Performance Analysis of
Lattice QCD on GPUs in APGAS
Programming Model

Koichi Shirahatal, Jun Doi2, Mikio Takeuchi?
1: Tokyo Institute of Technology
2: IBM Research - Tokyo

Programming Models for Exascale
Computing

 GPU-based heterogeneous clusters
— e.g.) TSUBAME 2.5 (3 GPUs x 1408 nodes)
— Acceleration using GPUs
* High peak performance/memory bandwidth

* Programming models for GPU-based clusters
— Massage passing (e.g. MPI)
 High tuning efficiency _— e =
* High programming cost = =
— APGAS (Asynchronous Partitioned Global Address Space)

e Abstract distributed memory and deep memory hierarchy
e X10: an instance of APGAS programming languages

E% Highly scalable and productive computing on GPUs}

using APGAS

Problem Statement

* How much do GPUs accelerate applications
using APGAS?

— Tradeoff between performance and productivity
* Performance

— The abstraction of memory hierarchy may limit
performance

— Scalability on multi-GPU

* Productivity
— Can we use GPUs with little programming cost?

Goal and Contributions

* Goal
— Scalable and productive computing on GPUs

* Approach

— Performance analysis of lattice QCD in X10 CUDA
* Implement lattice QCD in X10 CUDA
 Comparative performance analysis of X10 on GPUs

* Confirm acceleration using GPUs in X10

— 19.4x speedup from X10 by using X10 CUDA
on 32 nodes of TSUBAME 2.5

The APGAS Model using GPUs

Place O Place 1 Place N-1

Activity i i i
at —> @ at_ —> @
CPU Place | \ | | \
async . 1 I
Object a5ynccopy | asyncCopy 1
— i > i i >
I i i i
\Lat asyncCopy vat |asyncCopy
1 || 1 1 1 1
i l@ i P i
1 1 1 1 1 1
1 1 o 1 1 1 1
1 1 o 1 1 1 1
GPU Place i PN .
: O/ o
i i i P i
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1] 1

Child Child
Place O Place M-1

X10 provides CUDA support for GPUs [1]

[1] Cunningham, D. et al. "GPU programming in a high level language: compiling X10 to CUDA."
Proceedings of the 2011 ACM SIGPLAN X10 Workshop. ACM, 2011.

Lattice QCD

e Lattice QCD

— Simulation of Quantum ChromoDynamics (QCD) of quarks and
gluons on 4D grid of points in space and time

— A grand challenge in high-performance computing
* Requires high memory/network bandwidth and computational power

 Computing lattice QCD
— Monte-Carlo simulations on 4D grid

— Dominated solving linear equations of matrix-vector
multiplication using iterative methods (etc. CG method)

— Parallelizable by dividing 4D grid into partial grids for each place
* Boundary exchanges are required between places in each direction

Implementation of Lattice QCD
in X10 CUDA

e We extend our lattice QCD in X10 into X10 CUDA

— Porting whole solvers into CUDA kernels
* Wilson-Dirac operator, BLAS level 1 operations

* Avoid waste memory copy overheads between CPU and
GPU, except boundary data transfers

— Implement boundary data transfer among GPUs
 Add memory copy operations
— (1) GPU = CPU, (2) CPU = CPU, (3) CPU > GPU
— Optimizations
e Data layout transformation
 Communication overlapping

Data Layout Transformation

* Two types of data layouts for quarks and gluons

— AoS (Array of Structure)
* Non-contiguous data
e Used in our original CPU implementations

— SoA (Structure of Array)
* Contiguous data
 Suitable for vectorization

 We translate from AoS to SoA
— GPU is suitable for coalesced memory access

(XI Y, Z, t) (OI Or O; O) (11 O; OI O) (n_ll n_ll n_lr n_l)
A A
(\ 7 \ I—H
AoS
Spin: Spin 1 Spin 2 [] Spin m
A
(\ 7 A \ I_H

SoA

Communication Optimizations
in X10 CUDA

* Two communication optimizations
— multi-dimensional partitioning

— Communication overlapping

* Overlap memory copy between GPU and CPU in addition to
between CPU and CPU

* Overlapping domain is limited by finish-based synchronization

T [T

X O

Y: I
z: [
Inner

Synchronization (using finish)

