

Out-of-core GPU Memory Management for MapReducebased Large-scale Graph Processing

Koichi Shirahata, Hitoshi Sato, Satoshi Matsuoka

Tokyo Institute of Technology CREST, Japan Science and Technology Agency

Fast Large-scale Graph Processing using HPC

- Emergence of large-scale graphs
 - SNS, road network, smart grid, etc.
 - millions to trillions of vertices/edges
 - e.g.) a social friend network: 1.31 billion facebook vertices, 170 billion edges

- Need for fast graph processing on supercomputers
- Graph processing on supercomputers
 - A wide range of applications is accelerated using supercomputers (e.g. physical simulations)
 - Graph processing is also considered an important application on supercomputers
 - Graph500 benchmark is started from 2010

Large-scale Graph Processing on Heterogeneous Supercomputers

- GPU-based heterogeneous supercomputers
 - e.g.) Titan, TSUBAME2.5
 - High computing and memory performance

- → Fast large-scale graph processing on heterogeneous supercomputers
- Problem: GPU memory capacity limits scalable large-scale graph processing
 - Large-scale data, while GPU memory capacity is small
 - e.g.) TSUBAME2.5: GPU 6GB (x3), CPU 54GB

Contributions

- Out-of-core GPU memory management for MapReduce-based graph processing
 - Introduce out-of-core GPU data management techniques for GPU-MapReduce-based large-scale graph processing
 - Implement out-of-core GPU sorting
 - Incorporated in our GPU-MapReduce implementation
 - Investigate the balance of scale-up and scale-out approaches
 - Changing the number of GPUs per node for processing graph data

Performance on TSUBAME2.5 and TSUBAME-KFC

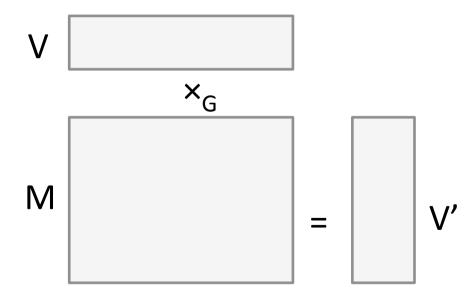
- 2.10x speedup than CPUs on 3072 GPUs
- 1.71x power efficiency by scale-up strategy

Table of Contents

- 1. Introduction
- 2. Background
- 3. Out-of-core GPU memory management
- 4. Experiments
- 5. Conclusion

- Generalized Iterative Matrix-Vector multiplication*1
 - Graph applications are implemented by defining 3 functions
 - PageRank, Random Walk with Restart, Connected Components etc.
 - $-v'=M\times_G v$ where

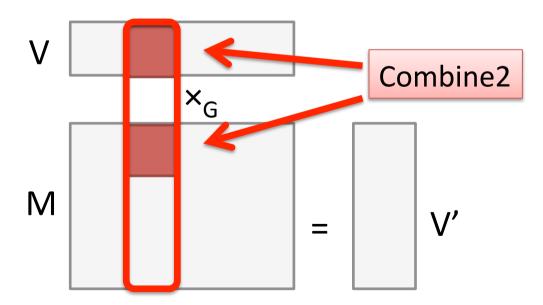
$$v'_i = Assign(v_j, CombineAll_i(\{x_j \mid j = 1..n, x_j = Combine2(m_{i,j}, v_j)\}))$$
 (i = 1..n)



^{*1:} Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System-Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

- Generalized Iterative Matrix-Vector multiplication*1
 - Graph applications are implemented by defining 3 functions
 - PageRank, Random Walk with Restart, Connected Components etc.
 - $-v'=M\times_G v$ where

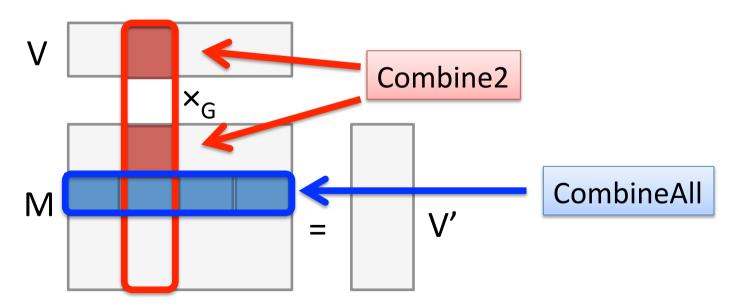
$$v'_i = Assign(v_j, CombineAll_j(\{x_j \mid j = 1..n, x_j = Combine2(m_{i,j}, v_j)\}))$$
 (i = 1..n)



^{*1:} Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

- Generalized Iterative Matrix-Vector multiplication*1
 - Graph applications are implemented by defining 3 functions
 - PageRank, Random Walk with Restart, Connected Components etc.
 - $-v'=M\times_G v$ where

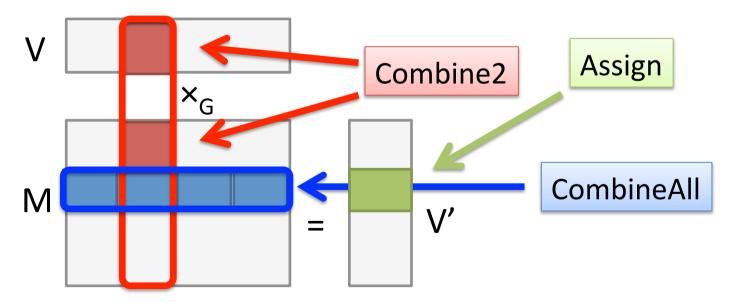
$$v'_i = Assign(v_j, CombineAll_j(\{x_j \mid j = 1..n, x_j = Combine2(m_{i,j}, v_j)\}))$$
 (i = 1..n)



^{*1:} Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

- Generalized Iterative Matrix-Vector multiplication*1
 - Graph applications are implemented by defining 3 functions
 - PageRank, Random Walk with Restart, Connected Components etc.
 - $-v'=M\times_G v$ where

$$v'_i = Assign(v_j, CombineAll_j(\{x_j \mid j = 1..n, x_j = Combine2(m_{i,j}, v_j)\}))$$
 (i = 1..n)

