

A Scalable Implementation of a MapReducebased Graph Processing Algorithm for Largescale Heterogeneous Supercomputers

<u>Koichi Shirahata^{*1}</u>, Hitoshi Sato^{*1,*2}, Toyotaro Suzumura^{*1,*2,*3}, Satoshi Matsuoka^{*1}

*1 Tokyo Institute of Technology
 *2 CREST, Japan Science and Technology Agency
 *3 IBM Research - Tokyo

Emergence of Large Scale Graphs

Need fast and scalable analysis using HPC

facebook 900 Million Vertices **100 Billion Edges** 2

GPU-based Heterogeneous supercomputers

Problems of Large Scale Graph Processing with GPGPU

- How much do GPUs accelerate large scale graph processing ?
 - Applicability to graph applications
 - <u>Computation patterns</u> of graph algorithm affects performance
 - Tradeoff between computation and <u>CPU-GPU data transfer</u> overhead
 - How to distribute graph data to each GPU in order to exploit multiple GPUs

Motivating Example: CPU-based Graph Processing

How much is the graph application accelerated using GPU ?
 Simple computation patterns, High memory bandwidth
 Complex computation patterns, PCI-E overhead

Contributions

- Implemented a scalable <u>multi-GPU-based</u> <u>PageRank</u> application
 - Extend Mars (an existing GPU MapReduce framework)
 - Using the MPI library
 - Implement GIM-V on multi-GPU MapReduce
 - GIM-V: a graph processing algorithm
 - Load balance optimization between GPU devices for large-scale graphs
 - Task scheduling-based graph partitioning

Performance on TSUBAME2.0 supercomputer

- Scale well up to 256 nodes (768 GPUs)
- 1.52x speedup compared with on CPUs

Proposal: Multi-GPU GIM-V with Load Balance Optimization

Proposal: Multi-GPU GIM-V with Load Balance Optimization

Structure of Mars

- Mars^{*1}: an existing GPU-based MapReduce framework
 - CPU-GPU data transfer (Map)
 - GPU-based Bitonic Sort (Shuffle)
 - Allocates one CUDA thread / key (Map, Reduce)

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors. PACT 2008

Structure of Mars

- Mars^{*1}: an existing GPU-based MapReduce framework
 - CPU-GPU data transfer (Map)
 - GPU-based Bitonic Sort (Shuffle)
 - Allocates one CUDA thread / key (Map, Reduce)

→ We extend Mars for multi-GPU support

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors. PACT 2008

Proposal:

Mars Extension for Multi-GPU using MPI

- Inter-GPU communications in Shuffle
 - G2C \rightarrow MPI_Alltoallv \rightarrow C2G \rightarrow local Sort
- Parallel I/O feature using MPI-IO
 - Improve I/O throughput between memory and storage

Proposal: Multi-GPU GIM-V with Load Balance Optimization

- Generalized Iterative Matrix-Vector multiplication^{*1}
 - Graph applications are implemented by defining 3 functions

$$- v' = M \times_G v$$
 where

 $v'_i = Assign(v_j, CombineAll_j({x_j | j = 1..n, x_j = Combine2(m_{i,j}, v_j)}))$ (i = 1..n)

- Generalized Iterative Matrix-Vector multiplication^{*1}
 - Graph applications are implemented by defining 3 functions

$$- v' = M \times_G v$$
 where

 $v'_i = Assign(v_j, CombineAll_j({x_j | j = 1..n, x_j = Combine2(m_{i,j}, v_j)}))$ (i = 1..n)

- Generalized Iterative Matrix-Vector multiplication^{*1}
 - Graph applications are implemented by defining 3 functions

$$- v' = M \times_G v$$
 where

 $v'_i = Assign(v_j, CombineAll_j({x_j | j = 1..n, x_j = Combine2(m_{i,j}, v_j)}))$ (i = 1..n)

- Generalized Iterative Matrix-Vector multiplication^{*1}
 - Graph applications are implemented by defining 3 functions

$$- v' = M \times_G v$$
 where

 $v'_i = Assign(v_j, CombineAll_j({x_j | j = 1..n, x_j = Combine2(m_{i,j}, v_j)}))$ (i = 1..n)

- Generalized Iterative Matrix-Vector multiplication^{*1}
 - Graph applications are implemented by defining 3 functions
 - $v' = M \times_G v$ where

 $v' = Assign(v : CombineAll.({x. | i = 1...n. x. = Combine2(m... v.)})) (i = 1...n)$

GIM-V can be implemented by 2-stage MapReduce → Implement on multi-GPU environment

Proposal:

GIM-V implementation on multi-GPU

- Continuous execution feature for iterations
 - 2 MapReduce stages / iteration
 - Graph partition at Pre-processing
 - Divide the input graph vertices/edges among GPUs
 - Parallel Convergence test at Post-processing
 - Locally on each process -> globally using MPI_Allreduce

Optimizations for multi-GPU GIM-V

Mars

Our Implementation

- Data structure
 - Mars handles
 <u>metadata and payload</u>
- Thread allocation
 - Mars handles <u>one key</u> <u>per thread</u>
- Load balance optimization
 - Scale-free property
 - <u>Small number of vertices</u> [<u>have many edges</u>

Eliminate metadata and use fixed size payload

In Reduce stage, allocate multi CUDA threads to a single key according to value size

