TOKyO TECH

A Scalable Implementation of a MapReduce-
based Graph Processing Algorithm for Large-
scale Heterogeneous Supercomputers

Koichi Shirahata™, Hitoshi Sato™."2,
Toyotaro Suzumura™ 273 Satoshi Matsuoka™

"1 Tokyo Institute of Technology
*2 CREST, Japan Science and Technology Agency
3 1BM Research - Tokyo

Emergence of Large Scale Graphs

:} Need fast and scalable analysis using HPC

900 Million Vertices
100 Billion Edges ¢

GPU-based Heterogeneous

supercomputers

TSUBAME 2.0
1408 compute nodes (3 GPUs / node) G PG P U

I ME 7
i S— 2
LB

High peak performance
High memory bandwidth

Motivation NS
Fast Large Graph Processing with GPGPU

Problems of Large Scale Graph
Processing with GPGPU

* How much do GPUs accelerate
large scale graph processing ? P —

— Applicability to graph applications o

* Computation patterns of graph fin
algorithm affects performance CPU memory T

* Tradeoff between computation and *’
CPU-GPU data transfer overhead

— How to distribute graph data to <
each GPU in order to exploit
multiple GPUs

[Scalability] [ball_z:)r?cding] [Communication]

Motivating Example:
CPU-based Graph Processing

* How much is the graph application accelerated using GPU ?
Simple computation patterns, High memory bandwidth
Complex computation patterns, PCI-E overhead

14000

12000 “ Reduce Sort

“ Co “ Ma R —
10000 by P —

8000 —

6000

Elapsed Time [ms]
D
o
o
o

=l
— — — — —
1 2 4

8 16 32 64 128
Compute Nodes

Contributions

* Implemented a scalable multi-GPU-based
PageRank application

— Extend Mars (an existing GPU MapReduce framework)
e Using the MPI library

— Implement GIM-V on multi-GPU MapReduce
* GIM-V: a graph processing algorithm

— Load balance optimization between GPU devices for large-scale
graphs
e Task scheduling-based graph partitioning

Performance on TSUBAME2.0 supercomputer
* Scale well up to 256 nodes (768 GPUs)

e 1.52X speedup compared with on CPUs

Proposal: Multi-GPU GIM-V with
Load Balance Optimization

Graph Application
PageRank

Graph Algorithm

@3 Multi-GPU GIM-V

FFFFFF

¢¢¢¢¢¢¢

MapReduce Framework

Map =~y Reduce \
5 B \
4" eyt vela> \
v Map sl S
<key2, val2> // GG
o Man | R
= o vals>

ggggggggggg

Platform
CUDA, MPI

Implement GIM-V on
multi-GPUs MapReduce
- Optimization for GIM-V

- Load balance optimization

Extend an existing GPU
MapReduce framework
(Mars) for multi-GPU

3

Proposal: Multi-GPU GIM-V with
Load Balance Optimization

Graph Application
PageRank

Graph Algorithm

@S Multi-GPU GIM-V

FFFFFF

ttttttt

s MapReduce Framework
= =g Multi-GPU Mars

o Platform

CUDA, MPI

Implement GIM-V on
multi-GPUs MapReduce
- Optimization for GIM-V

- Load balance optimization

Extend an existing GPU
MapReduce framework
(Mars) for multi-GPU

Structure of Mars

* Mars*!: an existing GPU-based MapReduce
framework

— CPU-GPU data transfer (Map)
— GPU-based Bitonic Sort (Shuffle)
— Allocates one CUDA thread / key (Map, Reduce)

GPU Processing Scheduler

Preprocess Map Sort Reduce

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors.
PACT 2008

Structure of Mars

* Mars*!: an existing GPU-based MapReduce
framework

— CPU-GPU data transfer (Map)
— GPU-based Bitonic Sort (Shuffle)
— Allocates one CUDA thread / key (Map, Reduce)

— We extend Mars for multi-GPU support

GPU Processing Scheduler

Preprocess Map Sort Reduce

*1 : Bingsheng He et al. Mars: A MapReduce Framework on Graphics Processors.

PACT 2008

10

Proposal:
Mars Extension for Multi-GPU using MPI

 |Inter-GPU communications in Shuffle
— G2C - MPI_Alltoallv - C2G - local Sort

* Parallel I/O feature using MPI-10
— Improve I/O throughput between memory and storage

GPU Processing Scheduler

: I
Map Copy Sort Reduce

Download |
GPU - CPU CPU - GPU

Reduce

Download
GPU - CPU CPU - GPU

11

Proposal: Multi-GPU GIM-V with

\
\
\
\
\.
\

ttttttt

-

Load Balance Optimization

Graph Application
PageRank Implement GIM-V on

multi-GPUs MapReduce

- Optimization for GIM-V

- Load balance optimization

Graph Algorithm
Multi-GPU GIM-V

] MapReduce Framework
=2 = Multi-GPU Mars MapReduce framework

Extend an existing GPU

(Mars) for multi-GPU

Platform

CUDA, MPI

12

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™?

— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll, ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

X V

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 13

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

Combine2

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 14

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

Combine2

Cte | CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 15

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— Graph applications are implemented by defining 3 functions
— V' =M x.v where
V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i =1..n)

Assign

Combine2

CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 16

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™

— Graph applications are implemented by defining 3 functions
— V' =M x.v where

V.= Assion(v. . CombineAll.({x. 1 i=1_n_x.= Combine2(m.. v\ (i= 1..n)

GIM-V can be implemented by 2-stage MapReduce

- Implement on multi-GPU environment
' Assign |

Combine2

CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 17

Proposal:
GIM-V implementation on multi-GPU

e Continuous execution feature for iterations
— 2 MapReduce stages / iteration

— Graph partition at Pre-processing
* Divide the input graph vertices/edges among GPUs

— Parallel Convergence test at Post-processing
* Locally on each process -> globally using MPI_Allreduce

GPU Processing Scheduler

Multi-GPU GIM-V
Stage 1 ! Stage 2

Pre-process Post-process

Convergence

Combine2 CombineAll Test

18

Optimizations for multi-GPU GIM-V

Mars

* Data structure
— Mars handles
metadata and payload
* Thread allocation
— Mars handles one key
per thread
* Load balance
optimization
— Scale-free property
 Small number of vertices

have many edges

—_

—_

Our Implementation

Eliminate metadata and
use fixed size payload

In Reduce stage, allocate
multi CUDA threads to a

single key according to value
size

Minimize load imbalance
among GPUS

19

Optimizations for multi-GPU GIM-V

Mars Our Implementation
* Data structure
— Mars handles Eliminate metadata and
metadata and payload use fixed size payload

* Thread allocation
In Reduce stage, allocate

— Mars handles one key :
per thread :> multi CUDA threads to a
e Load balance single key according to value

optimization >12€

— Scale-free property
* Small number of vertices |:> Minimize load imbalance
have many edges among GPUS

20

Apply Load Balancing Optimization

* Partition the graph in order to minimize load
imbalance among GPUs
— Applying a task scheduling algorithm
* Regard Vertex/Edges as Task

* TaskSize ;= 1+ 2 Outgoing Edges i
PN "\
Vertex ; TaskSize ;=1 +3
— LPT (Least Processing Time) schedule *1 V E .
ou

* Assign tasks in decreasing order of task size

[Minimize the maximum amount

Tasks =18, 5, 4, 3, 1} [
P3 |
P2 !
P1 [

4 5 6 7 8

*1:R. L. Graham, “Bounds on multiprocessing anomalies and related packing algorithms,” in

21
Proceedings of the May 16-18, 1972, spring joint computer conference, ser. AFIPS '72 (Spring)

Experiments

Study the performance of our multi-GPU GIM-V
e Scalability
 Comparison w/ a CPU-based implementation
* Validity of the load balance optimization

* Methods
— A single round of iterations (w/o Preprocessing)
— PageRank application 161121121 3
* Measures relative 4 3 8lafj2]1
importance of web pages 5 1 slelals
— Input data 4124211
* Artificial Kronecker graphs G, G,=G,®G,

— Generated by generator in Graph 500
* Parameters
— SCALE: log 2 of #vertices (#vertices = 2°CALE)
— Edge_factor: 16 (#edges = Edge_factor x #vertices)

Experimental environments

* TSUBAME 2.0 supercomputer

— We use 256 nodes (768 GPUs)
* CPU-GPU: PCI-E 2.0 x16
* Internode: QDR IB (40 Gbps) dual rail

* Mars

— MarsGPU-n

* n GPUs / node Model Intel® Xeon® Tesla M2050

X5670
(n: 1, 2, 3)
Cores 6 448

— MarsCPU Frequency 2.93 GHz 1.15 GHz

e 12 threads / node Memory 54 GB 2.7 GB

* MPI and pthread Compiler gcc 4.3.4 nvec 4.0

* Parallel quick sort

23

Weak Scaling Performance:
MarsGPU vs. MarsCPU

Better * W/O load balance optimization

100
30 =“=MarsGPU-2 87.04 ME/S 1
256 nodes)
20 MarsGPU-3 (SCALE 29
==MarsCPU

SCALE 28

MEgdes / sec
ul
o

20 SCALE 27
1.52x speedup
20 (3 GPU v CPU)
10 -
O { T T T T T 1
0 50 100 150 200 250 300

Compute Nodes

MEgdes / sec

100
90
80

Weak Scaling Performance:
MarsGPU vs. MarsCPU

Better * W/O load balance optimization

==MarsGPU-1

““=MarsGPU-2
MarsGPU-3

=*=MarsCPU

87.04 ME/s
(256 nodes)

SCALE 29

4

Performance |
Breakdown [p
(3 GPU v CPU)
m" T T T T T 1
0 50 100 150 200 250 300

Compute Nodes

25

Performance Breakdown:
MarsGPU and MarsCPU

“ Map “ MPI-Comm -
~ PCI-Comm “ Hash —
« Sort ~ Reduce

MarsCPU MarsGPU-1 MarsGPU-2 MarsGPU-3
SCALE 28

Performance Breakdown:
MarsGPU and MarsCPU

2000 “ Map “ MPI-Comm -
8000 PCI-Comm “ Hash —
2000 « Sort Reduce

£ 6000 2.53x

£ 5000 (Sort)