Comp. {

Comm. {

GPU Kernel

[Transfer btw. CPU and GPU
. Exchange btw. CPU and CPU

Experimental Setup

* Performance comparison with other
implementations
— X10 C++, MPI C, MPI CUDA
— Use one GPU per node

* Measurements
— Weak scaling
— Strong scaling

* Configuration

— Measure average iteration time of one convergence of CG
method
* Typically 300 — 500 iterations

— Problem size
* (x,v,2z t)=(24, 24, 24, 96) (unless specified)
* Fit on one Tesla K20X GPU

Experimental environments

e TSUBAME2.5 supercomputer (unless speuﬁed)
— Use up to 32 nodes (32 GPUs)

— CPU-GPU: PCI-E 2.0 x16
(8 GB/sec)

— Internode: QDR IB dual rail
(10 GB/sec)

* Setup

— 1 place per node
— 1 GPU per place (X10 CUDA)

| [2CPUs/node | 3GPUs/node
— 12 threads per place d d

(X10 C++, MPI C) Model Intel® Xeon® X5670 Tesla K20X
° Sof'twa re # Cores 6 2688
— X10 version 2.4.3.2 Frequency 2.93 GHz 0.732 GHz
— CUDA version 6.0 SUBEY 54 GB 6 GB
— OpenMPI 1.6.5 Memory BW 32 GB/sec 250 GB/sec

Compiler gcc4.3.4 Nvcc 6.0

11

Comparison of Weak Scaling with
CPU-based Implementations

* X10 CUDA exhibits good weak scaling

— 19.4x and 11.0x faster than X10 C++ and MPI C each
on 32 nodes

— X10 CUDA does not incur communicational penalty with
large amount of data on GPUs

A 1000 — 3000
E
T c 2500
[e) B
B 100 © 2000
= 2 ——MPI C
(8} [.
Q
s 10 E 1000 X10 CUDA DP
= =
()]
& ® 500 —<X10 CUDA SP
a
(1]
1 w 0

1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes Number of Nodes

<€

* Comparison on TSUBAME-KFC

A 1000

Performance [Gflops]

100

10

Comparison of Weak Scaling
with MPI CUDA

— X10 2.5.1, CUDA 5.5, OpenMPI 1.7.2
— Problem Size: 24 x 24 x 24 x 24 per node

 X10 CUDA performs similar scalability with MPI CUDA
* Increase performance gap as using larger number of nodes

1

2

4 8 16
Number of Nodes

32

n

Elapsed Time per Iteration [msec]

<€

= N W b U O N
o O O O O o o o o

=—=MPI CUDA DP
=#-X10 CUDA DP

1 2 4 8 16 32
Number of Nodes

Strong Scaling Comparing with CPU-

based Implementations

* X10 CUDA outperforms both X10 C++ and MPI C
— 8.27x and 4.57x faster each on 16 Places

— Scalability of X10 CUDA gets poorer as the number of
nodes increases

1000

[EEN
o
o

~*=MPIC
—#-X10 C++

X10 CUDA DP
—<X10 CUDA SP

=
o

Performance [Gflops]

1 2 4 8 16 32
Number of Nodes

Comparison of Strong Scaling
with MPI CUDA

* Comparison on TSUBAME-KFC
— X10 2.5.1, CUDA 5.5, OpenMPI 1.7.2

e X10 CUDA exhibits comparative performance up to 4 nodes
e X10 CUDA suffers heavy overheads on over 8 nodes

1000 . 200
(8]
A 3 180
7 E 160
o S 140
G 100 =
o S 120
g 8
= = 100 Y
: 5 g0 MPI CUDA DP
g 1 2 60 —#-X10 CUDA DP
g E 40 =
% 20 _—
1 s 0
1 2 4 8 16 32 10 20 30 40

<€

Number of Nodes Number of Nodes

Performance Breakdown of
Lattice QCD in X10 CUDA

« Communication overhead increases
— Both boundary communication and MPI Allreduce

 Computation parts also do not scale linearly

120 100
-g- B Bnd Comm. Allreduce - 90
Z.100 i i -
= MW BLAS W Wilson-Dirac - 80
s .