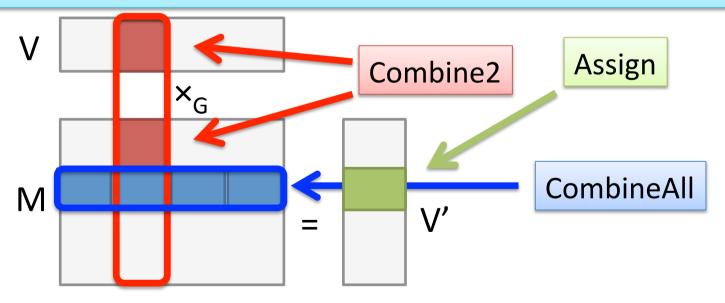


^{*1:} Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

Generalized Iterative Matrix-Vector multiplication*1

GIM-V can be implemented by 2-stage MapReduce

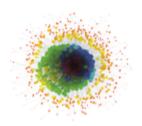
- Stage 1: Combine2
- Stage 2: CombineAll, Assign
- → Implement on our GPU MapReduce framework



^{*1:} Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

n)

Previous work: Multi-GPU-MapReduce-based Graph Processing [1]

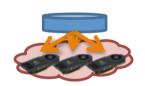


Graph Application

PageRank

Implement GIM-V on multi-GPUs MapReduce

- Optimization for GIM-V
- Load balance optimization



Graph Algorithm

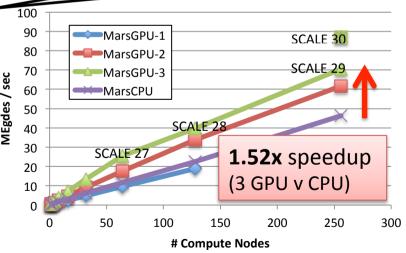
Multi-GPU GIM-V

Extend existing GPU
MapReduce framework (Mars)
for multi-GPU

MapReduce Framework

Multi-GPU Mars

Platform CUDA, MPI



[1]: K. Shirahata et al., "A Scalable Implementation of a MapReduce-based Graph Processing Algorithm for Large-scale Heterogeneous Supercomputers", IEEE/ACM CCGrid, 2013

Problems on Large-scale Graph Processing on GPU

- How to manage graph data whose size exceeds GPU memory capacity?
 - Handling memory overflow from GPU memory with minimal performance overhead
 - GPU memory capacity is smaller than CPU memory
 - <u>Data transfers dominantly disturb</u> efficient graph processing
 - e.g.) TSUBAME2.5: GPU 250 GB/sec, CPU-GPU 8 GB/sec
 - Efficient graph data assignment onto GPUs
 - Tradeoff between using single GPU on multiple nodes (<u>scale-out</u>) or using multiple GPUs per node (<u>scale-up</u>) in terms of performance and power efficiencies

Existing Solutions

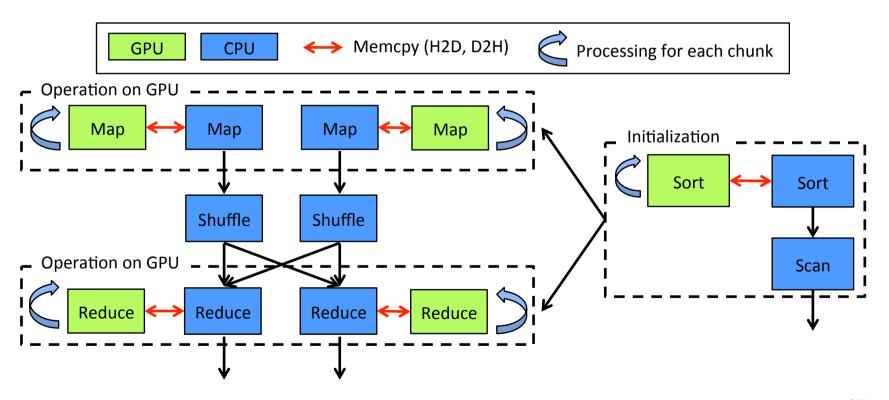
- Handling memory overflow from GPU memory
 - Using multiple GPUs
 - GPU-MapReduce-based graph processing [Shirahata et al. 2013]
 - Breadth first search on Multi-GPU [Ueno et al. 2013]
 - → Not consider memory overflow from GPU memory
 - Offloading graph data onto CPU memory
 - GPUfs: I/O from a GPU to file systems [Silberstein et al. 2013]
 - GPMR: a multi-GPU MapReduce library [Stuart et al. 2011]
 - → Not experiment on realistic large-scale applications
- Analysis of tradeoff between scale-up and scale-out
 - Scale-up and Scale-out on CPUs [Michael et al. 2007]
 - → Not compare on GPUs

Idea: Streaming-based Out-of-core GPU Memory Management

- Streaming out-of-core GPU memory management
 - Divide graph data into multiple chunks and assigning each chunk one by one in each CUDA stream
 - Hide CPU-GPU data transfer by applying overlapping techniques between computation and data transfer
- GPU-based external sorting
 - Employ sample-based out-of-core GPU sorting
 - Out-of-core GPU sorting is conducted when graph data size exceeds GPU memory capacity

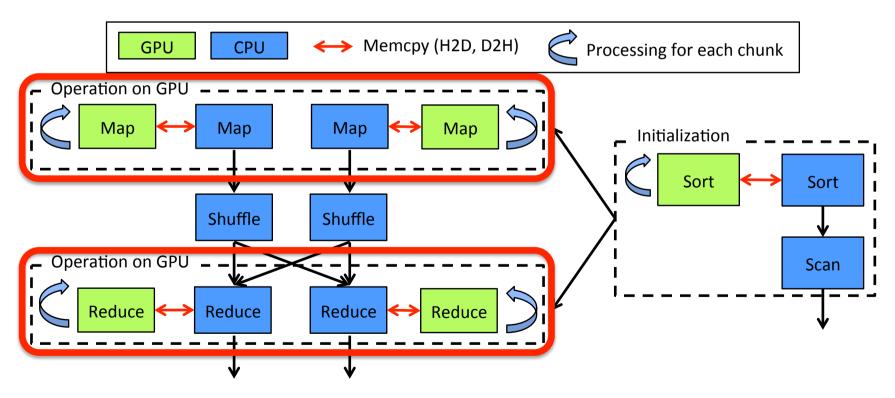
Out-of-core GPU Memory Management for MapReduce-based Graph Processing

