A GPU Implementation of Generalized
Graph Processing Algorithm GIM-V

Koichi Shirahata™, Hitoshi Sato™"3,
Toyotaro Suzumura™l"2™3, Satoshi Matsuoka ™34

"1 Tokyo Institute of Technology
"2 |BM Research - Tokyo
“3 CREST, Japan Science and Technology Agency
“4 National Institute of Informatics

Large Scale Graph Processing with
GPGPU

B Million Users

* Emergence of Large Scale Graph = | Exponential growth:
— Wide ranges of applications 0 More than 400 million active users
* Medical services, SNS, Intelligence, Biology, .
Smart grid, Simulation T I
— The Large volume of available data, The low cost |i= =™ o= o REFE8E18888
of storage b i N e
B3 Linkecin 2 Lve © wagnoll 55 Mistor wong
. 13 Mix B Multiply ¥ MyWod 5 MySpace
— A need for fast processing of large scale graph [we swe s aue
1 spurt @ SumbleUpon ¥ Stylehive [Tallrank
. | | h i hod u -
Fast arge scale grapn processing methods
— I\/IapReduce <keyl, [vall, val3] >
. . . . a M Pamlel
* Peta-byte scale data processing by massive parallelization and oy A Reduce
automatic memory management S 1 Map ~./f <k:"d"'4> N
LA ,/ T* Reduce » N
* GIM-V (Generalized Iterative Matrix-Vector multiplication) ~ ,<,.~ :“eyhj;:”,f o Y
model is proposed as a graph processing model by e ot vy Shuffle o
MapRedUdce % - <key2, [val2] > ‘ ﬁ
G PG P U Filter Aggregation

* Fast processing by many cores and memory bandwidth
* Mars is proposed as a MapReduce system on GPU

— Fast large MapReduce graph processing with GPGPU

Problems of Large Scale Graph
Processing with GPGPU

* Applying GPU on MapReduce
processing model

— How much can MapReduce on GPU show

better performance than MapReduce on
CPU

 Handling on Large scale graph <

— Multi-GPU implementation

e Delay of communication between CPU-GPU, | GPU latency Size
GPU-GPU memory

— Cut of communication overhead is necessary
CPU
— Memory overflow memow
* Memory on GPU is lower than that of CPU

— ex) TSUBAME2.0 (GPU 3GB, CPU 54GB)
— Utilication of CPU memory and local storage
— Efficient management of memory hierarchy

Execution time of our CPU-based Graph Processing

* Significant performance overheads in map and shuffle stages

— The overheads may affect performance of graph processing with further larger size
— Could be accelerated by using GPU

* How much the applications can be accelerated using GPU is an open problem
— Advantages: massive amount of threads, memory bandwidth
— Uncertain factors: PCI-E overhead, performance of GPU-based algorithms

3000

2500
'How much GPU accelerates is
an open problem

N
-
-
o

Reduce

i Shuffle

Elapsed Time [ms]
[HY
Ul
o
o

Map

0 —
14 15 16 17 18 19 20
SCALE (Input Size)

Solution: Reduction of Amount of Data
Transfer Cost by Graph Partitioning

Investigation of effectiveness of using
GPU on MapReduce-based processing
model
— Comparison between existing
implementation
e Existing CPU-based implementation

* Optimal implementation which is not
based on MapReduce

Handling extremely large scale graph ‘
— Add amount of memory by using multi-
G P U S Ma([jeyi, [i/aH, val3] >
e Reduction of amount of data transfer cost ¢ eyt " I _Reduce 3/

4 lkeyl,vald> N
s/ 1 Map ~oy b
4

~ \
VAN \
¢ L7 eypval> ! Reduce M

— Utilization of local storage which is not oy Map £ e NN
=—=r.-" Shuffle)
memor .__ii <keyl, val3> ! A

y -’ - <key2, [val2] > ﬁ

* Read data in turn from file-system and Fiter Aggregation
give data to GPUs

* Scheduling for optimal data deployment 5

— Reduce transfer cost by graph partitioning

Goal and Contributions

e Goal
— Measurement of validity of a GPU graph processing

 Conclusions

— Acceleration using a GPU for Generalized graph
processing algorithm implemented on MapReduce

e 8.80 — 39.0x speedup compared to a Hadoop-based
implementation

e 2.72x speedup in Map stage than CPU-based
implementation

* Our GPU implementation introduces significant
performance overheads in Reduce stage

Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— V' =Mx.,v where
Vv';= assign(v;, combineAll; ({x; | j = 1..n, x;=
combine2(m,;, v))})) (i=1..n)

— Various graph applications can be implemented by defining above
3 functions

— GIM-V can be implemented using 2-stage MapReduce

> We implement GIM-V on existing GPU-based MapReduce
flamework (Mars)

assign J

’

Y, M

combine2

- combineAll

*1:Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 7

Structure of Mars

* Mars*!: an existing GPU-based MapReduce framework

— Map, Reduce functions are implemented as CUDA kernels
* Mapper/Reducer are called in increments of a GPU thread
* Map/Reduce Count — Prefix sum — Map/Reduce

— Shuffle stage executes GPU-based Bitonic Sort
— CPU-GPU communication at starting Map

- We extends Mars for a GPU GIM-V graph processing

Pre
process

- N Reduce
EED R prer [N
refix
- Sum - Reduce
Count . |

Reduce Stage

Sort

*1:Fang W. et al, “Mars: Accelerating MapReduce with Graphics Processors”, Parallel and Distributed Systems, 2011 8

