. By using these applications, our MapReduce
program works as follows:

2)

3)

4)

5)

1) In the map phase, the map tasks apply the K-means
application to each file.
2) Then, in the reduce phase, the reduce tasks accumulate
the results of the map tasks.
In this experiment, we set the number of clusters, K, to 128.
We use 20GB of files that contain 4000 sets of 262144 2-
dimensional points.

B. Experimental Settings

We conduct the K-means application on the TSUBAME
supercomputer, which is a supercomputer located in the Tokyo
Institute of Technology, Japan. The specification of each
compute node is listed in Table I. We use up to 64 nodes
(1024 CPU cores and 128 GPU cards). We use the Lustre
file system as a distributed file system for Hadoop instead of
HDEFS, since TSUBAME has a few local storage volume in
a compute node. The number of stripes of files in the file
system is set to 4. The I/O performance to the file system is
180 MB/s for write and 610 MB/s for read for a single file
with 32MB. In this experiment, we use Sun Java version 1.6.0
and the CUDA toolkit version 2.3.

C. Experimental Results

Figure 6 shows the result of the total MapReduce job
execution time. We apply three policies for the map task
execution as follows:

738

2000 . . : : : .
hadoop —+—
hadoop-gpu2 ---x---

1500 proposal-gpu2 ---*--- |

1000

Elapsed Time [sec]

500

40
of nodes

70

Fig. 6. Total MapReduce job execution time

e 16 CPU cores per node are used for the Map phase by
using the original Hadoop scheduling algorithm, which
always schedules map tasks to idle CPU slots (hadoop).

e 14 CPU cores and 2 GPU devices per node are used
for the Map phase by using Hadoop-based scheduling
algorithm, which always schedules map tasks to idle CPU
and GPU slots (hadoop-gpu2).

e 14 CPU cores and 2 GPU devices per node are used for
the Map phase by using our proposed hybrid scheduling
technique (proposal-gpu?2).

The x-axis corresponds to the number of nodes, and the y-axis
corresponds to the elapsed time (sec) of the total MapReduce
job. Here, we see that using GPU can reduce MapReduce job
execution time; the hadoop-gpu2 policy is 1.13 times faster
than the hadoop policy at 64 nodes (1024 CPU cores and
128 GPU devices). However, there are negligible differences
between hadoop and hadoop-gpu?2 policies. This is because
the acceleration factor of our target application is low and
the experimental environment has many CPU slots rather than
GPU slots. On the other hands, the proposal-gpu2 policy
exhibits higher performance than the hadoop and hadoop-
gpu2 policies, since our proposed technique automatically
determines the number of map tasks to execute on CPU cores
and GPU devices; we see that the proposal-gpu2 policy is
1.93 times faster at 64 nodes (1024 CPU cores and 128 GPU
devices) and 1.02 times faster at 1 node (16 CPU cores and 2
GPUs).

We observe performance overheads when the number of
nodes are increasing in Figure 6. To clarify this cause, we
investigate the mean elapsed time of map tasks executed on
CPU and GPU slots respectively. Figure 7 shows the results of
the mean CPU and GPU elapsed time. The x-axis corresponds
to the number of nodes, and the y-axis corresponds to the
map task mean time (sec). We see that both of the map
task mean times increase linearly in proportion to the number
of nodes, which introduces the performance overheads of
the overall MapReduce job execution. We consider that this
is caused by I/O overheads, since the file system, we use
Lustre instead of HDFS in this experiment, is configured

250

)
o)
2. 200 i
)
E
|_
- 150 |
]
s
< 100 |
[2]
k&
a 50)
]
=
0 1 1 1 1 | |
0 10 20 30 40 50 60 70
of nodes
Fig. 7. Mean elapsed time of CPU and GPU map tasks
2000 T ; : : :
hadoop —+—
proposal-gpul ---x---
g 1500 proposal-gpu2 % |
@
=
~ 1000 i
°
o)
[%2]
&
] 500 |
0 1 1 1 1 | |
0 10 20 30 40 50 60 70
of nodes

Fig. 8. Total MapReduce job execution time under the different number of
GPU devices per node

with separated compute and storage nodes connected with
shared networks, which may cause I/O contentions affected by
other processes. On the other hand, HDFS is configured with
combined compute and storage nodes to localize file accesses,
which avoids I/O contention situations. As future work, we
are planning to conduct experiments to verify the cause of
I/0O contentions in a shared HPC filesystem such as Lustre
by comparing with other large-scale computing environments
with a HDFS-based distributed filesystem.