- Out-of-core GPU memory management
 - Stream-based GPU MapReduce processing
 - Out-of-core GPU sorting



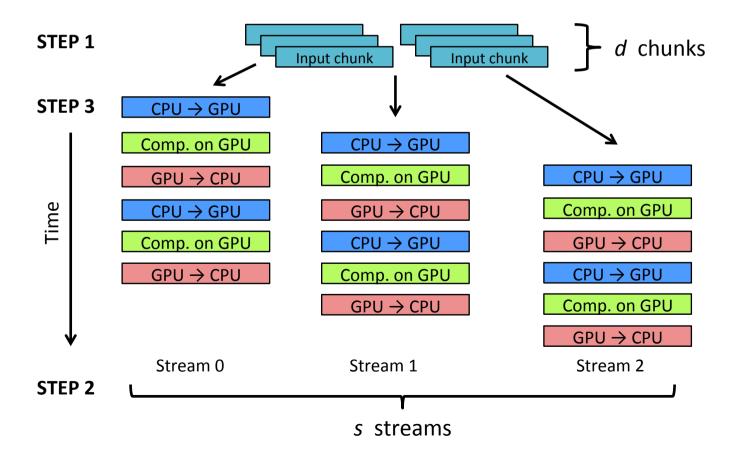
Out-of-core GPU Memory Management for MapReduce-based Graph Processing

- Out-of-core GPU memory management
 - Stream-based GPU MapReduce processing
 - Out-of-core GPU sorting



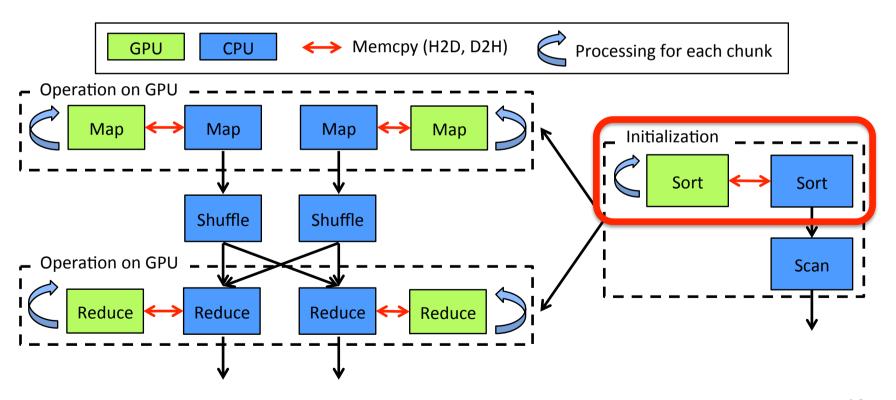
Stream-based GPU MapReduce Processing

- Overlap three operations
 - Copy CPU → GPU, Map/Reduce operation on GPU, Copy GPU → CPU
- Dynamically update the number of chunks (d) to fit on GPU memory



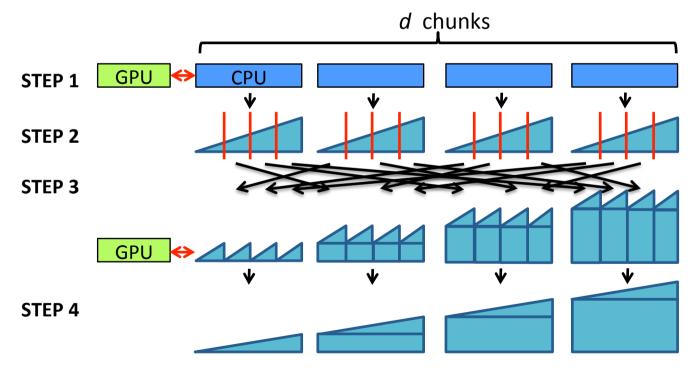
Out-of-core GPU Memory Management for MapReduce-based Graph Processing

- Out-of-core GPU memory management
 - Stream-based GPU MapReduce processing
 - Out-of-core GPU sorting



Out-of-core GPU Sorting

- Use sample-based out-of-core sorting [1]
 - Divide input data into chunks and split each chunk using splitters
 - Improve by decreasing the number of CPU-GPU data transfers
- Thrust radix sort is used for in-core sorting



[1]: Y. Ye et al., "GPUMemSort: A High Performance Graphics Co-processors Sorting Algorithm for Large Scale In-Memory Data", GSTF International Journal on Computing, 2011

Optimization Techniques

Data structure

- Employ a compact data structure similar to CSR for sparse matrix formats
 - Arrays of keys, values → arrays of unique keys, values
 - Compress duplicate keys to 1/{#edges per vertex}
 - Sort key-value → scan (prefix sum) → compact keys

Shuffle

- Implement range-based and hash-based splitters
- Use range-based splitter, which performs good load balance by randomizing vertex indices
- Thread assignment policy on GPU
 - Apply warp-based assignment

Optimization Techniques

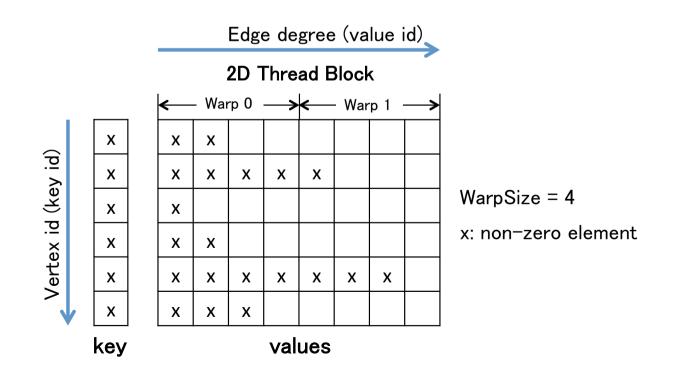
Data structure

- Employ a compact data structure similar to CSR for sparse matrix formats
 - Arrays of keys, values → arrays of unique keys, values
 - Compress duplicate keys to 1/{#edges per vertex}
 - Sort key-value → scan (prefix sum) → compact keys