GIM-V implementation on a GPU

GPU-based GIM-V implementation on top of
Mars

— Continuous execution feature of mult
MapReduce stages

e CPU-GPU communication at the start and the end of
each iteration

* Convergence test as a post processing

GPU Processing Scheduler

Preprocess Postprocess

Convergence - Write

Graph GIM-V Stage 1 ma GIM-V Stage 2

Partition

Experiments

* Questions
— Performance of our GIM-V implementation on a GPU
e Measurement method

— Mean time of 1 round of iterative graph processing
* Comparison with existing CPU implementation (PEGASUS)
* Comparison with CPU-based Mars

Adjacent matrix <key, value>
 Methods .
. . I
— Application ! Ih
 PageRank I)
— Measures relative importance of .
web pages X X
2 b
— Input data

Probabilities for adding edges

 Artificial Kronecker graph
— Generated by generator in Graph 500

* Parameters
— SCALE: the base 2 logarithm of #vertices
— #Hedges = #vertices x 16

10

Experimental environments

TSUBAME 2.0

— We use 1 GPU on 1 node
* CPU 6 cores x 2 sockets, 24 threads (HyperThread enabled)

— GPU
. CUDA Runcme vorsion: N T
* CUDA Runtime Version: 4.0 gH
e Compute Capability: 2.0 Model Intel® Xeon® X5670 Tesla M2050
* shared/L1 cache size: 64 KB # Physical cores 12 448
Mars Frequency 2.93 GHz 1.15 GHz
— MarsGPU Amount of 54 GB 2.7 GB (Global)
* 1GPU memory
e #threads = # different keys _
— 256 threads on a thread block ~ Compiler gcc4.3.4 nvce 3.2
— MarsCPU

e 24 threads / node
* implemented by C instead of CUDA
e Sortis implemented by parallel quick sort

PEGASUS
— Hadoop 0.21.0
— Lustre file system as DFS

11

Elapsed Time: Mars vs. PEGASUS -PageRank

* Compare mean elapsed time of each iteration for Mars, PEGASUS
(a Hadoop-based Graph Processing implementation)

* Marsis 8.80 — 39.0x faster than PEGASUS (8 mapper, 2 reducer / node)
— Map and Reduce are measured from task invocation on PEGASUS
— File 1/O occurs very often during Map and Reduce executions

1000000

100000 D——Q—_-D—__D’D’D/D

2 10000
@
£
£ 1000
o =&=Mars
(%)
- -
g 10 PEGASUS
10
1

14 15 16 17 18 19 20
SCALE

Elapsed Time [ms]

Mars vs. PEGASUS -Breakdown

 Map stage is highly accelerated by GPU

* |/O optimization between iterations
— PEGASUS conducts read/write |/O operations in each iteration
— Mars forwards output in Reduce to input in next Map

1000000

100000

10000

1000

100

10

.
-

I i Reduce
I I l “ Map

Mars GPU PEGASUS

Elapsed Time: MarsGPU and MarsCPU

* |n Map stage, MarsGPU is 2.72x faster than MarsCPU

* |n Reduce stage, MarsGPU introduces significant overheads

— The overhead derives from the characteristic of the graph
* We used Kronecker graph, which has considerable locality

Reduce

i Shuffle

Elapsed Time [ms]

Map

14 15 16 17 18 19 20 14 15 16 17 18 19 20
GPU CPU

Related Work

* Existing large-scale graph processing systems
— Pregel*! : BSP-oriented implementation using Master/Worker model
* Vertex centric model

— Parallel BGL*? : MPI-based C++ graph processing library

* Graph processing using GPU, MapReduce
— Shortest path algorithms for GPU*3
* Fast implementation of BFS, SSSP, and APSP algorithms
— MapReduce-based shortest path problems will be released in
Graph500 *# reference implementation
* MapReduce implementations on multi GPUs, multi nodes
— GPMR*> : MapReduce implementation on multi GPUs
— MapReduce-MPI*® : MapReduce library using MPI

— Efficient MapReduce-based graph processing using GPU

*1 : Malewicz, G. et al, “Pregel: A System for Large-Scale Graph Processing”, SIGMOD 2010.

*2 : Gregor, D. et al, “The parallel BGL: A Generic Library for Distributed Graph Computations”, POOSC 2005.
*3 : Harish, P. et al, “Accelerating large graph algorithms on the GPU using CUDA”, HiPC 2007.

*4 : David A. Bader et al, “The Graph 500 List”

*5 : Stuart, J.A. et al, “Multi-GPU MapReduce on GPU Clusters”, IPDPS 2011.

*6 : Plimpton, S.J. et al, “MapReduce in MPI for Large-scale Graph Algorithms”, Parallel Computing 2011.

Conclusions

e Conclusions

— Acceleration using a GPU for GIM-V
* 8.80 —39.0x speedup compared with PEGASUS
* 2.72x speedup in Map stage than MarsCPU

* MarsGPU introduces significant performance overheads in
Reduce stage

e Future work

— Optimization of our implementation
* Performance improvement in Shuffle and Reduce stages
 Multi GPU implementation

— Data handling for out of GPU memory
* Use local storage as well as CPU/GPU memories
e Efficient memory hierarchy management

Reduction of I/O between iterations

* Comparison between w/ and w/o disc |/O in each
Iiteration

1.6 —9.1x faster by reducing disc /0

Mars vs. Mars with Disc 1/0 Reduced (1GPU)

Elapsed Time [ms]

100000

10000

1000

100 -

10 -

1_

SCALE

“ Mars

& Mars (Disc I/0 Reduced)

17