Figure 8 compares the total MapReduce job execution time
when the number of GPU devices per node varies. Here, we
introduce three policies as follows:

e 16 CPU cores per node are used for the Map phase by
using the original Hadoop scheduling algorithm, which
always schedules map tasks to idle CPU slots (hadoop).

e 15 CPU cores and 1 GPU device per node are used for
the Map phase by using our proposed hybrid scheduling
technique (proposal-gpul).

e 14 CPU cores and 2 GPU devices per node are used for
the Map phase by using our proposed hybrid scheduling
technique (proposal-gpu?2)

739

80

40 60

Elapsed Time [sec]

20

T T T T
CPU-binary ~ CPU-task ~ GPU-binary =~ GPU-task

Fig. 9.
Hadoop

The overhead of both CPU and GPU binary code invocations from

The x-axis corresponds to the number of nodes, and the
y-axis corresponds to the elapsed time (sec). We observe
that there are negligible differences between the hadoop and
proposal-gpul policies; however, the proposal-gpu2 policy
exhibits good performance than other hadoop and proposal-
gpul policies. Thus, using many GPUs improves the overall
MapReduce execution time.

Our prototype invokes both CPU and GPU binary codes
form the Hadoop framework by using the Hadoop Pipes-based
mechanism, which may introduce extra performance overheads
to running applications. We evaluate the overhead of binary
code invocation from the Hadoop layer by using a single local
compute node, which consists of AMD Phenom 9850 Quad
core (2.5GHz) and NVIDIA GeForce GTX 275 (1.4GHz)
with 8.2GB of main memory, running Linux 2.6.27. Here, we
compare four metrics as follows:

« CPU binary execution time (CPU-binary), which denotes
the actual execution time of a C++-based application
binary program.

o CPU map task execution time (CPU-task), which denotes
the interval, including the CPU binary execution time,
between the time when a CPU map task is allocated by
the scheduler and the time that the map task is finished.

o GPU binary execution time (GPU-binary), which denotes
the actual execution time of a CUDA-based application
binary program.

« GPU map task execution time (GPU-task), which denotes
the interval, including the GPU binary execution time,
between the time when a GPU map task is allocated by
the scheduler and the time that the map task is finished.

Figure 9 shows the result of the overhead of both CPU and
GPU binary code invocations from the Hadoop framework.
Here, we see that the mean CPU binary execution time is 65.2
sec, the mean CPU map task execution time is 77.4 sec, the
mean GPU binary execution time is 15.5 sec, and the mean

GPU map task execution time is 27.9 sec; there are significant
overheads between binary execution and map task execution:
6 % for CPU and 44 % for GPU on average. This arises
from the implementation of the Hadoop framework. We also
observe that GPU execution causes perturbation; the maximum
GPU binary execution time is 17.3 sec and the minimum GPU
binary execution time is 11.7 sec.

VI. RELATED WORK

There are several MapReduce studies that considers GPU-
based computing environments. He et al. have proposed
a MapReduce framework, called Mars [6], for commodity
GPUs, which focuses on providing a generic framework for
developers to implement GPU-based applications. Their work
mainly targets on a single machine with commodity GPUs;
however, our target environments include a large-scale com-
puter cluster with multiple commodity GPU devices. Stuart
et al. have proposed a MapReduce-based volume rendering
application for a multi-GPU computer cluster [12], whereas
our study focuses on hybrid map task scheduling that considers
running application characteristics and underlying computing
environments.

There are also several studies related to task scheduling for
GPU-based computing environments [13], [14]. Ravi et al.
have proposed a parallel reduction system for CPU-GPU het-
erogeneous environments [13]. They have reported fluctuation
of task execution time by varying chunk sizes to allocate CPU
cores and GPU devices; however, their work does not focus
on dynamic scheduling and multi-GPU computer clusters. Lu
et al. have proposed a programming system, called Qilin [14],
which adaptively maps computations to processing elements
on a CPU-GPU hybrid machine by using training mechanisms.
Their work is similar to ours in terms of distributing tasks
onto CPUs and GPUs automatically; however, our proposal
employs dynamic scheduling and does not require any training
processes for optimization.

