Performance Analysis of MapReduce Implementations on High Performance Homology Search

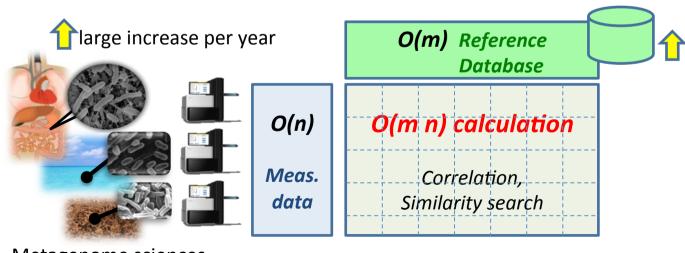
Chaojie Zhang, Koichi Shirahata, Shuji Suzuki, Yutaka Akiyama, Satoshi Matsuoka

Tokyo Institute of Technology

Large-scale Metagenome Analysis

- Metagenome analysis using homology search
 - Directly sequencing uncultured microbiomes obtained from target environment, and analyzing the sequence data
 - Size of queries and database will reach GBs to TBs, and total compute data size will grow to product of the two (i.e. EBs to ZBs)

→ Utilize massively parallel data processing to cope with the increasing complexity



Massively Parallel Data Processing on Homology Search

- Existing homology search algorithms
 - Sequential: BLAST [1], GHOSTX [2]
 - Distributed: mpiBLAST [3], GHOST-MP [4]
 - → Parallelization is done with privately developed MPI-based master-worker frameworks
- MapReduce
 - Versatile big data programming model with associated software toolchains
 - Conceal memory management in distributed systems
 - → Apply MapReduce to large-scale homology search
- Problem: Unclear how to apply MapReduce to extremely large-scale homology search efficiently

^[1] Altschul, S. F. et al.: Basic local alignment search tool, Journal of molecular biology, 1990

^[2] Suzuki, S. et al.: GHOSTX: An improved sequence homology search algorithm using a query suffix array and a database suffix array, PloS one, 2014

^[3] Darling, A. et al.: The design, implementation, and evaluation of mpiBLAST, Proceedings of ClusterWorld, 2003

^[4] GHOST-MP webpage: http://www.bi.cs.titech.ac.jp/ghostmp/

Goal, Approach and Contributions

Goal

 High performance MapReduce-based extremely largescale homology search

Approach

- Implement MapReduce-based homology search
- Performance analysis of MapReduce-based homology search

Contributions

- Describe MapReduce-based designs and implementations of a homology search algorithm
- Preliminary experiments reveal that MapReduce exhibits good weak scaling and comparable performance with a MPI master-worker implementation

Outline

- Introduction
- Background
- Proposal
- Experiment
- Conclusion

Homology Search

- the method to search biological sequences similar to a biological query sequence in a database.
 - Mapping DNA sequence fragments to known protein sequences from public and private database
- BLAST: Basic Local Alignment Search Tool
 - Widely used homology search tool that uses a heuristic algorithm
- FASTA format
 - A sequence begins with a single-line description, followed by lines of sequence data

Query/Database Input

>name 0|description 0
HPSKIPVIIERYKGEKQLPVLDKTKFL
VPD

>name 1 | description 1 | MKMRFFSSPCGKAAVDPADRCKEV | QQIRDQ

Output

Name	 E-value
hsa:124045	 2.04391e-76
hsa:124045	 5.96068e-68
hsa:124045	 1.38697e-32

Improved Homology Search Algorithms: GHOSTX, GHOST-MP

- GHOSTX[1]
 - Adopts the BLAST's seed-extend alignment algorithm
 - Approximately 131-165 times faster than BLAST
 - Construct suffix array for query and database
 - Extend the seed till the matching score exceeds a given threshold for seed search
- GHOST-MP[2]
 - Extension of GHOSTX with MPI library for distributed computing environments
 - Utilize locality of database chunks
- → We use GHOSTX as a sequential implementation and extend it to MapReduce

Problems on MapReduce-based Homology Search

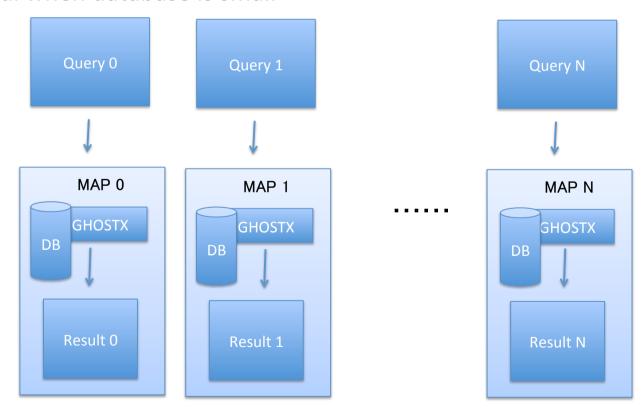
- How to design and implement homology search algorithms onto the MapReduce model
 - How to handle two different datasets, queries and database, using MapReduce
- Whether the massive resource required would overwhelm MapReduce

