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Emergence of Large Scale Graphs

:} Need fast and scalable analysis using HPC

900 Million Vertices
100 Billion Edges ¢



GPU-based Heterogeneous

supercomputers
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I ME 7
i S— 2
LB

High peak performance
High memory bandwidth

Motivation NS
Fast Large Graph Processing with GPGPU




Problems of Large Scale Graph
Processing with GPGPU

* How much do GPUs accelerate
large scale graph processing ? P —

— Applicability to graph applications o

* Computation patterns of graph fin
algorithm affects performance CPU memory T

* Tradeoff between computation and *’
CPU-GPU data transfer overhead

— How to distribute graph data to <
each GPU in order to exploit
multiple GPUs

[ Scalability ] [ ball_z:)r?cding ] [Communication]




Motivating Example:
CPU-based Graph Processing

* How much is the graph application accelerated using GPU ?
Simple computation patterns, High memory bandwidth
Complex computation patterns, PCI-E overhead
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Contributions

* Implemented a scalable multi-GPU-based
PageRank application

— Extend Mars (an existing GPU MapReduce framework)
e Using the MPI library

— Implement GIM-V on multi-GPU MapReduce
* GIM-V: a graph processing algorithm

— Load balance optimization between GPU devices for large-scale
graphs
e Task scheduling-based graph partitioning

Performance on TSUBAME2.0 supercomputer
* Scale well up to 256 nodes (768 GPUs)

e 1.52X speedup compared with on CPUs




Proposal: Multi-GPU GIM-V with
Load Balance Optimization

Graph Application
PageRank

Graph Algorithm

@3 Multi-GPU GIM-V
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Platform
CUDA, MPI

Implement GIM-V on
multi-GPUs MapReduce
- Optimization for GIM-V

- Load balance optimization

Extend an existing GPU
MapReduce framework
(Mars) for multi-GPU
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Proposal: Multi-GPU GIM-V with
Load Balance Optimization

Graph Application
PageRank

Graph Algorithm

@S Multi-GPU GIM-V
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s MapReduce Framework
= =g Multi-GPU Mars

o Platform

CUDA, MPI

Implement GIM-V on
multi-GPUs MapReduce
- Optimization for GIM-V

- Load balance optimization

Extend an existing GPU
MapReduce framework
(Mars) for multi-GPU




Structure of Mars

* Mars*!: an existing GPU-based MapReduce
framework

— CPU-GPU data transfer (Map)
— GPU-based Bitonic Sort (Shuffle)
— Allocates one CUDA thread / key (Map, Reduce)

GPU Processing Scheduler

Preprocess Map Sort Reduce

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors.
PACT 2008



Structure of Mars

* Mars*!: an existing GPU-based MapReduce
framework

— CPU-GPU data transfer (Map)
— GPU-based Bitonic Sort (Shuffle)
— Allocates one CUDA thread / key (Map, Reduce)

— We extend Mars for multi-GPU support

GPU Processing Scheduler

Preprocess Map Sort Reduce

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors.

PACT 2008
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Proposal:
Mars Extension for Multi-GPU using MPI

 |Inter-GPU communications in Shuffle
— G2C - MPI_Alltoallv - C2G - local Sort

* Parallel I/O feature using MPI-10
— Improve I/O throughput between memory and storage

GPU Processing Scheduler

: I
Map Copy Sort Reduce

Download |
GPU - CPU CPU - GPU

Reduce

Download
GPU - CPU CPU - GPU
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Proposal: Multi-GPU GIM-V with
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Load Balance Optimization

Graph Application
PageRank Implement GIM-V on

multi-GPUs MapReduce

- Optimization for GIM-V

- Load balance optimization

Graph Algorithm
Multi-GPU GIM-V

] MapReduce Framework
=2 = Multi-GPU Mars MapReduce framework

Extend an existing GPU

(Mars) for multi-GPU

Platform

CUDA, MPI
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Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™?

— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll, ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

X V

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 13



Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
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Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

Combine2

Cte | CombineAll
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Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

Assign

Combine2

CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 16



Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™

— Graph applications are implemented by defining 3 functions
— V' =M x.v where

V.= Assion(v. . CombineAll.({x. 1 i=1_n_x.= Combine2(m.. v\ (i= 1..n)

GIM-V can be implemented by 2-stage MapReduce

- Implement on multi-GPU environment
' Assign |

Combine2

CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 17



Proposal:
GIM-V implementation on multi-GPU

e Continuous execution feature for iterations
— 2 MapReduce stages / iteration

— Graph partition at Pre-processing
* Divide the input graph vertices/edges among GPUs

— Parallel Convergence test at Post-processing
* Locally on each process -> globally using MPI_Allreduce

GPU Processing Scheduler

Multi-GPU GIM-V
Stage 1 ! Stage 2

Pre-process Post-process

Convergence

Combine2 CombineAll Test
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Optimizations for multi-GPU GIM-V

Mars

* Data structure
— Mars handles
metadata and payload
* Thread allocation
— Mars handles one key
per thread
* Load balance
optimization
— Scale-free property
 Small number of vertices

have many edges

—_

—_

Our Implementation

Eliminate metadata and
use fixed size payload

In Reduce stage, allocate
multi CUDA threads to a

single key according to value
size

Minimize load imbalance
among GPUS
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Optimizations for multi-GPU GIM-V

Mars Our Implementation
* Data structure
— Mars handles Eliminate metadata and
metadata and payload use fixed size payload

* Thread allocation
In Reduce stage, allocate

— Mars handles one key :
per thread :> multi CUDA threads to a
e Load balance single key according to value

optimization >12€

— Scale-free property
* Small number of vertices |:> Minimize load imbalance
have many edges among GPUS
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Apply Load Balancing Optimization

* Partition the graph in order to minimize load
imbalance among GPUs
— Applying a task scheduling algorithm
* Regard Vertex/Edges as Task

* TaskSize ;= 1+ 2 Outgoing Edges i
PN "\
Vertex ; TaskSize ;=1 +3
— LPT (Least Processing Time) schedule *1 V E .
ou

* Assign tasks in decreasing order of task size

[ Minimize the maximum amount

Tasks =18, 5, 4, 3, 1} [
P3 |
P2 !
P1 [

4 5 6 7 8

*1:R. L. Graham, “Bounds on multiprocessing anomalies and related packing algorithms,” in
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Experiments

Study the performance of our multi-GPU GIM-V
e Scalability
 Comparison w/ a CPU-based implementation
* Validity of the load balance optimization

* Methods
— A single round of iterations (w/o Preprocessing)
— PageRank application 161121121 3
* Measures relative 4 3 8lafj2]1
importance of web pages 5 1 slelals
— Input data 4124211
* Artificial Kronecker graphs G, G,=G,®G,

— Generated by generator in Graph 500
* Parameters
— SCALE: log 2 of #vertices (#vertices = 2°CALE)
— Edge_factor: 16 (#edges = Edge_factor x #vertices)



Experimental environments

* TSUBAME 2.0 supercomputer

— We use 256 nodes (768 GPUs)
* CPU-GPU: PCI-E 2.0 x16
* Internode: QDR IB (40 Gbps) dual rail

* Mars

— MarsGPU-n

* n GPUs / node Model Intel® Xeon® Tesla M2050

X5670
(n: 1, 2, 3)
# Cores 6 448

— MarsCPU Frequency  2.93 GHz 1.15 GHz

e 12 threads / node Memory 54 GB 2.7 GB

* MPI and pthread Compiler gcc 4.3.4 nvec 4.0

* Parallel quick sort
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Weak Scaling Performance:
MarsGPU vs. MarsCPU

Better * W/O load balance optimization
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Weak Scaling Performance:
MarsGPU vs. MarsCPU

Better * W/O load balance optimization

==MarsGPU-1

““=MarsGPU-2
MarsGPU-3

=*=MarsCPU

87.04 ME/s
(256 nodes)

SCALE 29
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Performance Breakdown:
MarsGPU and MarsCPU

