Performance Analysis of MapReduce
Implementations on High
Performance Homology Search

Chaojie Zhang, Koichi Shirahata,
Shuji Suzuki, Yutaka Akiyama,
Satoshi Matsuoka

Tokyo Institute of Technology

Large-scale Metagenome Analysis

* Metagenome analysis using homology search

— Directly sequencing uncultured microbiomes obtained
from target environment, and analyzing the sequence data

— Size of queries and database will reach GBs to TBs, and
total compute data size will grow to product of the two
(i.e. EBs to ZBs)

— Utilize massively parallel data processing to cope with
the increasing complexity

ﬁlarge increase per year O(m) Reference i Iﬁ

Database

ofn) || Ofm n) caleulation

—————————————————————————————————————

Meas. | | . Correlation,
data . Similarity search

Metagenome sciences 2

Massively Parallel Data Processing
on Homology Search

* Existing homology search algorithms
— Sequential: BLAST [1], GHOSTX [2]
— Distributed: mpiBLAST [3], GHOST-MP [4]
— Parallelization is done with privately developed MPI-based
master-worker frameworks
* MapReduce

— Versatile big data programming model with associated software tool-
chains

— Conceal memory management in distributed systems
— Apply MapReduce to large-scale homology search

 Problem: Unclear how to apply MapReduce to extremely
large-scale homology search efficiently

[1] Altschul, S. F. et al.: Basic local alignment search tool, Journal of molecular biology, 1990

[2] Suzuki, S. et al.: GHOSTX: An improved sequence homology search algorithm using a query suffix array and a database suffix array, PloS one, 2014
[3] Darling, A. et al.: The design, implementation, and evaluation of mpiBLAST, Proceedings of ClusterWorld, 2003

[4] GHOST-MP webpage: http://www.bi.cs.titech.ac.jp/ghostmp/ 3

Goal, Approach and Contributions

e Goal

— High performance MapReduce-based extremely large-
scale homology search

* Approach

— Implement MapReduce-based homology search
— Performance analysis of MapReduce-based homology
search

e Contributions

— Describe MapReduce-based designs and implementations
of a homology search algorithm

— Preliminary experiments reveal that MapReduce exhibits
good weak scaling and comparable performance with a
MPI master-worker implementation

Background
Proposal
Experiment
Conclusion

Outline

Homology Search

* the method to search biological sequences similar to a
biological query sequence in a database.

— Mapping DNA sequence fragments to known protein sequences from
public and private database

 BLAST: Basic Local Alignment Search Tool
— Widely used homology search tool that uses a heuristic algorithm

e FASTA format

— A sequence begins with a single-line description, followed by lines of
sequence data

Query/Database Input Output
>name 0] description 0 Name | |Evalue
HPSKIPVIIERYKGEKQLPVLDKTKFL hsa:124045... .. 2.04391e-76
VPD
>name 1 | descrip‘[_—ion 1 hsa:124045... .. 5.96068e-68
MKMRFFSSPCGKAAVDPADRCKEV
QQIRDQ hsa:124045... .. 1.38697e-32

Improved Homology Search Algorithmes:
GHOSTX, GHOST-MP

 GHOSTX][1]
— Adopts the BLAST’s seed-extend alignment algorithm
— Approximately 131-165 times faster than BLAST
e Construct suffix array for query and database

* Extend the seed till the matching score exceeds a given
threshold for seed search

* GHOST-MP[2]

— Extension of GHOSTX with MPI library for distributed
computing environments

— Utilize locality of database chunks

—> We use GHOSTX as a sequential implementation and
extend it to MapReduce

[1] Suzuki, S. et al.: GHOSTX: An improved sequence homology search algorithm using a query suffix array and a database suffix array, PloS one,
2014 v
[2] GHOST-MP webpage: http://www.bi.cs.titech.ac.jp/ghostmp/

Problems on MapReduce-based
Homology Search

* How to design and implement homology
search algorithms onto the MapReduce model

— How to handle two different datasets, queries and
database, using MapReduce

* Whether the massive resource required would
overwhelm MapReduce

MapReduce-based Designs of
Homology Search

* Basic idea
— distribute query data onto multiple Mappers

 We consider two different designs based on
assignment of database onto multiple nodes
— Database replication
— Database distribution

— Query data is distributed on both designs, while
database allocation policies are different

MapReduce—based Design with
Database Replication

Input query data files: copied to a distributed file system
Database file: replicated onto local disk on each compute node

No reduce stage
Useful when database is small

E:

MAP 0 MAP 1 MAP N

GHOSTX

g |

GHOSTX

l

Result 0

GHOSTX
DB

Result 1

Result N

10

Implementations of MapReduce

 Hadoop[1]
— Implemented in Java

— Consisted of Hadoop Common, Hadoop Distributed File
System(HDFS), Hadoop YARN, Hadoop MapReduce

* Spark([2]

— Built on top of HDFS

— Resilient distributed dataset(RDD)
e Hamarl[3]

— Scalable MPI-based MapReduce with hierarchical memory
management

— Run on either CPUs or GPUs

- We implement the database replication design on
these MapReduce implementations

[1] White, T.: "Hadoop: the definitive guide: the definitive guide.” O'Reilly Media, Inc., 2009
[2] Zaharia, M. et al.: "Spark: cluster computing with working sets." 2" USENIX conference on Hot topics in cloud computing. 2010 11
[3]Shirahata K. et al.: "Out-of-core GPU Memory Management for MapReduce-based Large-scale Graph Processing", IEEE Cluster 2014.

