Performance Analysis of
Lattice QCD Application with APGAS
Programming Model

Koichi Shirahata', Jun Doi?, Mikio Takeuchi?

1: Tokyo Institute of Technology
2: IBM Research - Tokyo

Programming Models for Exascale
Computing

« Extremely parallel supercomputers

— It is expected that the first exascale supercomputer will be deployed
by 2020

— Which programming model will allow easy development and high
performance is still unknown
« Programming models for extremely parallel supercomputers

— Partitioned Global Address Space (PGAS)

» Global view of distributed memory
» Asynchronous PGAS (APGAS)

— Highly Scalable and Productive Computing using APGAS
Programming Model

Problem Statement

« How is the performance of APGAS programming model
compared with existing massage passing model?
— Message Passing (MPI)

@) Good tuning efficiency
High programming complexity

— Asynchronous Partitioned Global Address Space
(APGAS)

@ High programming productivity, Good scalability
@ Limited tuning efficiency

MPI| (> FEEi:

Approach

« Performance analysis of lattice QCD application with
APGAS programming model

— Lattice QCD

» one of the most challenging application for supercomputers

— Implement lattice QCD in X10
e Port C++ |attice QCD to X10

 Parallelize using APGAS programming model

— Performance analysis of lattice QCD in X10
» Analyze parallel efficiency of X10

« Compare the performance of X10 with MPI

Goal and Contributions

e Goal

— Highly scalable computing using APGAS
programming model

 Contributions

— Implementation of lattice QCD application in X10
« Several optimizations on lattice QCD in X10
— Detailed performance analysis on lattice QCD in X10

» 102.8x speedup in strong scaling

 MPI performs 2.26x — 2.58x faster, due to the limited
communication overlapping in X10

Table of Contents

Implementation of lattice QCD in X10

— Lattice QCD application
— Lattice QCD with APGAS programming model

Evaluation

— Performance of multi-threaded lattice QCD
— Performance of distributed lattice QCD

Related Work
Conclusion

Lattice QCD

e Lattice QCD

— Common technique to simulate a field theory (e.g. Big Bang) of
Quantum ChromoDynamics (QCD) of quarks and gluons on 4D
grid of points in space and time

— A grand challenge in high-performance computing
* Requires high memory/network bandwidth and computational power

e Computing lattice QCD
— Monte-Carlo simulations on 4D grid

— Dominated by solving a system of linear equations of matrix-
vector multiplication using iterative methods (etc. CG method)

— Parallelizable by dividing 4D grid into partial grids for each place
* Boundary exchanges are required between places in each direction

Implementation of lattice QCD in X10

Fully ported from sequential C++ implementation

Data structure

— Use Rail class (1D array) for storing 4D arrays of
quarks and gluons
Parallelization

— Partition 4D grid into places
« Calculate memory offsets on each place at the initialization
« Boundary exchanges using asynchronous copy function
Optimizations
— Communication optimizations
« Overlap boundary exchange and bulk computations

— Hybrid parallelization
* Places and threads

Communication Optimizations

« Communication overlapping by using “asyncCopy” function
— “asyncCopy” creates a new thread then copy asynchronously
— Wait completion of “asyncCopy” by “finish” syntax

« Communication through Put-wise operations

— Put-wise communication uses one-sided communication while Get-wise
communication uses two-sided communication

« Communication is not fully overlapped in the current implementation
— “finish” requires all the places to synchronize

Barrier Synchronizations Boundary data creation

T Comp. < [l Bulk Multiplication
' i l . Boundary reconstruct

Time

Comm. 4 | | Boundary exchange
i B
i N

-

Hybrid Parallelization

* Hybrid parallelization on places and threads (activities)

* Parallelization strategies for places
— (1) Activate places for each parallelizable part of computation

— (2) Barrier-based synchronization
e Call “finish” for places at the beginning of CG iteration

E>We adopt (2) since calling “finish” for each parallelizable part of
computation causes increase of synchronization overheads
* Parallelization strategies for threads
— (1) Activate threads for each parallelizable part of computation