“ Map “ MPI-Comm -
~ PCI-Comm “ Hash —
« Sort ~ Reduce

MarsCPU MarsGPU-1 MarsGPU-2 MarsGPU-3
SCALE 28



Performance Breakdown:
MarsGPU and MarsCPU

2000 “ Map “ MPI-Comm -
8000 PCI-Comm “ Hash —
2000 « Sort Reduce

£ 6000 2.53x
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Performance Breakdown:
MarsGPU and MarsCPU

“ Map “ MPI-Comm -
~ PCI-Comm “ Hash —
« Sort ~ Reduce

PCI-E overhead

MarsCPU MarsGPU-1 MarsGPU-2 MarsGPU-3
SCALE 28 28



Efficiency of GIM-V Optimizations

* Data structure (Map, Sort, Reduce)

* Thread allocation (Reduce)
SCALE 26, 128 nodes on MarsGPU-3
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Round Robin vs. LPT Schedule

* Similar except for on 128 nodes
— Input graphs are relatively well-balanced (Graph500)
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Bettergo Weak Scaling Performance
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Round Robin vs. LPT Schedule

* Similar except for on 128 nodes
— Input graphs are relatively well-balanced (Graph500)

Bettergo Weak Scaling Performance

80 <=MarsGPU-3 Performance
70 “+MarsGPU-§ Breakdown
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Performance Breakdown
Round robin vs. LPT Schedule

e Bitonic sort calculates power-of-two key-value pairs
— Load balancing reduced the number of sorting elements

3000

MarsGPU-3

MarsGPU-3 LPT

“ Map
“ MPI-Comm
~ PCI-Comm
W Hash
“ Sort

~ Reduce
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Outperform Hadoop-based Implementation

* PEGASUS: a Hadoop-based GIM-V implementation
— Hadoop 0.21.0
— Lustre for underlying Hadoop’s file system

Better
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SCALE 27, 128 nodes

186.8x S
Speedup

N

PEGASUS MarsCPU MarsGPU-3 33



Related Work

* Graph processing using GPU
— Shortest path algorithms for GPU (BFS, SSSP, and
APSP)*!

—> Not achieve competitive performance

* MapReduce implementations on GPUs
— GPMR*? : MapReduce implementation on multi GPUs
—> Not show scalability for large-scale processing

* Graph processing with load balancing

— Load balancing while keeping communication low on
R-MAT graphs*3

- We show the task scheduling-based load-balancing

*1 : Harish, P. et al, “Accelerating Large Graph Algorithms on the GPU using CUDA”, HiPC 2007.
*2 : Stuart, J.A. et al, “Multi-GPU MapReduce on GPU Clusters”, IPDPS 2011.
*3 :J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and Efficient Graph Traversal Algorithm for CPUs:

Maximizing single-node efficiency,” in Parallel Distributed Processing Symposium (IPDPS), 2012 ”



Conclusions

* A scalable MapReduce-based GIM-V
implementation using multi-GPU

— Methodology
e Extend Mars to support multi-GPU
* GIM-V using multi-GPU MapReduce
* Load balance optimization

— Performance

e 87.04 ME/s on SCALE 30 (256 nodes, 768 GPUs)
* 1.52x speedup than the CPU-based implementation

e Future work

— Optimization of our implementation
* Improve communication, locality

— Data handling larger than GPU memory capacity
 Memory hierarchy management (GPU, DRAM, NVM, SSD)
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Comparison with Load Balance Algorithm
(Simulation, Weak Scaling)

Compare between naive (Round robin) and load balancing

optimization (LPT schedule)

Similar except for 128 nodes (3.98% on SCALE 25, 64 nodes)
— Performance improvement: 13.8% (SCALE 26, 128 nodes)
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Large-scale Graphs in Real World

* Graphs in real world
— Health care, SNS, Biology, Electric power grid etc.

— Millions to trillions of vertices and 100 millions to 100 trillions of
edges

— Similar properties
* Scale-free (power-low degree distribution)
* Small diameter

* Kronecker Graph
— Similar properties as real world graphs

— Widely used (e.g. the Graph500 benchmark™) since obtained
easily by simply applying iterative products on a base matrix

*1:D. A. Bader et al. The graph500 list. Graph500.0rg. http://www.graph500.org/



