Hybrid Map Task Scheduling for
GPU-based Heterogeneous Clusters

Koichi Shirahata™ Hitoshi Sato* Satoshi Matsuoka*T$
*Tokyo Institute of Technology

TCREST, Japan Science and technology Agency
¥National Institute of informatics

The data generated by human
activities is rapidly increasing
* Massive data processing

— Various scientific computation (biology, astronomy, ...)
* MapReduce

— Programming model for massive data processing
— Scalable parallel data processing

* GPGPU

— Better performance compared to CPU

— Emerging of GPU-based Hybrid Supercomputer and
Cloud
ex) TSUBAME 2.0 : NVIDIA Fermi "Tesla M2050” x3 in a node

MapReduce acceleration by using GPUs

Problems of MapReduce on CPU-GPU

Hybrid Clusters
e Scheduling Map tasks onto CPUs and GPUs
efficiently is difficult
* Dependence on computational resource

— # of CPU cores, GPUs, amount of memory,
memory bandwidth, |/O bandwidth to storage

* Dependence on applications

— GPU computation characteristic

* Pros. Peak performance, memory bandwidth
e Cons. Complex instructions

Hybrid Scheduling with CPUs and GPUs to make use of
each excellence — Exploit computing resources

Goal and Achievement

e Goal

— Acceleration of MapReduce in hybrid environment with
CPUs and GPUs

e Achievement

— Hybrid Map Task execution
* Implemented on Hadoop, MapReduce OSS

— Map Task Scheduling technique
* Minimize total job execution time

— Evaluation by K-means

* Job execution time: 1.93 times faster by using multiple GPUs
and proposed scheduling technique than CPU-only at 64
nodes.

N O s W N

Table of Contents

MapReduce and GPGPU
Proposal

Design and Implementation
Experiments

Related work

Conclusion and Future work

MapReduce

e Data analysis, Machine learning applications

* Implementations
— Hadoop: OSS of HDFS, MapReduce, HBase

— Mars: framework for GPU

— We implemented in Hadoop, widely used in
many companies and institutes

<key1, [vall, val3] >

2 Map =~
Vs
s <keyl, vall>
/

7
’ P Map ~< ¢ \

/ - A \
4 ¢ <key2, val2> /’ Reduce \\ \

4 \
7, ”7 I\/Iap / <key2, val5> \ .

- - Shuffle N
= <key1, val3> - @
-~ <key2, [val2] >
Filter A

ggregation

~ =3 Reduce »
/ N

¢ <keyl, vald> \\

GPGPU

* Graphic processors are used as SIMD
* Higher peak performance than CPUs

* Integrated developing environment
— NVIDIA: CUDA

* High level abstraction in a SIMD-style @

e Specific to NVIDIA GPUs

— AMD: OpenCL

* An open standard that can be used to program CPUs, GPUs
from different vendors

— We use CUDA, which provides C- and C++-based
programming environment for NVIDIA GPUs

N o U AW

Table of Contents

Proposal

Design and Implementation
Experiments

Related work

Conclusion and Future work

Structure of Hadoop

 Master/Worker model
— Master: JobTracker
* Manages submitted jobs

— Worker: TaskTrackers
e Execute map and reduce tasks

Client Node Master Node
Java App

Worker Node
TaskTracker

Worker Node
TaskTracker

Worker Node
TaskTracker

ldea: Hybrid Map task scheduling

onto CPUs and GPUs
* Automatic scheduling onto CPUs and GPUs

— A runtime environment, Computing resources

— Application characteristics
— Minimize the job execution time

Client Node Master Node

Java App JobTracker

* CUDA invocation from Hadoop
* Hybrid scheduling algorithm

TaskTracker TaskTracker TaskTracker

Eon (1R Kcn

Task Task Task Task

CUDA invocation strategy
from Hadoop

* Translation of a Java program to a CUDA code

— Hadoop — Java (Middleware, Application)
— CUDA — Cor C++ library

* How to translate CUDA in Hadoop environment
— Hadoop Streaming: Standard 1/0O
— Hadoop Pipes: C++ library, Socket connection,
— JNI, JNI-based CUDA wrapper (JCUDA)

— We use Hadoop Pipes for our proposed technique
* MapReduce applications/CUDA kernel — written in C++

CUDA invocation strategy
from Hadoop (cont’d)

* Management of Map tasks, idle slots

— Which slot each Map task should run on
— Which CPU/GPU slots are idle

 Map task contention to GPU
— When a TaskTracker node has Multiple GPUs

— Management of which Map tasks run on which
GPU devices

* We set the GPU device number by cudaSetDevice()
at the invocation of a GPU binary program