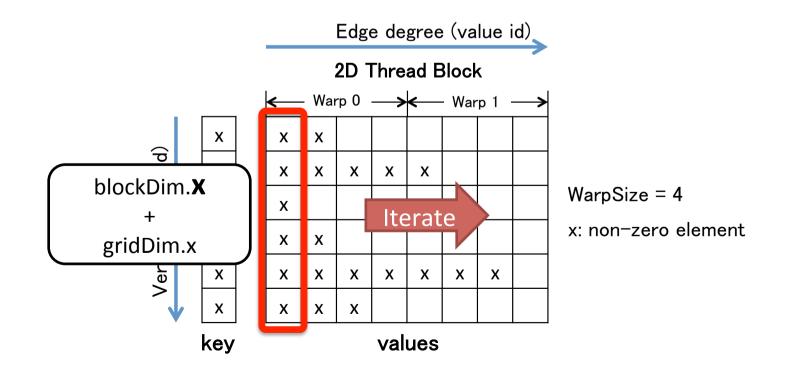
Shuffle

- Implement range-based and hash-based splitters
- Use range-based splitter, which performs good load balance by randomizing vertex indices
- Thread assignment policy on GPU
 - Apply warp-based assignment

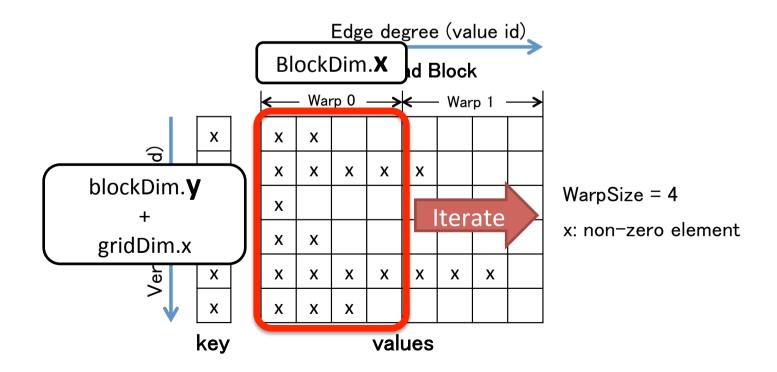
Three thread assignment policies



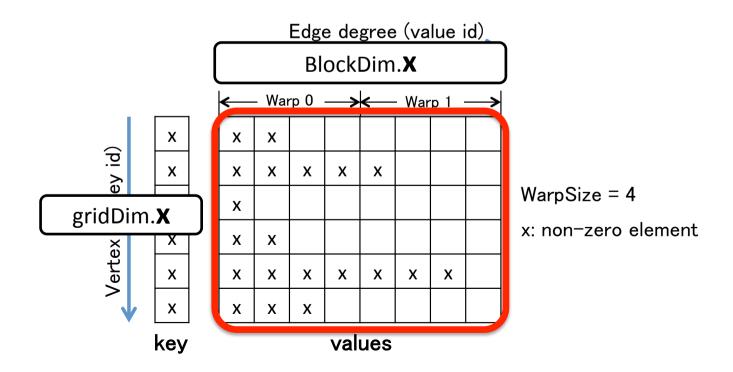
- Three thread assignment policies
 - Thread-based assignment: assign one thread per vertex



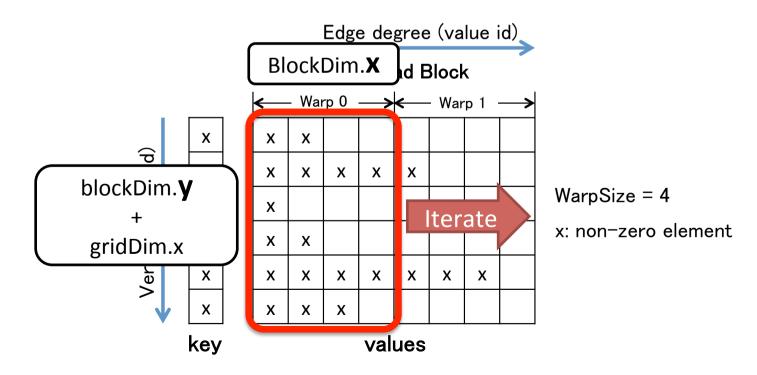
- Three thread assignment policies
 - Thread-based assignment: assign one thread per vertex
 - Warp-based assignment: assign one warp per vertex (32 on K20x GPU)



- Three thread assignment policies
 - Thread-based assignment: assign one thread per vertex
 - Warp-based assignment: assign one warp per vertex (32 on K20x GPU)
 - Thread block-based assignment: assign one thread block per vertex (1024 on K20x GPU)



- Three thread assignment policies
 - Thread-based assignment: assign one thread per vertex
 - Warp-based assignment: assign one warp per vertex (32 on K20x GPU)
 - Thread block-based assignment: assign one thread block per vertex (1024 on K20x GPU)
- → Apply warp-based 2D thread mapping, since warp size is expected to be close to the average number of edges per vertex



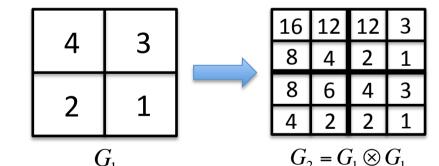
Experiments

Study the performance of our multi-GPU GIM-V

- Comparison with a CPU-based implementation
- Analysis of performance and power efficiencies

Methods

- A single round of iterations (w/o Preprocessing)
- PageRank application
 - Measures relative importance of web pages
- Input data
 - Artificial Kronecker graphs
 - Generated by generator in Graph500



