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Fast Large-scale Graph Processing
using HPC

* Emergence of large-scale graphs
— SNS, road network, smart grid, etc.

— millions to trillions of vertices/edges

* e.g.) a social friend network: 1.31 billion ._-;:-5'"-'- (
vertices, 170 billion edges

— Need for fast graph processing on supercomputers

Graph processing on supercomputers

— A wide range of applications is accelerated using
supercomputers (e.g. physical simulations)

— Graph processing is also considered an important
application on supercomputers

* Graph500 benchmark is started from 2010




Large-scale Graph Processing on
Heterogeneous Supercomputers

e GPU-based heterogeneous
supercomputers

— e.g.) Titan, TSUBAME2.5
— High computing and memory
performance

— Fast large-scale graph processing on heterogeneous
supercomputers

'+ Problem: GPU memory capacity limits scalable -
large-scale graph processing

— Large-scale data, while GPU memory capacity is small
e e.g.) TSUBAME2.5: GPU 6GB (x3), CPU 54GB

/
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Contributions

* Out-of-core GPU memory management for
MapReduce-based graph processing

— Introduce out-of-core GPU data management techniques for
GPU-MapReduce-based large-scale graph processing

— Implement out-of-core GPU sorting
* Incorporated in our GPU-MapReduce implementation

— Investigate the balance of scale-up and scale-out approaches
* Changing the number of GPUs per node for processing graph data

Performance on TSUBAME2.5 and TSUBAME-KFC

e 2.10x speedup than CPUs on 3072 GPUs

 1.71x power efficiency by scale-up strategy
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Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™

— Graph applications are implemented by defining 3 functions
* PageRank, Random Walk with Restart, Connected Components etc.

— Vv =Mx.v where

V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i=1..n)

V

VI

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 6
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Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™

— Graph applications are implemented by defining 3 functions
* PageRank, Random Walk with Restart, Connected Components etc.

— Vv =Mx.v where

V';= Assign(v;, CombineAll; ({x; | j = 1..n, x,= Combine2(m, , v;)})) (i=1..n)

Combine2

Assign

CombineAll
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Large graph processing algorithm GIM-V
* Generalized Iterative Matrix-Vector multiplication™

GIM-V can be implemented by 2-stage MapReduce fs
e Stage 1: Combine2 !

 Stage 2: CombineAll, Assign

- Implement on our GPU MapReduce framework "

Combine2 Assign

CombineAll

*1 : Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 10



Previous work: Multi-GPU-MapReduce-
based Graph Processing [1]

Implement GIM-V on multi-

. C GPUs MapReduce
Graph Appllcatlon Optimization for GIM-V
PageRank - Load balance optimization
—_—
Graph Algorithm Extend existing GPU

@ Multi-GPU GIM-V MapReduce framework (Mars)

for multi-GPU

e
Py 100
rm=, MapReduce Framework =~ 01 — I
o 80 arsGPU-
L—*} E‘D M u Itl G PU Mars g 70 -D-marsgliﬂ-i SCASR T
2 60 @\ arsCPU
3 50
-— Platform g o —
2 1.52x speedup

CUDA, MPI 2

0

(3 GPU v CPU)

0 50 100 150 200 250 300
# Compute Nodes

[1]: K. Shirahata et al., “A Scalable Implementation of a MapReduce-based Graph Processing Algorithm for
Large-scale Heterogeneous Supercomputers”, IEEE/ACM CCGrid, 2013 11



Problems on Large-scale Graph
Processing on GPU

* How to manage graph data whose size exceeds
GPU memory capacity ?

— Handling memory overflow from GPU memory with
minimal performance overhead
* GPU memory capacity is smaller than CPU memory

e Data transfers dominantly disturb efficient graph
processing

— e.g.) TSUBAME2.5: GPU 250 GB/sec, CPU-GPU 8 GB/sec

— Efficient graph data assignment onto GPUs

* Tradeoff between using single GPU on multiple nodes
(scale-out) or using multiple GPUs per node (scale-up)
in terms of performance and power efficiencies
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Existing Solutions

* Handling memory overflow from GPU memory

— Using multiple GPUs
* GPU-MapReduce-based graph processing [Shirahata et al. 2013]
* Breadth first search on Multi-GPU [Ueno et al. 2013]

—> Not consider memory overflow from GPU memory

— Offloading graph data onto CPU memory
e GPUfs: I/O from a GPU to file systems [Silberstein et al. 2013]
* GPMR: a multi-GPU MapReduce library [Stuart et al. 2011]

—> Not experiment on realistic large-scale applications
* Analysis of tradeoff between scale-up and scale-out