Implementation on Hadoop

* Database Replication Design
— Use Hadoop Pipes to use GHOSTX on top of Hadoop
— Pass queries as input

* Implement WholeFilelnputFormat to avoid splitting

— Read database from local disk directly

hadoop pipes)\
-D hadoop.pipes.java.recordreader=true\
-D hadoop.pipes.java.recordwriter=true\
-files [db_files]\
-input [input_dir]\
-output [output_dir]\
-inputformat WholeFileInputFormat)
-program ghostmr

12

Implementation on Spark

* Database Replication Design

— Use RDD pipe() operation to call GHOSTX binary
from Spark

— Read query from HDEFS as input
 use jar file including WholeFileInputFormat

— Read database from local disk directly

spark-submit),
--class "GhostMR"\
--master yarn-client)\
--num-executors [num_nodes]\
--executor-cores [num_threads])\
--files [db_files])\
--jars lib/hadoop-mapreduce-client-core-[ver].jar\
ghostmr. jar 13

Implementation on Hamar

* Database Replication Design
— Call GHOSTX directly from map function
— Read both query and database from local disk

— Assign the same amount of query data to each
node

— Execution

 mpirun -n np -hostfile hosts ghostmr tablefile
— tablefile

* Tab-separated query, database, and output file names

Experimental Setup

 Compare performance with different size datasets
— understand performance characteristics of MapReduce

implementations

Data Resource

— FASTA database, “nr”, The National Center for Biotechnology
Information website

* we split the database into different sizes for various size comparison

— FASTA query, “SRS014107”, Data Analysis and Coordination Center for

Human Microbiome Project website

* we split input query files into 10MB of smaller files before putting them to HDFS

for Hadoop and Spark
* Machine Configuration

Software Version

— Hadoop 2.4.1
— Spark 1.1.0

CPU Intel® Core™ i7-3930K
(12 cores, 3.20GHz)

Memory 48GB

Local SSD 102GB

Compiler GCC4.4.5

InfiniBand FDR 4X (56Gbit/s)

15

Query Data Size Scaling

Use single node with 530MB database

— we split input query files into 10MB of smaller files before putting them
to HDFS for Hadoop and Spark

Similar performance when query size gets larger on single node

Data Size Scaling (530MB db)

—4.5

E 4

=35

T 3 =0=GHOSTX

()]

s 25 «@=GHOST-MP
g 2 Hadoop

g 1.5

g =>=Spark w/ YARN
s 1

o

uq;) 05 =*&=Spark

o 0 Hamar

1 10 100

Query data size [MB]
16

Performance [M read/hour]

30
25
20
15
10

Weak Scaling Performance

to HDFS for Hadoop and Spark

13MB query / node
== GHOST-MP 3°
30
«{™Hadoop 25
, Spark w/ 20
park w
/ YARN 12
e, =»=Spark 10
i 5
7

Hamar 0

2 4 6 8 10

Number of nodes

All the implementations exhibit good scalability for large query

130MB query / node

Number of nodes

Use multiple nodes with 530MB database, and 130MB query per node
— we split input query files into 10MB of smaller files before putting them

10

17

Strong Scaling Performance

Use multiple nodes with 530MB database, and 130MB query in total

— we split input query files into 10MB of smaller files before putting them
to HDFS for Hadoop and Spark

Overhead becomes more obvious when number of nodes gets larger

30

N
92}

5
o
<
< 20 ,
5 ~=GHOST-MP
2 15 a <i=Hadoop
(V]
o : Spark w/ YARN
€10
S “>&Spark
- f
& 5 " Hamar
b

o
o
N

4 6 8 10
Number of nodes 18

Related Work

K MapReduce (KMR)[1]

— Optimizes shuffle operation utilizing interconnect on K
computer

— Conduct experiments using GHOST-MP by replacing
master-worker tasking library

— did not compare with other existing MapReduce
implementation

e mpiBLAST[2]
— Applies database segmentation

* Each node searches a unique distributed portion of database
— High optimized only for BLAST

[1] Matsuda, M. et al.: K MapReduce: A scalable tool for data-processing and search/ensemble applications on
large-scale supercomputers, IEEE Cluster, 2013
[2] Darling, A. et al.: The design, implementation, and evaluation of mpiBLAST, Proceedings of ClusterWorld, 2003

Conclusion

 Conclusion

— We proposed MapReduce-based Designs and
Implementations

— MapReduce implementations exhibit good weak
scaling and comparable performance with GHOST-MP

e Future work

— Implement other MapReduce-based homology search
designs
— Conduct further detailed performance analysis
* Larger dataset
* Large-scale computing environments
* Further breakdown analysis

* Backup

MapReduce—based Design with
Database Distribution

* Input query data files: copied to a distributed file system

e Database file: split to multiple chunks and each chunk
distributed on each node

SN N
o |- & o |- 53
o e W
] | o

E<

-

22

Database Size Scaling

* Use single node of Raccoon with 1.3MB query

1.4
~ 1.2
=
2
§ 1
@ =0=GHOSTX
s 0.8
— «=GHOST-MP
S 0.6
~ Hadoop
g 0.4 =>=Spark w/ YARN
[t
[
& 02 Hamar

0
0 200 400 600 800

Database Size [MB]
23