- Parameters
 - SCALE: log 2 of #vertices (#vertices = 2^{SCALE})
 - Edge_factor: 16 (#edges = Edge_factor × #vertices)

Experimental environments

- TSUBAME2.5 supercomputer
 - Use up to 1024 nodes (3072 GPUs)
 - CPU-GPU: PCI-E 2.0 x16 (8 GB/sec)
 - Internode: QDR IB dual rail (10 GB/sec)

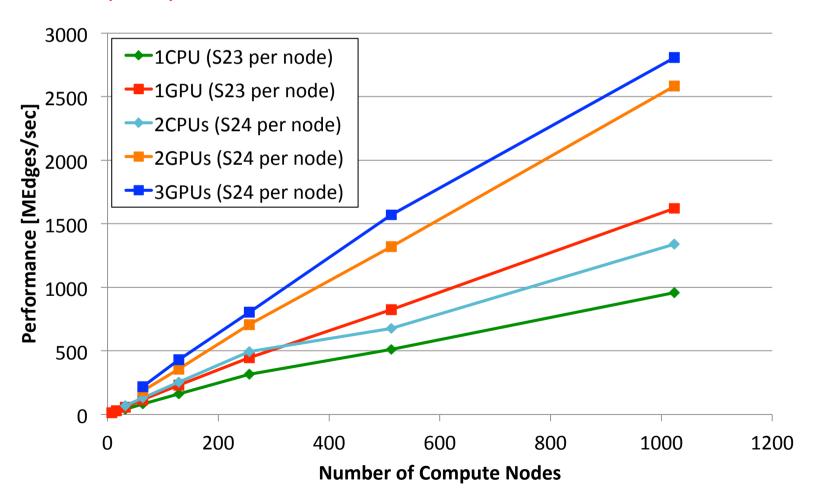
Setup

- n GPU(s)
 - n GPUs / node(n: 1, 2, 3)
- -n CPU(s)
 - 12 threads / node
 - MPI and OpenMP
 - Thrust OpenMP Sort

	2 CPUs / node	3 GPUs / node
Model	Intel® Xeon® X5670	Tesla K20X
# Cores	6	2688
Frequency	2.93 GHz	0.732 GHz
Memory	54 GB	6 GB
Memory BW	32 GB/sec	250 GB/sec
Compiler	gcc 4.3.4	Nvcc 5.0

