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Large Scale Graph Processing with
GPGPU

B Million Users

* Emergence of Large Scale Graph = | Exponential growth:
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* Fast processing by many cores and memory bandwidth
* Mars is proposed as a MapReduce system on GPU

— Fast large MapReduce graph processing with GPGPU




Problems of Large Scale Graph
Processing with GPGPU

* Applying GPU on MapReduce
processing model

— How much can MapReduce on GPU show

better performance than MapReduce on
CPU

 Handling on Large scale graph <

— Multi-GPU implementation

e Delay of communication between CPU-GPU, | GPU latency Size
GPU-GPU memory

— Cut of communication overhead is necessary
CPU
— Memory overflow memow
* Memory on GPU is lower than that of CPU

— ex) TSUBAME2.0 (GPU 3GB, CPU 54GB)
— Utilication of CPU memory and local storage
— Efficient management of memory hierarchy




Execution time of our CPU-based Graph Processing

* Significant performance overheads in map and shuffle stages

— The overheads may affect performance of graph processing with further larger size
— Could be accelerated by using GPU

* How much the applications can be accelerated using GPU is an open problem
— Advantages: massive amount of threads, memory bandwidth
— Uncertain factors: PCI-E overhead, performance of GPU-based algorithms
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Solution: Reduction of Amount of Data
Transfer Cost by Graph Partitioning

Investigation of effectiveness of using
GPU on MapReduce-based processing
model
— Comparison between existing
implementation
e Existing CPU-based implementation

* Optimal implementation which is not
based on MapReduce

Handling extremely large scale graph ‘
— Add amount of memory by using multi-
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* Read data in turn from file-system and Fiter Aggregation
give data to GPUs

* Scheduling for optimal data deployment 5

— Reduce transfer cost by graph partitioning



Goal and Contributions

e Goal
— Measurement of validity of a GPU graph processing

 Conclusions

— Acceleration using a GPU for Generalized graph
processing algorithm implemented on MapReduce

e 8.80 — 39.0x speedup compared to a Hadoop-based
implementation

e 2.72x speedup in Map stage than CPU-based
implementation

* Our GPU implementation introduces significant
performance overheads in Reduce stage



Large graph processing algorithm GIM-V

* Generalized Iterative Matrix-Vector multiplication™
— V' =Mx.,v where
Vv';= assign(v;, combineAll; ({x; | j = 1..n, x;=
combine2(m,;, v))})) (i=1..n)

— Various graph applications can be implemented by defining above
3 functions

— GIM-V can be implemented using 2-stage MapReduce

> We implement GIM-V on existing GPU-based MapReduce
flamework (Mars)

assign J

’

Y, M

combine2

- combineAll

*1:Kang, U. et al, “PEGASUS: A Peta-Scale Graph Mining System- Implementation
and Observations”, IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009 7




Structure of Mars

* Mars*!: an existing GPU-based MapReduce framework

— Map, Reduce functions are implemented as CUDA kernels
* Mapper/Reducer are called in increments of a GPU thread
* Map/Reduce Count — Prefix sum — Map/Reduce

— Shuffle stage executes GPU-based Bitonic Sort
— CPU-GPU communication at starting Map

- We extends Mars for a GPU GIM-V graph processing

Pre
process

- N Reduce
EED R prer [N
refix
- Sum - Reduce
Count . |

Reduce Stage

Sort

*1:Fang W. et al, “Mars: Accelerating MapReduce with Graphics Processors”, Parallel and Distributed Systems, 2011 8



GIM-V implementation on a GPU

GPU-based GIM-V implementation on top of
Mars

— Continuous execution feature of mult
MapReduce stages

e CPU-GPU communication at the start and the end of
each iteration

* Convergence test as a post processing

GPU Processing Scheduler

Preprocess Postprocess

Convergence - Write

Graph GIM-V Stage 1 ma GIM-V Stage 2

Partition




Experiments

* Questions
— Performance of our GIM-V implementation on a GPU
e Measurement method

— Mean time of 1 round of iterative graph processing
* Comparison with existing CPU implementation (PEGASUS)
* Comparison with CPU-based Mars

Adjacent matrix <key, value>
 Methods .
. . I
— Application ! Ih
 PageRank I )
— Measures relative importance of .
web pages X X
2 b
— Input data