Minimize load imbalance among GPUS

Optimizations for multi-GPU GIM-V

Mars

Our Implementation

- Data structure
 - Mars handles
 <u>metadata and payload</u>
- Thread allocation
 - Mars handles <u>one key</u> <u>per thread</u>
- Load balance optimization
 - Scale-free property
 - <u>Small number of vertices</u>
 <u>have many edges</u>

Eliminate metadata and use fixed size payload

In Reduce stage, **allocate multi CUDA threads to a single key** according to value size

Minimize load imbalance among GPUS

Apply Load Balancing Optimization

- Partition the graph in order to minimize load imbalance among GPUs
 - Applying a task scheduling algorithm
 - Regard Vertex/Edges as Task
 - TaskSize $i = 1 + \Sigma$ Outgoing Edges

- LPT (Least Processing Time) schedule *1
 - Assign tasks in decreasing order of task size

*1 : R. L. Graham, "Bounds on multiprocessing anomalies and related packing algorithms," in *Proceedings of the May 16-18, 1972, spring joint computer conference,* ser. AFIPS '72 (Spring)

 $\mathsf{E}_{\mathsf{out}}$

Experiments

Study the performance of our multi-GPU GIM-V

- Scalability
- Comparison w/ a CPU-based implementation
- Validity of the load balance optimization
- Methods
 - A single round of iterations (w/o Preprocessing)
 - PageRank application
 - Measures relative importance of web pages
 - Input data
 - Artificial Kronecker graphs
 - Generated by generator in Graph 500
 - Parameters
 - SCALE: log 2 of #vertices (#vertices = 2^{SCALE})
 - Edge_factor: 16 (#edges = Edge_factor × #vertices)

Experimental environments

- TSUBAME 2.0 supercomputer
 - We use 256 nodes (768 GPUs)
 - CPU-GPU: PCI-E 2.0 x16
 - Internode: QDR IB (40 Gbps) dual rail
- Mars
 - MarsGPU-n
 - n GPUs / node
 (n: 1, 2, 3)
 - MarsCPU
 - 12 threads / node
 - MPI and pthread
 - Parallel quick sort

Weak Scaling Performance: MarsGPU vs. MarsCPU

Better • W/O load balance optimization

Weak Scaling Performance: MarsGPU vs. MarsCPU

Better • W/O load balance optimization

Performance Breakdown: *MarsGPU* and *MarsCPU*

Performance Breakdown: MarsGPU and MarsCPU

Performance Breakdown: MarsGPU and MarsCPU

Efficiency of GIM-V Optimizations

- **Data structure** (Map, Sort, Reduce)
- Thread allocation (Reduce)

Round Robin vs. LPT Schedule

- Similar except for on 128 nodes
 - Input graphs are relatively well-balanced (Graph500)

Round Robin vs. LPT Schedule

- Similar except for on 128 nodes
 - Input graphs are relatively well-balanced (Graph500)

Performance Breakdown Round robin vs. LPT Schedule

- Bitonic sort calculates power-of-two key-value pairs
 - Load balancing reduced the number of sorting elements

Outperform Hadoop-based Implementation

- PEGASUS: a Hadoop-based GIM-V implementation
 - Hadoop 0.21.0
 - Lustre for underlying Hadoop's file system

Related Work

- Graph processing using GPU
 - Shortest path algorithms for GPU (BFS, SSSP, and APSP)*¹
 - \rightarrow Not achieve competitive performance
- MapReduce implementations on GPUs
 - GPMR*² : MapReduce implementation on multi GPUs
 - → Not show scalability for large-scale processing
- Graph processing with load balancing
 - Load balancing while keeping communication low on R-MAT graphs^{*3}

→ We show the task scheduling-based load-balancing

*1 : Harish, P. et al, "Accelerating Large Graph Algorithms on the GPU using CUDA", HiPC 2007.

*2 : Stuart, J.A. et al, "Multi-GPU MapReduce on GPU Clusters", IPDPS 2011.

*3 : J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, "Fast and Efficient Graph Traversal Algorithm for CPUs: Maximizing single-node efficiency," in *Parallel Distributed Processing Symposium (IPDPS), 2012*

Conclusions

- A scalable MapReduce-based GIM-V implementation using multi-GPU
 - Methodology
 - Extend Mars to support multi-GPU
 - GIM-V using multi-GPU MapReduce
 - Load balance optimization
 - Performance
 - 87.04 ME/s on SCALE 30 (256 nodes, 768 GPUs)
 - 1.52x speedup than the CPU-based implementation

• Future work

- Optimization of our implementation
 - Improve communication, locality
- Data handling larger than GPU memory capacity
 - Memory hierarchy management (GPU, DRAM, NVM, SSD)

Comparison with Load Balance Algorithm (Simulation, Weak Scaling)

- Compare between naive (Round robin) and load balancing optimization (LPT schedule)
- Similar except for 128 nodes (3.98% on SCALE 25, 64 nodes)
 - Performance improvement: 13.8% (SCALE 26, 128 nodes)

Large-scale Graphs in Real World

- Graphs in real world
 - Health care, SNS, Biology, Electric power grid etc.
 - Millions to trillions of vertices and 100 millions to 100 trillions of edges
 - Similar properties
 - Scale-free (power-low degree distribution)
 - Small diameter
- Kronecker Graph
 - Similar properties as real world graphs
 - Widely used (e.g. the Graph500 benchmark^{*1}) since obtained easily by simply applying iterative products on a base matrix

*1 : D. A. Bader et al. The graph500 list. Graph500.org. http://www.graph500.org/