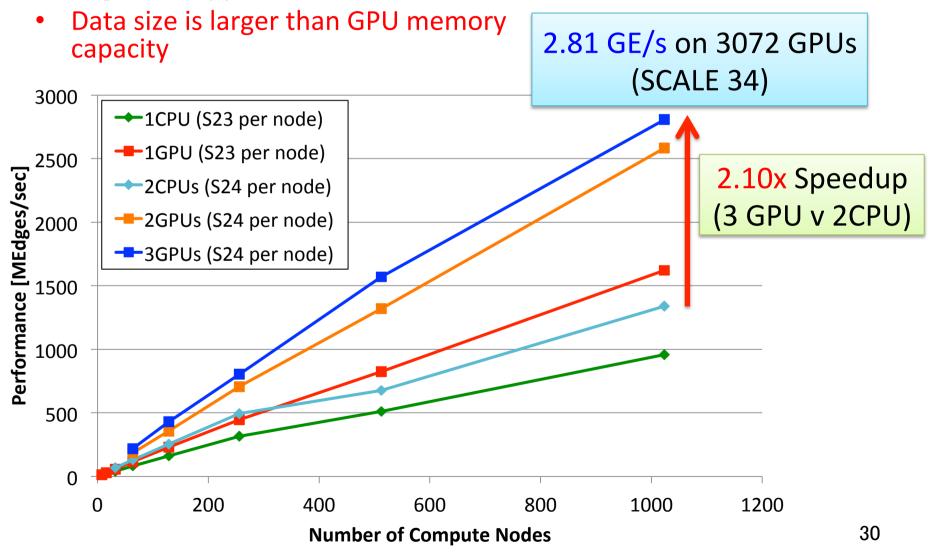
Weak Scaling Performance

- PageRank application
- Data size is larger than GPU memory capacity



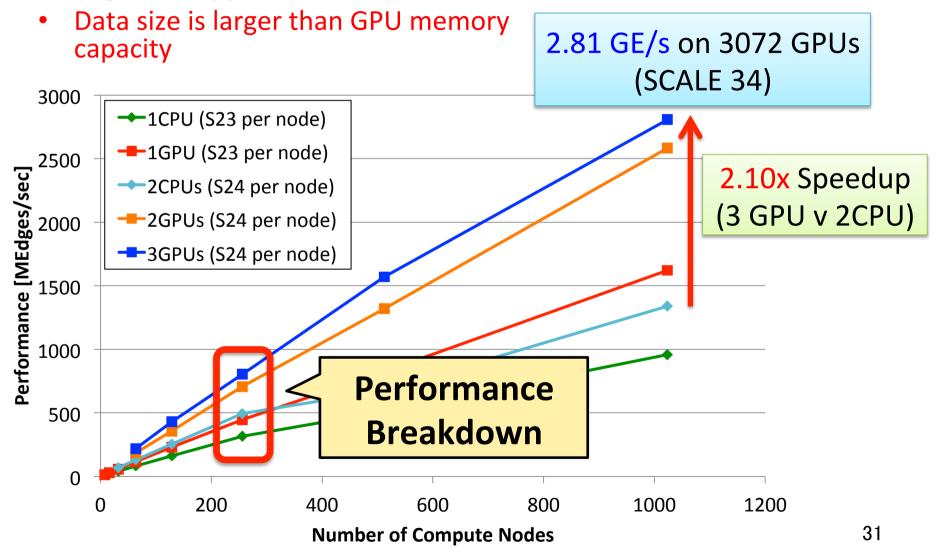
Weak Scaling Performance

PageRank application

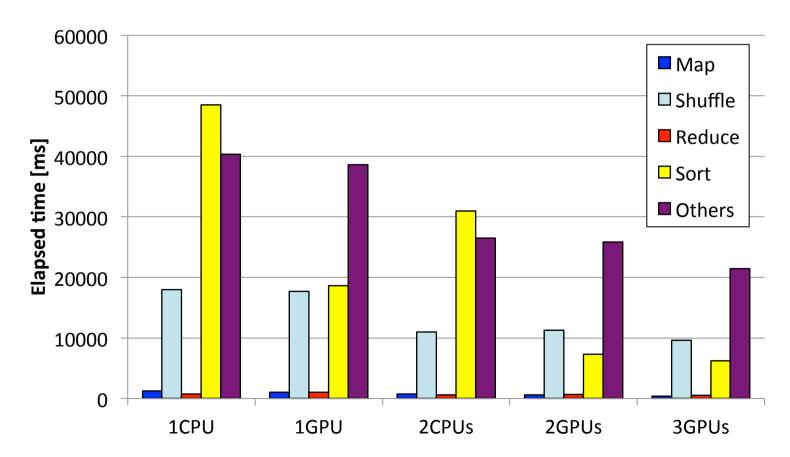


Weak Scaling Performance

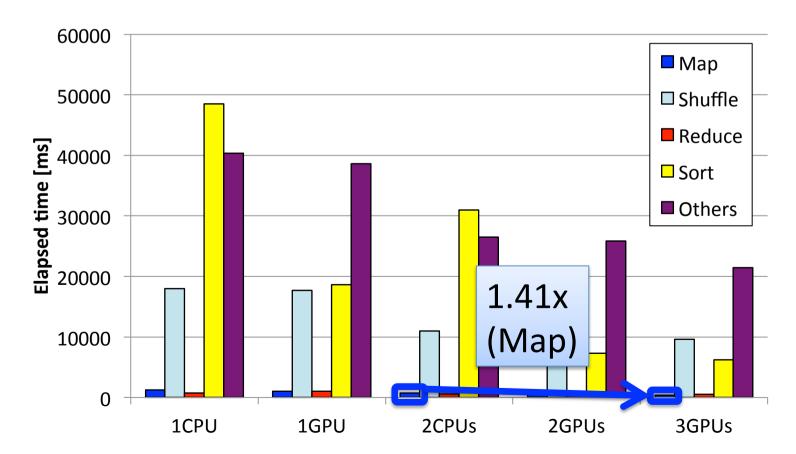
PageRank application



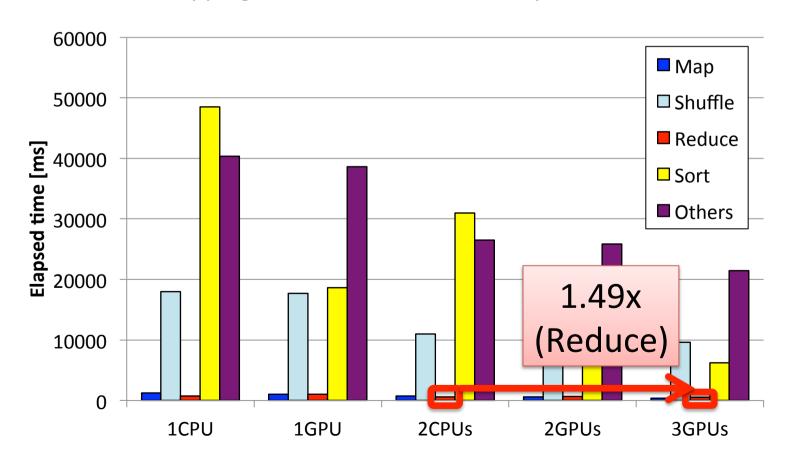
- Performance on 3 GPUs compared with 2 CPUs
 - SCALE 31, 256 nodes
 - Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup
 - Overlapping communication effectively



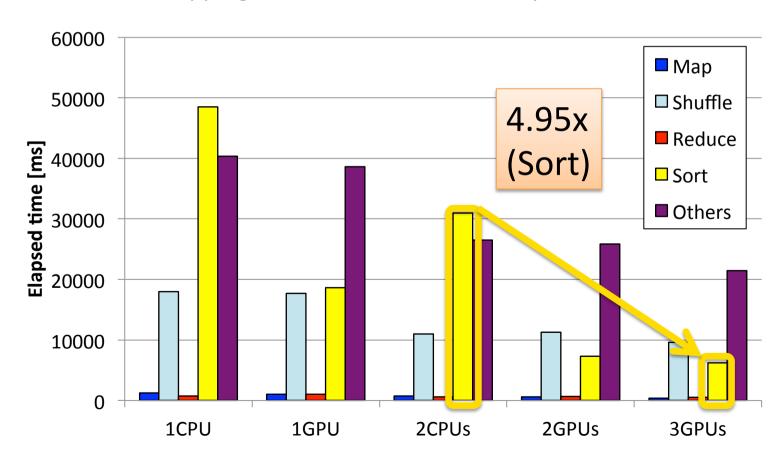
- Performance on 3 GPUs compared with 2 CPUs
 - SCALE 31, 256 nodes
 - Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup
 - Overlapping communication effectively



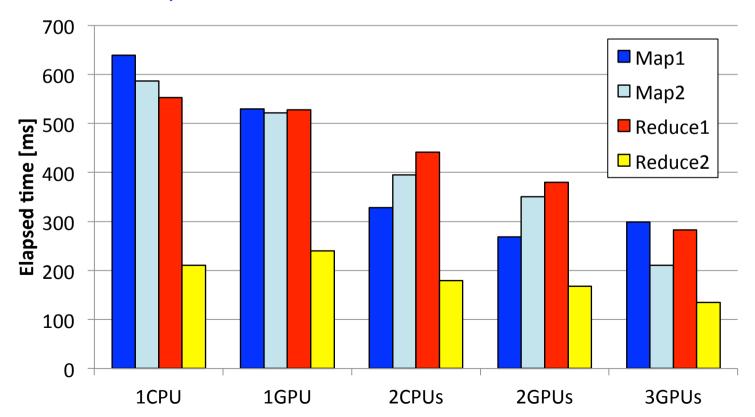
- Performance on 3 GPUs compared with 2 CPUs
 - SCALE 31, 256 nodes
 - Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup
 - Overlapping communication effectively