— (2) Clock-based synchronization
e Call “finish” for threads at the beginning of CG iteration

E>We adopt (1) since we observed “finish” performs better
scalability compared to the clock-based synchronization

10

Table of Contents

 Evaluation

— Performance of multi-threaded lattice QCD
— Performance of distributed lattice QCD

 Related Work
 Conclusion

Evaluation

* Objective
— Analyze parallel efficiency of our lattice QCD in X10
— Comparison with lattice QCD in MPI

* Measurements
— Effect of multi-threading

. Co&nparison of multi-threaded X10 with OpenMP on a single
node

« Comparison of hybrid parallelization with MPI+OpenMP

— Scalability on multiple nodes
« Comparison of our distributed X10 implementation with MPI
« Measure strong/weak scaling up to 256 places

« Configuration

— Measure elapsed time of one convergence of CG
method

 Typically 300 to 500 CG iterations
— Compare native X10 (C++) and MPI C

Experimental Environments

« |BM BladeCenter HS23 (Use 1 node for multi-threaded performance)

CPU: Xeon E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores) x2
sockets, SMT enabled

— Memory: 32 GB
— MPI: MPICH2 1.2.1
— g++:v4.4.6
— X10: 2.4.0 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)
— Compile option
* Native X10: -x10rt mpi -O -NO_CHECKS
* MPI C: -O2 -finline-functions —fopenmp
« |IBM Power 775 (Use up to 13 nodes for scalability study)
CPU: Power7 (3.84 GHz, 32 cores), SMT Enabled
— Memory 128 GB
— XIC_r:v12.1

— X10: 2.4.0 trunk r26346 (built with “-Doptimize=true -DNO_CHECKS=true”)

— Compile option
» Native X10: -x10rt pami -O -NO_CHECKS
« MPI C: -O3 —gsmp=omp

The lower the better

Performance on Single Place

Multi-thread parallelization (on 1 Place)
— Create multiple threads (activities) for each parallelizable part of

computation

— Problem size: (x,y, z, t) = (16, 16, 16, 32)
Results

— Native X10 with 8 threads exhibits 4.01x speedup over 1 thread

— Performance of X10 is 71.7% of OpenMP on 8 threads

— Comparable scalability with OpenMP

6

\/ ;

Scale [times]

87

Strong Scaling

——Native X10

(scale is based on performance on 1 thread of each impl.)
10 1

OpenMP

L — ideal

4.01x

_——

0 2 4 6

Number of threads

10

e

The higher the better

Elapsed time [sec]

100

80

[=2]
o

I
o

N
o

o

Elapsed Time

ONative X10
B0penMP

2 4
Number of threads

8

Performance on Difference Problem Sizes

» Performance on (x,y,z,t) = (8,8,8,16)
— Poor scalability on Native X10 (2.18x on 8 threads)

9
: 4
3 : ::__('\;‘::V(:A?o 35 ONative X10 |
n . - =] -
86 H —ideal - g 3 OpenMP
55 225 —
o E o || T 33.4% of OpenMP
3, il 2.18x %15 | 3
= m— 05 || BRE
0 L L L L 0 L 1 .:
0 2 4 6 8 10 1 2 4 8
Number of threads Number of threads
» Performance on (x,y,z,t) = (16,16,16,32)
— Good scalability on Native X10 (4.01x on 8 threads)
100
10
—®—Native X10 g0 || ONative X10 |
- 8 I —#—QOpenMP g BQOpenMP
£ 6 [T ideal 4.01x [5 60
> €
o 4 —= 2 40 71.7% of OpenMP
2 /é/ LR Fri
0 * * * * 0 x x x
0 2 4 6 8 10 1 2 4 8

Number of threads Number of threads

Performance on D

» Performance on (x,y,z,t) = (8,8,8,16)
— Poor scalability on Native X10 (2.18x on 8 threads)

Scale [times]

O = N W P ooy 0 ©

4
— —®— Native X10 35
— —®— OpenMP < '3
— ideal = o
g 25
s 2
el 2.18x 15
. — g 4
e — =
1 1 0

o

4 6 8 10
Number of threads

» Performance on (x,y,z,t) = (16,16,16,32)