Hybrid scheduling strategy

 Minimization of total job execution time

— Allocation of Map tasks by performance ratio of
CPU and GPU map task execution (acceleration

factor)

* Dynamic monitoring
— Execution on both CPU and GPU map tasks

simultaneously

to collect profiles

— Getting profiles of finished Map tasks on CPUs and

GPUs periodica
— Calculation of t
— Monitoring of t

ly (e.g. execution time)
ne acceleration factor

ne Job progress

Scheduling algorithm

e Goal
— Minimize the time all the Map tasks are assigned
— Calculate # of Map tasks to assign to CPUs, GPUs

* Acceleration factor
mean_map task erecution time on CPU cores
5 — -
l mean map task erecution time on GPU devices
* Scheduling algorithm Input
Minimize *CPU cores: n, GPUs: m
o) (1y Monitoring
Subject to | °Rem§|n|ng Maps tasks: N
(o) —=maxtE ot Lo *Runtime of 1 GPU task: t
f@,y) = ma,x{ﬁ O 1@ .acceleration factor: a
E+yg=N (3) Output
z,y >0 4) *Total Map tasks to run

on CPUs: x, on GPUs: y

N o ok

Table of Contents

Design and Implementation
Experiments
Related work
Conclusion and Future work

How Hadoop Pipes works

 Users Execution overflow
— write map/reduce functions — A Child JVM invokes map or
(with C++ wrapper library) reduce tasks on a TaskTracker
— specify compiled binary, — A C++ wrapper process send/
and run the job receive key-value pairs to/from

C++ binary via a socket

aster Noge
JobTracker

Client Node
JobClient

CPU App
Binary

Worker Node

TaskTracker J—

¢’ Slot 1

Hybrid execution by using Hadoop Pipes
 Specification of CPU/GPU binary when a job is launched

* TaskTrackers monitor the behavior of running map tasks
— The elapsed time of a map task
— The used CPU cores and GPU devices

Client Node

JobClient aster Node
CPU App | [GPU App JobTracker

Binary Binary

Worker Node

TaskTracker J—

¢’ Slot 1

Slot1 Slot2

CUDA wrapper

GPU app
binary

The map task scheduling workflow

Master Node

on CPU on GPU 1
3 Calculate QL 2. Get # of Map Tasks,
TaskTrackers, CPUs, and GPUs

CPU 1. Send profiles of Available slots,
GPU devices, Mean runtime

4. Allocate Map Tasks

Worker Node

TaskTracker =

5. Run Map Tasks

Table of Contents

5. Experiments
6. Related work
7. Conclusion and Future work

Experiments setting

* Measurement of the Job execution time on Hadoop-based
environment

— Comparison between
* CPU-only and CPU + GPU hybrid execution
* Hadoop original and proposed scheduling

 K-means application

— Running Map tasks with C++ binary and CUDA binary

— 20GB of files with 4000 sets of 262,144 floating points and 128
clusters

* Map: executes K-means for each file
e Reduce: collects the result of each K-means

Experimental environment

* TSUBAME1.2

— We use up to 64 nodes (1024 CPU cores and 128 GPU devices)

— Lustre file system as DFS (stripes: 4, Chunk size: 32 MB)
* |/O performance: Write 180MB/s, Read 610MB/s (with 32 MB file)

— Hadoop 0.20.1, Java 1.6.0, CUDA 2.3

Specification of a single compute node

GCPU Dual Core AMD Opteron 880 (2.4 GHz)
of cores 16
Main MEM 32GB
GPU NVIDIA Tesla S1070 (T10-based card x 4)
shared by 2 compute nodes
of cards 2
of cores per card 240 cores (1.29 - 1.44 GHz)
Global MEM per card 4GB
Interconnect SDR Infiniband x 2
PCI-Express Bandwidth 2GB/s
oS Linux 2.6.16

Comparison of Job execution time

2000 T T T

I I I
5 hadoop
11 hadoop-gpu2
g 1500 7 proposal-gpu2 ---*--- |
) |
£ 1
— 1000 R -
§°] s
S 500 - ;\ BT e
RS e A
O l | | l | l

0 10 20 30 40 50 60 70

of nodes
Total MapReduce job execution time

-hadoop: Hadoop original scheduling
-hadoop-gpu2: Hadoop original scheduling with 2 GPU devices / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Comparison of Job execution time
2000 —77 ~N

lthough there are slight performance
gain by using GPUs,

it is almost equal to non-GPU version due
\ to the small acceleration factor (x1.13) /

X

!

!