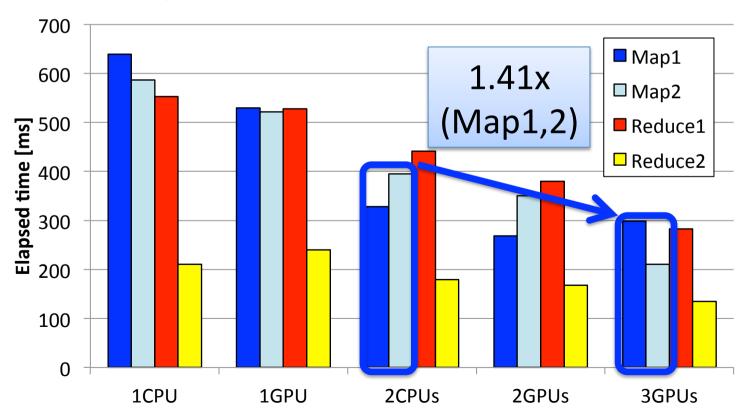
- Performance on 3 GPUs compared with 2 CPUs
 - SCALE 31, 256 nodes
 - Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup
 - Overlapping communication effectively



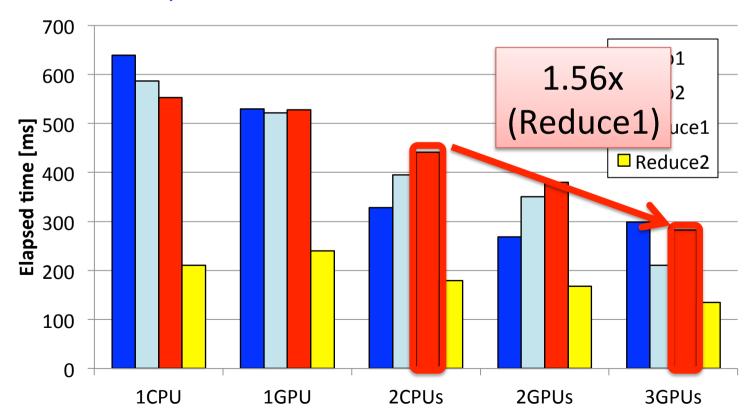
- Map1, Map2 (Pass) 1.41x
 - Speedup by overlapping communication efficiently
- Reduce1 (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
 - Speedup by overlapping communication and parallel reduction
 - → heavier operation is more accelerated



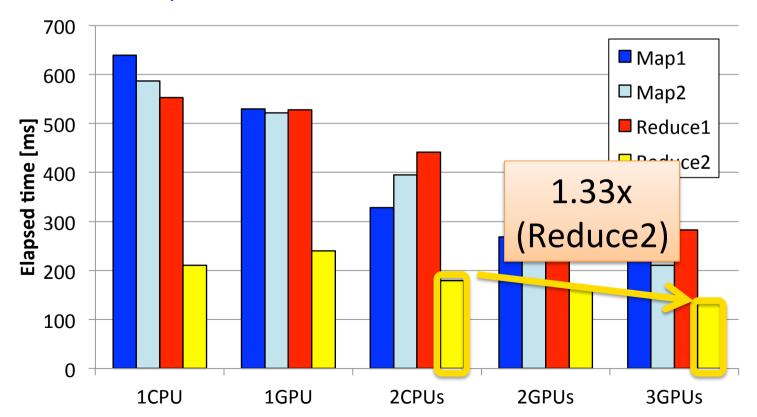
- Map1, Map2 (Pass) 1.41x
 - Speedup by overlapping communication efficiently
- Reduce1 (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
 - Speedup by overlapping communication and parallel reduction
 - → heavier operation is more accelerated



- Map1, Map2 (Pass) 1.41x
 - Speedup by overlapping communication efficiently
- Reduce1 (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
 - Speedup by overlapping communication and parallel reduction
 - → heavier operation is more accelerated

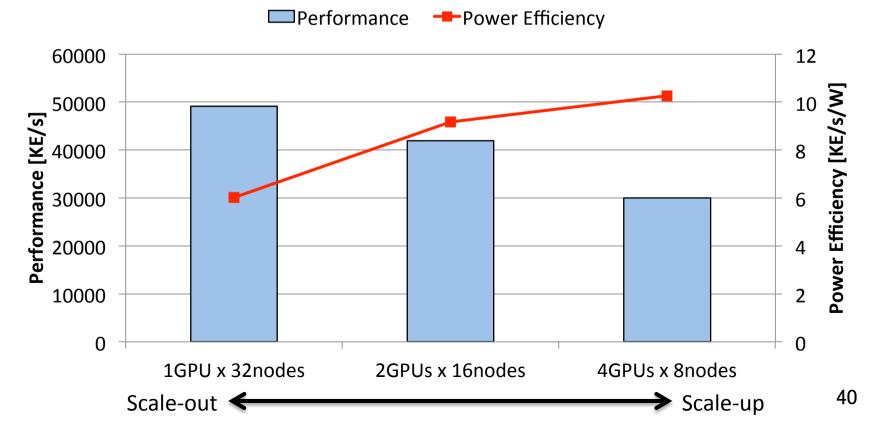


- Map1, Map2 (Pass) 1.41x
 - Speedup by overlapping communication efficiently
- Reduce1 (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
 - Speedup by overlapping communication and parallel reduction
 - → heavier operation is more accelerated