— Scale-up and Scale-out on CPUs [Michael et al. 2007]
—> Not compare on GPUs
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ldea: Streaming-based Out-of-core
GPU Memory Management

e Streaming out-of-core GPU memory management

— Divide graph data into multiple chunks and assigning
each chunk one by one in each CUDA stream

— Hide CPU-GPU data transfer by applying overlapping
techniques between computation and data transfer

 GPU-based external sorting
— Employ sample-based out-of-core GPU sorting

— Qut-of-core GPU sorting is conducted when graph data
size exceeds GPU memory capacity

14



Out-of-core GPU Memory Management
for MapReduce-based Graph Processing

e QOut-of-core GPU memory management
— Stream-based GPU MapReduce processing
— Out-of-core GPU sorting

GPU - <—> Memcpy (H2D, D2H) é Processing for each chunk

Initialization

a Sort

19



Out-of-core GPU Memory Management
for MapReduce-based Graph Processing

e QOut-of-core GPU memory management
— Stream-based GPU MapReduce processing
— Out-of-core GPU sorting

- <—> Memcpy (H2D, D2H) é Processing for each chunk

~ Operation on GPU

|
Ma T .
P <_)- ~- Initialization
a Sort

\l/ \lY

Reduce Reduce
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Stream-based GPU MapReduce
Processing

Overlap three operations
— Copy CPU - GPU, Map/Reduce operation on GPU, Copy GPU - CPU

Dynamically update the number of chunks (d) to fit on GPU memory

STEP 1

STEP 3

Time

STEP 2

T

«
[ cru>eru |

[ Comp. on GPU |
[ GPu>cpu ]

[ Comp. on GPU |
[ GPu>cpu ]

Stream O
\

!

| Comp. on GPU |

[ GPu>cpu ]

| Ccomp.onGPU |
[ GPU>CPU ]

Stream 1

| |
| | |
Input chunk ||—L{ Input chunk | d chunks

e

| Comp. on GPU |
[ GPU>cPU_ ]
| Comp.onGPU |

[ cPu>cpru_ ]
Stream 2

!
s streams
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Out-of-core GPU Memory Management
for MapReduce-based Graph Processing

e QOut-of-core GPU memory management
— Stream-based GPU MapReduce processing

— QOut-of-core GPU sorting

GPU

- <—> Memcpy (H2D, D2H) é Processing for each chunk

Initialization

Sort
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Out-of-core GPU Sorting

* Use sample-based out-of-core sorting [1]
— Divide input data into chunks and split each chunk using splitters
— Improve by decreasing the number of CPU-GPU data transfers

* Thrust radix sort is used for in-core sorting
d ctlunks

1

4 \ 4 L4 \ 4

STEP 3
&0l dadq (EEE “
\ 4 4 4 4
4 ‘
[1]: Y. Ye et al., “GPUMemSort: A High Performance Graphics Co-processors Sorting Algorithm for Large
Scale In-Memory Data”, GSTF International Journal on Computing, 2011 19
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Optimization Techniques

e Data structure

— Employ a compact data structure similar to CSR for
sparse matrix formats

* Arrays of keys, values = arrays of unique keys, values
e Compress duplicate keys to 1/{#edges per vertex}
* Sort key-value - scan (prefix sum) - compact keys

e Shuffle

— Implement range-based and hash-based splitters

— Use range-based splitter, which performs good load
balance by randomizing vertex indices

 Thread assignment policy on GPU
— Apply warp-based assignment

20
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Thread Assignment Optimization

Three thread assignment policies

Vertex id (key id)

Edge degree (value id)
2D Thread Block

€<—— Warp 0 —>f¢— Warp 1 —>]

X X X
X X X X X X
X X
X X X
X X X X X X X X
X X X X
key values

WarpSize = 4

X: hon—zero element
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Thread Assignment Optimization

* Three thread assignment policies
— Thread-based assignment: assign one thread per vertex

Edge degree (value id)

2D Thread Block
Warp 0 —>¢— Warp 1 —>]

/\‘
Ke)

blockDim.X
+

gridDim.x

o X
>
X

WarpSize = 4

X: hon—zero element
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Thread Assignment Optimization

* Three thread assignment policies
— Thread-based assignment: assign one thread per vertex
— Warp-based assignment: assign one warp per vertex (32 on K20x GPU)

Edge degree (value id)>

BlockDim.X

Warp 0

d Block

Warp 1 —>

/\‘
Ke)

blockDim.y
+

gridDim.x

WarpSize = 4

X: hon—zero element

o X
>
X
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Thread Assignment Optimization

* Three thread assignment policies
— Thread-based assignment: assign one thread per vertex
— Warp-based assignment: assign one warp per vertex (32 on K20x GPU)