2 s —*~Comm. Ratio - 70
2
g 60
£
iz 40
e
2
LQU' 20
[N}
A 4 0

Number of Nodes

Comm. Overhead [%]

Comparison with MPI CUDA using

Different Problem Sizes

* Comparison on TSUBAME-KFC
— X102.5.1, CUDA 5.5

e X10 CUDA suffers heavy overhead on small problem sizes
— 6.02x sloweron4x4x4x8
— We consider X10 CUDA suffers constant overhead

A 10000
-
S 1000
G=
S
Q
g 100 -
S ™ MPI CUDA DP
8 M X10 CUDA DP
5 10 -
o
1 -

4x4x4x8 8x8x8x16 12x12x12x48 24x24x24x96
Problem Size (XxYXZxT)

Comparison of Productivity
with MPI CUDA

 Lines of code

— X10 CUDA version contains 1.92x larger lines of code
compared with MPI CUDA in total

* Since currently X10 CUDA cannot call device functions inside CUDA

kernels
MPI CUDA X10 CUDA
Total 4667 8942
Wilson Dirac 1590 6512

* Compiling time
— X10 CUDA takes 11.3x longer time to compile

MPI CUDA X10 CUDA
Compiling Time [sec] 15.19 171.50

Pros/Cons of X10 CUDA
from Our Study

* Advantages of X10 CUDA

— Straightforward porting from X10 to X10 CUDA

e Simply porting computation kernels into CUDA
* inserting memory copy operations between CPU and GPU

— X10 CUDA exhibits good weak scaling

* Drawbacks of current version of X10 CUDA
— Limitations of programmability
e X10 CUDA cannot call a function inside a kernel
— Limitations of performance

* finish-based synchronization incurs overhead
e X10 CUDA does not support creating CUDA streams

Related Work

* High performance large-scale lattice QCD computation

— Peta-scale lattice QCD on a Blue Gene/Q supercomputer
[Doi et al. 2012]

* Fully overlapping communication and applying node-mapping
optimization for BG/Q

e Lattice QCD using many-core accelerators
— QUDA: A QCD library on GPUs [Clark et al. 2010]

* Invokes multiple CUDA streams for overlapping

— Lattice QCD on Intel Xeon Phi [Joo et al. 2013]
* PGAS language extension for multi-node GPU clusters
— XcalableMP extension for GPU [Lee et al. 2012]

 Demonstrated their N-body implementation scales well

Conclusion

Conclusion
— GPUs accelerate lattice QCD significantly in APGAS
programming model

e X10 CUDA exhibits good scalability in weak scaling

* 19.4x speedup from X10 by using X10 CUDA on 32 nodes
of TSUBAME 2.5

— We reveal limitations in current X10 CUDA
* Performance overheads in strong scalability
* Increase of lines of code

Future work

— Performance improvement in strong scaling
 More detailed analysis of overheads in X10 CUDA

* Backup

Breakdown of Wilson-Dirac
Computation in X10 CUDA

e Communication becomes dominant when using more than 16 places
— A cause of the limit of strong scaling
e Possible ways to improve the scalability
— Applying one-to-one synchronization
— Improving communication and synchronization operations themselves in X10

70

- | B Gammab
— Bnd Set
(7]
E S0 - mmCopy CPUto GPU |
g 40 - B max(Bulk, Bnd) —
= ==-Bulk
30 u -
Q -e-Bnd (Make + Comm.)
820 - -
LLl

10 -

O m T T T T T 1

1 2 4 8 16 32
Number of Places

Comparison with Different Dimensions
of Lattice Partitioning

 Comparison between 4D and 1D partitioning
— 1D partitioning exhibits better strong scalability
— 1.35x better on 32 GPUs
— Still saturate using over 16 GPUs

Strong Scaling (24x24x24x96)
250

200

150

Gflops

«{=X10 CUDA SP
100

==X10 CUDA SP (div t)

50

0 5 10 15 20 25 30 35
Number of Nodes (= Number of GPUs)

Comparison with QUDA

e QUDA [1]: AQCD library on GPUs
— Highly optimized for GPUs

* QUDA exhibits better strong scalability
— Currently 30.4x slower in X10 CUDA

10000
1000
3 X10 CUDA DP (div t)
é’ 100)
[G) X10 CUDA SP (div t)
QUDA SP recon 18
10

QUDA SP recon 12

1 2 4 8 16 32
Number of Places (number of GPUs)

[1]: Clark, Michael A., et al. "Solving Lattice QCD systems of equations using mixed precision solvers on GPUs."
Computer Physics Communications 181.9 (2010): 1517-1528.