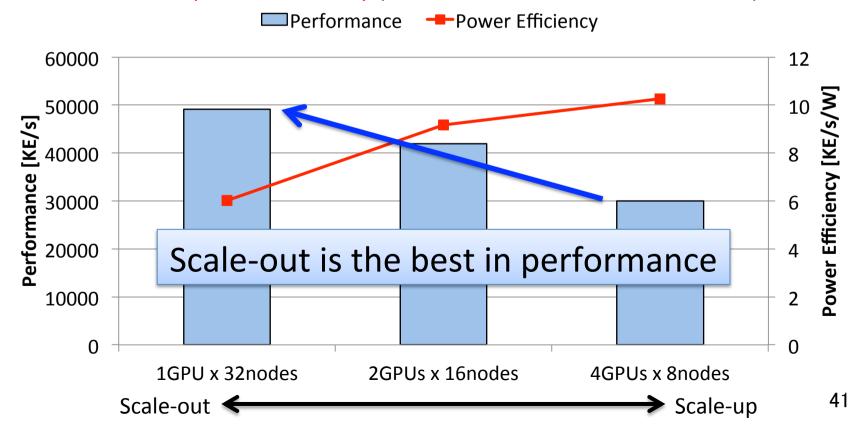
Performance and Power Efficiency

- Experiments on TSUBAME-KFC
 - Scale-out: 1 GPU x 32 nodes
 - better performance
 - Scale-up: 2 GPUs x 16 nodes, 4 GPUs x 8 nodes
 - better power efficiency (1.53x on 2 GPUs, 1.71x on 4 GPUs)



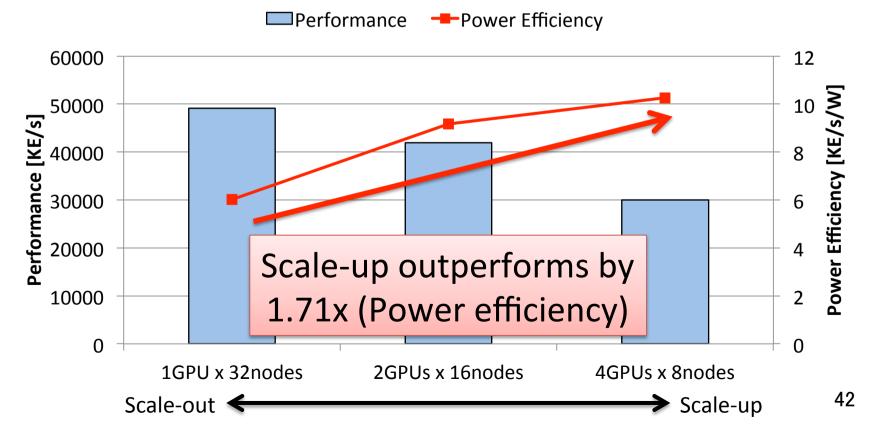
Performance and Power Efficiency

- Experiments on TSUBAME-KFC
 - Scale-out: 1 GPU x 32 nodes
 - better performance
 - Scale-up: 2 GPUs x 16 nodes, 4 GPUs x 8 nodes
 - better power efficiency (1.53x on 2 GPUs, 1.71x on 4 GPUs)



Performance and Power Efficiency

- Experiments on TSUBAME-KFC
 - Scale-out: 1 GPU x 32 nodes
 - better performance
 - Scale-up: 2 GPUs x 16 nodes, 4 GPUs x 8 nodes
 - better power efficiency (1.53x on 2 GPUs, 1.71x on 4 GPUs)



Summary of Experiments

Performance

- Scales well up to 1024 nodes (3072 GPUs) when data size is larger than GPU memory capacity
- 2.10x speedup using 3GPUs per node compared with 2CPUs per node
- → Out-of-core GPU memory management can accelerate by fully overlapping CPU-GPU data transfer and applying several optimizations

Efficiency

- 1.71x better power efficiency by scale-up strategy (using 4GPUs per node)
- → Scale-up approach performs better power efficiency than simple scale-out approach

Limitation

- May not perform efficiently on graphs with different characteristics
 - e.g.) road network (only 4 edges per vertex)

Conclusions

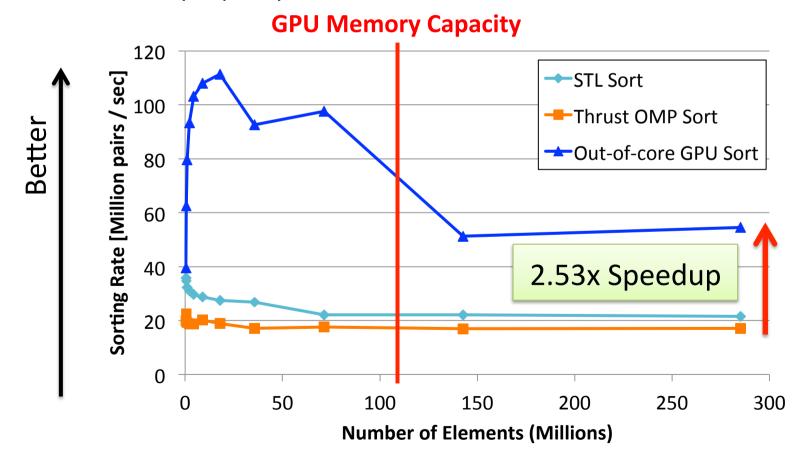
- Out-of-core GPU memory management for MapReduce-based graph processing
 - Methodology
 - Out-of-core GPU data management for GPU-MapReduce-based large-scale graph processing
 - Implement out-of-core GPU sorting
 - Investigate the balance of scale-up and scale-out approaches
 - Performance
 - 2.10x speedup than CPU on SCALE 34 (1024 nodes, 3072 GPUs)
 - 1.71x power efficiency by scale-up strategy

Future work

 Handling host memory overflow by utilizing I/O from Non-Volatile Memory backup

Result of Out-of-core GPU Sorting

- Comparison of our out-of-core sorting on 1 GPU with OpenMP sorting on 1 CPU
- 2.53x speedup compared with CPU when data size is larger than GPU memory capacity



Balance between Scale-up and Scale-out

- Performance difference by number of GPUs per node
 - 1 GPU x 1024 nodes, 2 GPUs x 512 nodes, 3 GPUs x 512 nodes
 - 2 GPUs performs 81.3 %, 3 GPUs performs 96.9 % of 1 GPU with double number of nodes