— Thread block-based assignment: assign one thread block per vertex
(1024 on K20x GPU)

Edge degree (value id)

BlockDim.X
Warp 0 Warp 1
X X | X

°

- X X | x| x| x| x
.dq'J. X WarpSize = 4

gridDim.X | )

< X X | x X: hon—zero element
(O]

E X X | X[ X | X[ X ]| X|X

>

v | X X | x| X

key values 25



Thread Assignment Optimization

* Three thread assignment policies
— Thread-based assignment: assign one thread per vertex
— Warp-based assignment: assign one warp per vertex (32 on K20x GPU)

— Thread block-based assignment: assign one thread block per vertex
(1024 on K20x GPU)

- Apply warp-based 2D thread mapping, since warp size is expected
to be close to the average number of edges per vertex

Edge degree (value id)>

BlockDim.X |4 Block

Warp 0 Warp 1 —>
‘ X
el
blockDim.y WarpSize = 4
+
S X: non—zero element
gridDim.x
o X
>
X
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Experiments

Study the performance of our multi-GPU GIM-V
e Comparison with a CPU-based implementation
* Analysis of performance and power efficiencies

e Methods

— A single round of iterations (w/o Preprocessing)

— PageRank application
* Measures relative 4 3
importance of web pages
— Input data 2 1

 Artificial Kronecker graphs

Gl

— Generated by generator in Graph500

* Parameters

— SCALE: log 2 of #vertices (#vertices = 2°¢4LF)

R

— Edge_factor: 16 (#edges = Edge_factor x #vertices)

217



Experimental environments

* TSUBAME?2.5 supercomputer

— Use up to 1024 nodes (3072 GPUs)
 CPU-GPU: PCI-E 2.0 x16 (8 GB/sec)
* Internode: QDR IB dual rail (10 GB/sec)

* Setup
| |2CPUs/node |3 GPUs/node

* n GPUs / node
(n: 1, 2, 3) # Cores
— N CPU(S) Frequency

12 threads / node Memory
* MPland Openmp ~ Memory BW
e Thrust OpenMP Sort Compiler

'YT

Intel® Xeon®
X5670

6

2.93 GHz
54 GB

32 GB/sec
gcc4.34

2 L
'\ B

Tesla K20X

2688

0.732 GHz
6 GB

250 GB/sec
Nvcc 5.0
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Weak Scaling Performance

* PageRank application

* Datasize is larger than GPU memory
capacity

3000

—+—1CPU (S23 per node)
2500 -#-1GPU (S23 per node)
2CPUs (S24 per node)
2GPUs (S24 per node)

N
o
o
o

)
(V]
<
(7]
(V]
5
E -#-3GPUs (S24 per node)
< 1500
(S}
c
©
£ 1000
L
o
(a8
500
0
0 200 400 600 800 1000 1200

Number of Compute Nodes 29



Weak Scaling Performance

* PageRank application
* Datasize is larger than GPU memory

capacity 2.81 GE/S on 3072 GPUs
J000 (SCALE 34)
—+—1CPU (S23 per node)
2500 | ™ 1GPU (S23 per node) _
g 2CPUs (S24 per node) 2.10x Speedup
?o 2000 2GPUs (S24 per node) - (3 GPU v ZCPU)
E -#-3GPUs (524 per node)
E;lSOO
&
£ 1000
&
500
0

200 400 600 800 1000 1200
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Weak Scaling Performance

* PageRank application

 Datasizeis larger than GPU memory
capacity 2.81 GE/s on 3072 GPUs

- (SCALE 34)

—+—1CPU (S23 per node)
2500 -#-1GPU (S23 per node)
2CPUs (S24 per node)

' 2.10x Speedup

o
?o 2000 2GPUs (S24 per node) - (3 GPU v ZCPU)
E -#-3GPUs (524 per node)
< 1500
:
£ 1000
o /
3 Performance

500

Breakdown
0
0 200 400 600 800 1000 1200
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Breakdown

 Performance on 3 GPUs compared with 2 CPUs
— SCALE 31, 256 nodes
— Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup

e Overlapping communication effectively

Elapsed time [ms]

60000

50000

N w H
o o o
- o o
o o o
o o o

10000

B Map
O Shuffle
B Reduce
O Sort
B Others

1CPU 1GPU 2CPUs 2GPUs 3GPUs
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Breakdown

 Performance on 3 GPUs compared with 2 CPUs
— SCALE 31, 256 nodes
— Map: 1.41x, Reduce: 1.49x, Sort: 4.95x speedup

e Overlapping communication effectively

60000
B Map
50000 ' ' O Shuffle
4.95x
— B Reduce
40000 ' [
% (Sort) OSort
£
‘5 30000 I o B Others
©
b
o
L 20000 ' N
[TT] — N
10000 |:| - [
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Breakdown of Map/Reduce