=

g 4000

o

o 3000
o0 8.93x

MarsCPU MarsGPU-1 MarsGPU-2 MarsGPU-3
SCALE 28

Performance Breakdown:
MarsGPU and MarsCPU

“ Map “ MPI-Comm -
~ PCI-Comm “ Hash —
« Sort ~ Reduce

PCI-E overhead

MarsCPU MarsGPU-1 MarsGPU-2 MarsGPU-3
SCALE 28 28

Efficiency of GIM-V Optimizations

* Data structure (Map, Sort, Reduce)

* Thread allocation (Reduce)
SCALE 26, 128 nodes on MarsGPU-3

10000
“ Naive 1.64x
| K Optimized
— 1000 P s
é ‘
2 1.92x
E 100
3 ™
o
EEET I
Better
1]

Sort Reduce

Round Robin vs. LPT Schedule

* Similar except for on 128 nodes
— Input graphs are relatively well-balanced (Graph500)

1L

§°4o Speedup
=

Bettergo Weak Scaling Performance

30 “=MarsGPU-3
“=MarsGPU-3 LPT

0 20 40 60 80 100 120 140
Compute Nodes 30

Round Robin vs. LPT Schedule

* Similar except for on 128 nodes
— Input graphs are relatively well-balanced (Graph500)

Bettergo Weak Scaling Performance

80 <=MarsGPU-3 Performance
70 “+MarsGPU-§ Breakdown

0 20 40 60 80 100 120 140
Compute Nodes 31

Performance Breakdown
Round robin vs. LPT Schedule

e Bitonic sort calculates power-of-two key-value pairs
— Load balancing reduced the number of sorting elements

3000

MarsGPU-3

MarsGPU-3 LPT

“ Map
“ MPI-Comm
~ PCI-Comm
W Hash
“ Sort

~ Reduce

32

Outperform Hadoop-based Implementation

* PEGASUS: a Hadoop-based GIM-V implementation
— Hadoop 0.21.0
— Lustre for underlying Hadoop’s file system

Better
100000

10000

1000

100

KEdges / Sec

10

1

SCALE 27, 128 nodes

186.8x S
Speedup

N

PEGASUS MarsCPU MarsGPU-3 33

Related Work

* Graph processing using GPU
— Shortest path algorithms for GPU (BFS, SSSP, and
APSP)*!

—> Not achieve competitive performance

* MapReduce implementations on GPUs
— GPMR*? : MapReduce implementation on multi GPUs
—> Not show scalability for large-scale processing

* Graph processing with load balancing

— Load balancing while keeping communication low on
R-MAT graphs*3

- We show the task scheduling-based load-balancing

*1 : Harish, P. et al, “Accelerating Large Graph Algorithms on the GPU using CUDA”, HiPC 2007.
*2 : Stuart, J.A. et al, “Multi-GPU MapReduce on GPU Clusters”, IPDPS 2011.
*3 :J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and Efficient Graph Traversal Algorithm for CPUs:

Maximizing single-node efficiency,” in Parallel Distributed Processing Symposium (IPDPS), 2012 ”

Conclusions

* A scalable MapReduce-based GIM-V
implementation using multi-GPU

— Methodology
e Extend Mars to support multi-GPU
* GIM-V using multi-GPU MapReduce
* Load balance optimization

— Performance

e 87.04 ME/s on SCALE 30 (256 nodes, 768 GPUs)
* 1.52x speedup than the CPU-based implementation

e Future work

— Optimization of our implementation
* Improve communication, locality

— Data handling larger than GPU memory capacity
 Memory hierarchy management (GPU, DRAM, NVM, SSD)

35

Comparison with Load Balance Algorithm
(Simulation, Weak Scaling)

Compare between naive (Round robin) and load balancing

optimization (LPT schedule)

Similar except for 128 nodes (3.98% on SCALE 25, 64 nodes)
— Performance improvement: 13.8% (SCALE 26, 128 nodes)

40

35
30 Round Robin 167X
s W LPT
8 25 Better |
& 4
® 20 \
E
- 15
(2]
(@]
—
10
5
0 — — — — [. -
2 4 8 16 32 64 128

Compute Nodes

Large-scale Graphs in Real World

* Graphs in real world
— Health care, SNS, Biology, Electric power grid etc.

— Millions to trillions of vertices and 100 millions to 100 trillions of
edges

— Similar properties
* Scale-free (power-low degree distribution)
* Small diameter

* Kronecker Graph
— Similar properties as real world graphs

— Widely used (e.g. the Graph500 benchmark™) since obtained
easily by simply applying iterative products on a base matrix

*1:D. A. Bader et al. The graph500 list. Graph500.0rg. http://www.graph500.org/