MapReduce-based Designs of Homology Search

- Basic idea
 - distribute query data onto multiple Mappers
- We consider two different designs based on assignment of database onto multiple nodes
 - Database replication
 - Database distribution
 - Query data is distributed on both designs, while database allocation policies are different

MapReduce-based Design with Database Replication

- Input query data files: copied to a distributed file system
- Database file: replicated onto local disk on each compute node
- No reduce stage
- Useful when database is small.



Implementations of MapReduce

- Hadoop[1]
 - Implemented in Java
 - Consisted of Hadoop Common, Hadoop Distributed File System(HDFS), Hadoop YARN, Hadoop MapReduce
- Spark[2]
 - Built on top of HDFS
 - Resilient distributed dataset(RDD)
- Hamar[3]
 - Scalable MPI-based MapReduce with hierarchical memory management
 - Run on either CPUs or GPUs
- → We implement the database replication design on these MapReduce implementations

[1] White, T.: "Hadoop: the definitive guide: the definitive guide." O'Reilly Media, Inc., 2009

[2] Zaharia, M. et al.: "Spark: cluster computing with working sets." 2nd USENIX conference on Hot topics in cloud computing. 2010 11

[3] Shirahata K. et al.: "Out-of-core GPU Memory Management for MapReduce-based Large-scale Graph Processing", IEEE Cluster 2014.

Implementation on Hadoop

- Database Replication Design
 - Use Hadoop Pipes to use GHOSTX on top of Hadoop
 - Pass queries as input
 - Implement WholeFileInputFormat to avoid splitting
 - Read database from local disk directly

```
hadoop pipes\
-D hadoop.pipes.java.recordreader=true\
-D hadoop.pipes.java.recordwriter=true\
-files [db_files]\
-input [input_dir]\
-output [output_dir]\
-inputformat WholeFileInputFormat\
-program ghostmr
```

Implementation on Spark

- Database Replication Design
 - Use RDD pipe() operation to call GHOSTX binary from Spark
 - Read query from HDFS as input
 - use jar file including WholeFileInputFormat
 - Read database from local disk directly

```
spark-submit\
   --class "GhostMR"\
   --master yarn-client\
   --num-executors [num_nodes]\
   --executor-cores [num_threads]\
   --files [db_files]\
   --jars lib/hadoop-mapreduce-client-core-[ver].jar\
   ghostmr.jar
```

Implementation on Hamar

- Database Replication Design
 - Call GHOSTX directly from map function
 - Read both query and database from local disk
 - Assign the same amount of query data to each node
 - Execution
 - mpirun -n np -hostfile hosts ghostmr tablefile
 - tablefile
 - Tab-separated query, database, and output file names

Experimental Setup

- Compare performance with different size datasets
 - understand performance characteristics of MapReduce implementations
- Data Resource
 - FASTA database, "nr", The National Center for Biotechnology Information website
 - we split the database into different sizes for various size comparison
 - FASTA query, "SRS014107", Data Analysis and Coordination Center for Human Microbiome Project website

• we split input query files into 10MB of smaller files before putting them to HDFS

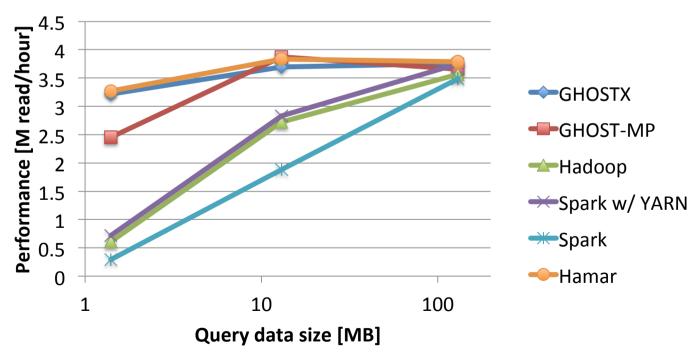
for Hadoop and Spark

- Machine Configuration
- Software Version
 - Hadoop 2.4.1
 - Spark 1.1.0

СРИ	Intel® Core™ i7-3930K (12 cores, 3.20GHz)
Memory	48GB
Local SSD	102GB
Compiler	GCC 4.4.5
InfiniBand	FDR 4X (56Gbit/s)