10

87

Scale [times]

— Good scalability on Native X10 (4.01x on
100
—®—Native X10
80
—®—OpenMP E‘
|| —ideal 401x | = 60
£
/é/ £ 2
‘ ‘ ‘ ‘ 0
0 2 4 6 8 10

Number of threads

ifference Problem Sizes

I
| Breakdown
] \ /[
N — 33.4% \/OpenMP
1 2 4 8
Number of threads
8 threads)
- ONative X10 | |
BQ0penMP
1 2 4 8

Number of threads

Performance Breakdown on Single Place

« Running on Native X10 with multi-threads suffers from significant overhead of
— Thread activations (20.5% overhead on 8 threads)
— Thread synchronizations (19.2% overhead on 8 threads)

— Computation is also slower than that on OpenMP (36.3% slower)

Time Breakdown on 8 thread

(Consecutive elapsed time of 460 CG steps, in xp-way computation)

Time

Sync (OpenMP) Sync (Native x10)

Elapsed time [ms]
20 40 60 68.41 go 100 120 140 151.4160

\N_
SRS 1| Activation overhead ===
BA HERARARAR

o
:’j B2 —————— Synchronization overhead
2 (19.2%)
= é
T
o 0 B Activate
£ 1 Computational performance BComp
F oo 2| (36.3% slower)
Z 3
C |
2 4|
© 5|
6 |
=

Comparison of Hybrid Parallelization
with MPI| + OpenMP

Hybrid Parallelization Fix (#Processes) x (# Threads) = 16
— Comparison with MPI 7 35000
Measurement 8| o000 e
— Use 1 node (2 sockets of E ézoooo \W
8 cores, SMT enabled) 2;, S 1500 <
— Vary # Processes and # Threads - § 5000
s.t. (#Processes) x (# Threads) F 0
. 1x16 2x8 4x4 8x2 16 x 1
IS constant \/ (# Processes) x (# Threads)
Best performance when Fix (#Processes) x (# Threads) = 32
(# Pro.cesses, # Threads). = L o -
(4, 4) in MPI, and (16, 2) in X10 I \ R |
o 8 _ 30000 \ /\\ ——MPI C
— 2 threads per node exhibits best ¢ || £ 25000 7 X10 |
performance ‘é £ 20000 \ —_—
— 1 thread per node also exhibits S || § ")
similar performance as 2 threads ,5\/ 2 o ~

1x32 2x16 4x8 8 x4 16 x 2 32 x 1
(# Processes) x (# Threads)

Table of Contents

— Performance of distributed lattice QCD
 Related Work

 Conclusion

= X10 Implementation

Comparison with MP]

 Compare the performance of X10 Lattice QCD with our
MPI-based lattice QCD

— Point-to-point communication using MPI_Isend/Irecv
(no barrier synchronizations)

Barrier Synchronizations

é,
X:
Y. []
Z.
MPI Implementation Boundary data creation
. H - Comp. < [JJi] Bulk Multiplication
X: - . Boundary reconstruct
Y: Comm. { Boundary exchange

Time

20

Strong Scaling: Comparison with MPI

e

The higher the better
Relative Performance [times]

Measurement on IBM Power 775 (using up to 13 nodes)

— Increase #Places up to 256 places (19-20 places / node)
» Not using hybrid parallelization

— Problem size: (x, y, z, t) = (32, 32, 32, 64)

Results
— 102.8x speedup on 256 places compared to on 1 place
— MPI exhibits better scalability

N
(&)
o

N
o
o

ol
o

o
o

(&)
o

o

» 2.58x faster on 256 places compared to X10

—*—MPI
X10

50 100 150 200
Number of Places

250

300

The lower the better

Elapsed Time [ms]

Strong Scaling | Problem size: (x, v, z, t) = (32, 32, 32, 64)