Probabilities for adding edges

 Artificial Kronecker graph
— Generated by generator in Graph 500

* Parameters
— SCALE: the base 2 logarithm of #vertices
— #Hedges = #vertices x 16
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Experimental environments

TSUBAME 2.0

— We use 1 GPU on 1 node
* CPU 6 cores x 2 sockets, 24 threads (HyperThread enabled)

— GPU
. CUDA Runcme vorsion: N T
* CUDA Runtime Version: 4.0 gH
e Compute Capability: 2.0 Model Intel® Xeon® X5670 Tesla M2050
* shared/L1 cache size: 64 KB # Physical cores 12 448
Mars Frequency 2.93 GHz 1.15 GHz
— MarsGPU Amount of 54 GB 2.7 GB (Global)
* 1GPU memory
e #threads = # different keys _
— 256 threads on a thread block ~ Compiler gcc4.3.4 nvce 3.2
— MarsCPU

e 24 threads / node
* implemented by C instead of CUDA
e Sortis implemented by parallel quick sort

PEGASUS
— Hadoop 0.21.0
— Lustre file system as DFS
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Elapsed Time: Mars vs. PEGASUS -PageRank

* Compare mean elapsed time of each iteration for Mars, PEGASUS
(a Hadoop-based Graph Processing implementation)

* Marsis 8.80 — 39.0x faster than PEGASUS (8 mapper, 2 reducer / node)
— Map and Reduce are measured from task invocation on PEGASUS
— File 1/O occurs very often during Map and Reduce executions
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Elapsed Time [ms]

Mars vs. PEGASUS -Breakdown

 Map stage is highly accelerated by GPU

* |/O optimization between iterations
— PEGASUS conducts read/write |/O operations in each iteration
— Mars forwards output in Reduce to input in next Map
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Elapsed Time: MarsGPU and MarsCPU

* |n Map stage, MarsGPU is 2.72x faster than MarsCPU

* |n Reduce stage, MarsGPU introduces significant overheads

— The overhead derives from the characteristic of the graph
* We used Kronecker graph, which has considerable locality
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Related Work

* Existing large-scale graph processing systems
— Pregel*! : BSP-oriented implementation using Master/Worker model
* Vertex centric model

— Parallel BGL*? : MPI-based C++ graph processing library

* Graph processing using GPU, MapReduce
— Shortest path algorithms for GPU*3
* Fast implementation of BFS, SSSP, and APSP algorithms
— MapReduce-based shortest path problems will be released in
Graph500 *# reference implementation
* MapReduce implementations on multi GPUs, multi nodes
— GPMR*> : MapReduce implementation on multi GPUs
— MapReduce-MPI*® : MapReduce library using MPI

— Efficient MapReduce-based graph processing using GPU

*1 : Malewicz, G. et al, “Pregel: A System for Large-Scale Graph Processing”, SIGMOD 2010.

*2 : Gregor, D. et al, “The parallel BGL: A Generic Library for Distributed Graph Computations”, POOSC 2005.
*3 : Harish, P. et al, “Accelerating large graph algorithms on the GPU using CUDA”, HiPC 2007.

*4 : David A. Bader et al, “The Graph 500 List”

*5 : Stuart, J.A. et al, “Multi-GPU MapReduce on GPU Clusters”, IPDPS 2011.

*6 : Plimpton, S.J. et al, “MapReduce in MPI for Large-scale Graph Algorithms”, Parallel Computing 2011.



Conclusions

e Conclusions

— Acceleration using a GPU for GIM-V
* 8.80 —39.0x speedup compared with PEGASUS
* 2.72x speedup in Map stage than MarsCPU

* MarsGPU introduces significant performance overheads in
Reduce stage

e Future work

— Optimization of our implementation
* Performance improvement in Shuffle and Reduce stages
 Multi GPU implementation

— Data handling for out of GPU memory
* Use local storage as well as CPU/GPU memories
e Efficient memory hierarchy management



Reduction of I/O between iterations

* Comparison between w/ and w/o disc |/O in each
Iiteration

1.6 —9.1x faster by reducing disc /0

Mars vs. Mars with Disc 1/0 Reduced (1GPU)
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