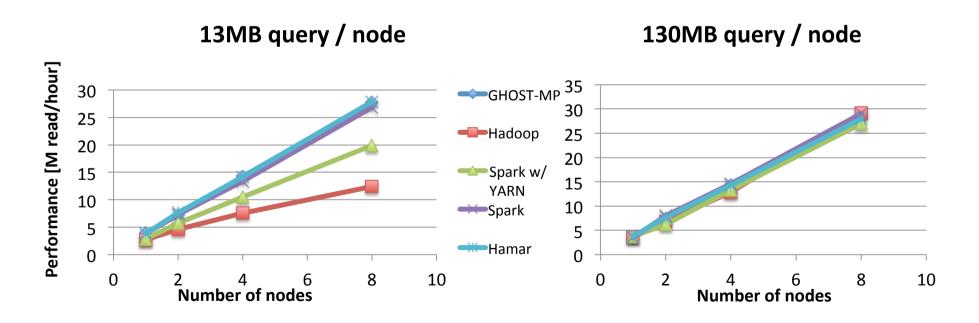
Query Data Size Scaling

- Use single node with 530MB database
 - we split input query files into 10MB of smaller files before putting them to HDFS for Hadoop and Spark
- Similar performance when query size gets larger on single node



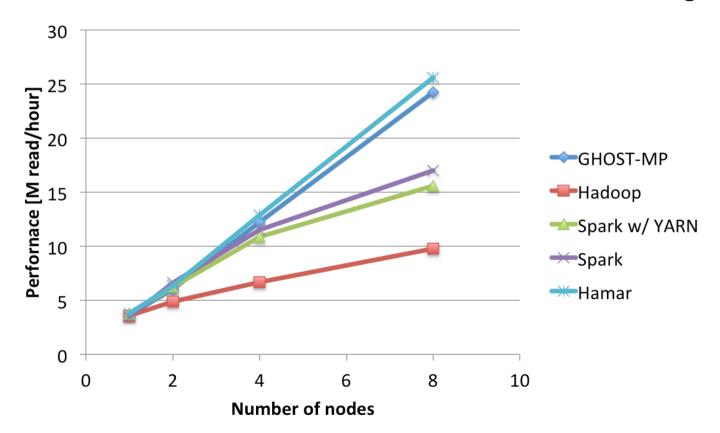
Weak Scaling Performance

- Use multiple nodes with 530MB database, and 130MB query per node
 - we split input query files into 10MB of smaller files before putting them to HDFS for Hadoop and Spark
- All the implementations exhibit good scalability for large query



Strong Scaling Performance

- Use multiple nodes with 530MB database, and 130MB query in total
 - we split input query files into 10MB of smaller files before putting them to HDFS for Hadoop and Spark
- Overhead becomes more obvious when number of nodes gets larger



Related Work

- K MapReduce (KMR)[1]
 - Optimizes shuffle operation utilizing interconnect on K computer
 - Conduct experiments using GHOST-MP by replacing master-worker tasking library
 - did not compare with other existing MapReduce implementation
- mpiBLAST[2]
 - Applies database segmentation
 - Each node searches a unique distributed portion of database
 - High optimized only for BLAST

^[1] Matsuda, M. et al.: K MapReduce: A scalable tool for data-processing and search/ensemble applications on large-scale supercomputers, IEEE Cluster, 2013

^[2] Darling, A. et al.: The design, implementation, and evaluation of mpiBLAST, Proceedings of ClusterWorld, 2003 19

Conclusion

Conclusion

- We proposed MapReduce-based Designs and Implementations
- MapReduce implementations exhibit good weak scaling and comparable performance with GHOST-MP

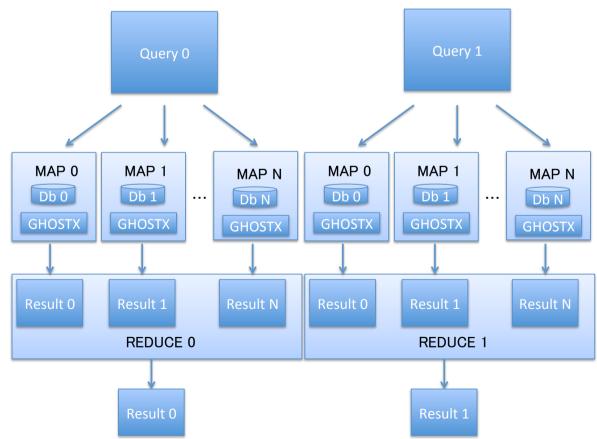
Future work

- Implement other MapReduce-based homology search designs
- Conduct further detailed performance analysis
 - Larger dataset
 - Large-scale computing environments
 - Further breakdown analysis

Backup

MapReduce-based Design with Database Distribution

- Input query data files: copied to a distributed file system
- Database file: split to multiple chunks and each chunk distributed on each node



Database Size Scaling

Use single node of Raccoon with 1.3MB query