There are vast amounts of studies related to task scheduling
on heterogeneous computing environments. Zaharia et al. have
presented a task scheduling technique by using speculative
execution in order to avoid straggler tasks and to improve
efficiency for CPU-based heterogeneous environments [15].
However, our work considers GPU-based heterogeneous com-
puting environments, which arise different problems to CPU-
based ones, such as data transfer overheads between CPU
cores and GPU devices, latency hidings between compute
nodes, etc. Current our prototype only considers the execution
time of map tasks running on both CPU cores and GPU
devices. We are planning to improve our scheduling technique
by monitoring detailed profiles of map tasks, such as memory
bandwidth performance and disk access time, etc.

VII. CONCLUSION

We have presented a hybrid map task execution technique
for GPU-based heterogeneous computer clusters in the Hadoop
framework. We have also proposed a hybrid task scheduling
algorithm, which minimizes the total MapReduce job time

740

by using dynamic monitoring of map task’s behavior, such
as the elapsed time of map tasks. Our experimental results
based on using our Hadoop-based prototype have showed that
our proposed technique achieves 1.93 times faster application
performance than the Hadoop original scheduling algorithm at
64 nodes (1024 CPU cores and 128 GPU devices). The results
also indicates that the performance of map tasks, including
both CPU tasks and GPU tasks, is significantly affected by
the overhead of map task invocation from Hadoop.

As future work, we are planning to monitor GPU task
behavior, such as memory usage and data transfer performance
between CPU cores and GPU devices, and I/O performance
to storage system, and to improve the scheduling model and
overheads by using the detailed profiles.

ACKNOWLEDGMENT

This work is partially supported by the Ministry of Educa-
tion, Culture, Sports Science, and Technology, the Grants-in-
Aid for Scientific Research on Priority Areas (18049028) and
the JST-CREST Ultra-Low Power HPC Project.

REFERENCES

[1] J. E. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlicht-
ing, and A. Toncheva, “The diverse and exploding digital universe,” IDC
white paper, 2008.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” OSDI *04, Sixth Symposium on Operating System Design
and Implementation, pp. 137-150, 2004.

J. D.Owens, M. Houston, D. Luebke, S. Green, J. E.Stone, and
J. C.Phillips, “GPU computing,” Proc IEEE, vol. 96, no. 5, pp. 879-899,
2008.

“Hadoop homepage,” http://hadoop.apache.org.

R. Colby, R. Ramanan, P. Arun, B. Gary, and K. Christos, “Evaluating
mapreduce for multi-core and multiprocessor systems,” in Proceedings
of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 13-24.

B. He, W. Fang, Q. Luo, N. K.Govindaraju, and T. Wang, “Mars: A
mapreduce framework on graphics processors,” Parallel Architectures
and Compilation Techniques, pp. 260-269, 2008.
“Nvidia cuda,” http://developer.nvidia.com/cuda.
“Khronos Group Open Computing
http://www.khronos.org/opencl/.

Y. Yan, M. Grossman, and V. Sarkar, “Jcuda: A programmer-friendly
interface for accelerating java programs with cuda,” Lecture Notes in
Computer Sciences, vol. 5704 (2009), pp. 887-899, 2009.

“jcuda - java for cuda,” http://hoopoe-cloud.com/Solutions/JCUDA/”.
B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-means
on commodity gpus with cuda,” Computer Science and Information
Engineering, 2009 WRI World Congress, pp. 651-655, 2009.

J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D. Owens, “Multi-gpu volume
rendering using mapreduce,” /st International Workshop on MapReduce
and its Applications, June 2010.

T. R. Vignesh, M. Wenjing, C. David, and A. Gagan, “Compiler and
runtime support for enabling generalized reduction computations on
heterogeneous parallel configurations,” in ICS ’10: Proceedings of the
24th ACM International Conference on Supercomputing. New York,
NY, USA: ACM, 2010, pp. 137-146.

C.-K. Lu, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” MICRO ’09, pp.
45-55, 2009.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”
The 8th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI2008), pp. 2942, 2008.

[2]

[3]

[4]

[5]

(6]

[7]

[8]
[9]

Language,”

[10]

[11]

[12]

[13]

[14]

[15]