=3

|

|
1000 f5 6-
soo Ry, //x y

1500

Elapsed Time [sec]

0O 10 20 30 40 50 60 70
of nodes
Total MapReduce job execution time

-hadoop: Hadoop original scheduling
-hadoop-gpu2: Hadoop original scheduling with 2 GPU devices / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Comparison PfJob execution time

2000 :
(* ' Further performance gain by
. | applying proposed algorithm
g 1500 H
2 |
0 x1.02
F 1000 1% x1.93
0]
@ s
Q \ -
LU 500 ;&______ e
e e
O | | | | | |
0O 10 20 30 40 50 60 70

of nodes
Total MapReduce job execution time

-hadoop: Hadoop original scheduling
-hadoop-gpu2: Hadoop original scheduling with 2 GPU devices / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Comparison of Job execution time

2000 I I I I I I
< hadoop
1‘ | P PR a |
!
1500 i Performance degradation by adding nodes
| | ™ Due to increase of Map task runtime
1000 :

Elapsed Time [sec]

0O 10 20 30 40 50 60 70
of nodes
Total MapReduce job execution time

-hadoop: Hadoop original scheduling
-hadoop-gpu2: Hadoop original scheduling with 2 GPU devices / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Increase of Map task runtime

 Map task runtime increases in proportion to # of nodes
— Degradation of I/O performance

— Since Lustre is configured with separated compute and storage

node connected with shared networks
250 T T T T T T
CPU —+—

GPU

N
o
o
\
\
|

150

100

Map Task Mean Time [sec]
&)
o

0 | ! | l ! !
0 10 20 30 40 50 60 70

of nodes

Comparison of job execution time
1 GPU / node W|th 2 GPUs / node

2000
X had00p
1'1 proposal-gpu1
1500 H proposal-gpu2 ---*--- |
9 |
2 |
e |
£ 1000 |]
— \ .
< A\ ‘-///__/
a % e
& 500 R\ _— o
m S oy == e
LLJ "B - o R
0 | l | | | |

0 10 20 30 40 50 60 70
of nodes
Total MapReduce job execution time
-hadoop: Hadoop original scheduling

-proposal-gpul: Proposed scheduling with 1 GPU device / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Comparison of job execution time
1 GPU / node W|th 2 GPUs / node

2000

5 hadoop
': proposal-gpu

Our proposal achieves high application
performance by using many GPUs

£ TUUU fx% =
- =k
© P
o 500 A\ - vy A
© \\._____‘_"/_______--——’ s -
T AR ey e

0 1 1 | l | |

0 10 20 30 40 50 60 70
of nodes
Total MapReduce job execution time
-hadoop: Hadoop original scheduling

-proposal-gpul: Proposed scheduling with 1 GPU device / node
-proposal-gpu2: Proposed scheduling with 2 GPU devices /node

Elapsed Time [sec]

o
(oo

60

40

20

Overhead of process launching

Experiment with 1 node

 Compare Map task binary runtime and Map task (total)
runtime

— Binary time: C++ or CUDA Map function execution time
— Map task runtime: from Map task allocation to finish of the task

1

12.4 sec (44%)

~
wJ

12.1 sec (16%)

—

——

~
(o)

—_—

iE

|
CPU-binary

|
CPU-task

I

GPU-binary GPU-task

— Significant overheads
dependent on original
Hadoop implementation

CPU-binary, GPU-binary :
binary execution time
CPU-task, GPU-task :
Map task runtime

Table of Contents

6. Related work
7. Conclusion and Future work

Related work

Several studies related to task scheduling or hybrid
execution
for heterogeneous environment

— CPU/GPU task scheduling by learning mechanism
[Chi-Keung Lu et al. '09]

— Accelerate reduction computation with CPU/GPU hybrid
execution by changing chunk size [T. Ravi Vifnesh et al. "10]

— MapReduce task scheduling in heterogeneous environment
[Zaharia et al. 08]

— Massive data processing by CPU/GPU hybrid

execution according to computing resource/ application
- Consider resource contention (e.g. memory, storage)
- Auto-scheduling during execution

Table of Contents

7. Conclusion and Future work

Conclusion and Future work

e Conclusion
— Invocation of Map task on GPU from Hadoop

— Task scheduling technique for GPU-based heterogeneous
environment

— Experiment by K-means application
e 1.02-1.93 times faster by 2GPUs / node and proposed technique
* Significant overhead dependent on Hadoop implementation

e Future work

— Bottleneck analyses
 TSUBAME 2.0, a new supercomputer in Tokyo Tech.
* Comparison of Lustre and HDFS

— Improvement of scheduling model
* Resource contention issue including memory/disk access
 |/O performance to storage system