Map1l, Map2 (Pass) 1.41x
— Speedup by overlapping communication efficiently

Reducel (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
— Speedup by overlapping communication and parallel reduction

— heavier operation is more accelerated

700
B Mapl
600 - —
O Map2
E‘SOO ] B Reducel |
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g 400 - Reduce2 |
B
2 300 -
Q
L
w 200 -
100 -
0
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Breakdown of Map/Reduce

Map1l, Map2 (Pass) 1.41x
— Speedup by overlapping communication efficiently

Reducel (Combine2) 1.56x, Reduce2 (CombineAll, Assign) 1.33x
— Speedup by overlapping communication and parallel reduction
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700
B Mapl
600 - .
O Map2
E‘SOO N B Reducel |
b Mpad..
2 400 - ce2 |
£ 1.33x
@ 300 - —
2 (Reduce?)
w 200 -
100 - D
(0

1CPU 1GPU 2CPUs 2GPUs 3GPUs



Performance and Power Efficiency

* Experiments on TSUBAME-KFC
— Scale-out: 1 GPU x 32 nodes

* better performance

— Scale-up: 2 GPUs x 16 nodes, 4 GPUs x 8 nodes
* better power efficiency (1.53x on 2 GPUs, 1.71x on 4 GPUs)

CPerformance -®=Power Efficiency

60000 12

/ 8

Performance [KE/s]
NGow B
o o o
o o o
o o o
o o o
(e))]
Power Efficiency [KE/s/W]

10000 2

1GPU x 32nodes 2GPUs x 16nodes 4GPUs x 8nodes
Scale-out € » Scale-up 40
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Performance and Power Efficiency

* Experiments on TSUBAME-KFC
— Scale-out: 1 GPU x 32 nodes

* better performance

— Scale-up: 2 GPUs x 16 nodes, 4 GPUs x 8 nodes

* better power efficiency (1.53x on 2 GPUs, 1.71x on 4 GPUs)

60000

50000

Performance [KE/s]
NGow B
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S & o
o o o

10000

CPerformance -®=Power Efficiency

-

./

3

Scale-up outperforms by
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Scale-out €

» Scale-up
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Summary of Experiments

e Performance

— Scales well up to 1024 nodes (3072 GPUs) when data size is larger
than GPU memory capacity

— 2.10x speedup using 3GPUs per node compared with 2CPUs per
node

— Out-of-core GPU memory management can accelerate by fully
overlapping CPU-GPU data transfer and applying several
optimizations

* Efficiency

— 1.71x better power efficiency by scale-up strategy (using 4GPUs per
node)

— Scale-up approach performs better power efficiency than simple
scale-out approach

* Limitation
— May not perform efficiently on graphs with different characteristics
* e.g.) road network (only 4 edges per vertex)
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Conclusions

* Out-of-core GPU memory management for
MapReduce-based graph processing

— Methodology

e QOut-of-core GPU data management for GPU-MapReduce-based
large-scale graph processing

* Implement out-of-core GPU sorting
* Investigate the balance of scale-up and scale-out approaches

— Performance
* 2.10x speedup than CPU on SCALE 34 (1024 nodes, 3072 GPUs)
* 1.71x power efficiency by scale-up strategy

e Future work

— Handling host memory overflow by utilizing I/O from

Non-Volatile Memory
44



* backup
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Result of Out-of-core GPU Sorting

* Comparison of our out-of-core sorting on 1 GPU with OpenMP sorting on
1 CPU

* 2.53x speedup compared with CPU when data size is larger than GPU
memory capacity

GPU Memory Capacity

120
A £ STL Sort
(7,]
S Thrust OMP Sort
Q =
= 2 50 ——Qut-of-core GPU Sort
L
& 5
= 60 4
g —
3
e 40 2  2.53x Speedup
&
E 20
(@]
(V4]
0
0 50 100 150 200 250 300

Number of Elements (Millions) 46



Balance between Scale-up and Scale-out

 Performance difference by number of GPUs per node
— 1 GPU x 1024 nodes, 2 GPUs x 512 nodes, 3 GPUs x 512 nodes

— 2 GPUs performs 81.3 %, 3 GPUs performs 96.9 % of 1 GPU with
double number of nodes

2000
1800 1GPU 1024nodes

— 1600 2GPUs 512nodes
=4x—-3GPUs 512nodes

24 25 26 27 28 29 30 31 32 33
SCALE 47