1200000

1000000

800000

600000

400000

200000

0

Elapsed Time

4

8 16 32
Number of Places

64 128 256

Effect of Communication Optimization

 Comparison of Put-wise and Get-wise communications
— Put: “at” to source place, then copy data to destination place
— Get: “at” to destination place, then copy data from source place

— Apply communication overlapping (in Get-wise communication)
— Multiple copies in a finish

= Simple in X10 (Put, Get) Barrier Synchronizations
67
T — N /R
X: i
Y: m |
Z.
= Overlap in X10 (Get overlap)
T] h Boundary data creation
X] Comp. < [Bulk Muttiplication
y: [] . Boundary reconstruct
Z: = comm. {'|__| Boundary exchange

Time 22

The higher the better

Results:
Effect of Communication Optimization

« Comparison of PUT with GET in communication

— PUT performs better strong scaling

* Underlying PUT implementation in PAMI uses one-sided communication
while GET implementation uses two-sided communication

Strong Scaling | Problem size: (x, v, z, t) = (32, 32, 32, 64) | Elapsed Time

120 ¢ 1200000
g L XoPuT | BX10 PUT
g 100 X10 GET A 1000000 | L
=) —&—X10 GET overlap jq:; é BX10 GET
9 80 © o 800000 [BX10 GET overlap|—
s // < S
©) .
£ 60 < || % 600000 H
© // o) %
o 40 2 || 8 400000 |
o o T}
£ 20 - 2
kS < 200000
m K
0 L L 0 L]
L 0 50 100 150 200 250 300 . 9 4 8 16 32 64 128 256

Number of Places Number of Places

Weak Scaling: Comparison with MPI

Measurement on IBM Power 775
— Increase #Places up to 256 places (19-20 places / node)
— Problem size per Place: 131072 ((x, vy, z, t) = (16, 16, 16, 32))

Results

e

es]

The higher the better

m

Scale [ti

200

180
160
140

N
o

100
80
60
40
20

— 97.5x speedup on 256 places
— MPI exhibits better scalability

» 2.26x on 256 places compares with X10
* MPI implementation performs more overlapping of communication

Problem size per Place: 131072 Elapsed Time

Weak Scaling
- —*—MPI
- = X10 —
97.5x |
-
d 7i
0 ” 1 1 1
0 50 100 150 200 250

Number of Places

300

The lower the better

—

Elapsed Time [ms]

250000

200000

150000

100000

50000

0

OMPI
1 ®X10

1 2 4 8 16 32 64 128 256
Number of Places

Table of Contents

 Related Work
 Conclusion

Related work

« Peta-scale lattice QCD on a Blue Gene/Q supercomputer [1]

— Fully overlapping communication and applying node-mapping
optimization for BG/Q

* Performance comparison of PGAS with MPI [2]

— Compare the performance of Co-Array Fortran (CAF) with MPI on
micro benchmarks

« Hybrid programming model of PGAS and MPI [3]

— Hybrid programming of Unified Parallel C (UPC) and MPI, which
allows MPI programmers incremental access of a greater amount of
memory by aggregating the memory of several nodes into a global

address space

[1]: Doi, J.: Peta-scale Lattice Quantum Chromodynamics on a Blue Gene/Q supercomputer

[2]: Shan, H. et al.:A preliminary evaluation of the hardware acceleration of the Cray Gemini Interconnect for PGAS
languages and comparison with MPI

[3]: Dinan, J. et al: Hybrid parallel programming with MPI and unified parallel C

Conclusion

Summary
— Towards highly scalable computing with APGAS programming model
— Implementation of lattice QCD application in X10
 Include several optimizations
— Detailed performance analysis on lattice QCD in X10
« 102.8x speedup in strong scaling, 97.5x speedup in weak scaling

* MPI performs 2.26x — 2.58x faster, due to the limited
communication overlapping in X10

Future work

— Further optimizations for lattice QCD in X10
» Further overlapping by using point-to-point synchronizations
» Accelerates computational parts using GPUs

— Performance analysis on supercomputers
« IBM BG/Q, TSUBAME 2.5

Source Code of Lattice QCD in X10
and MPI

 Available from the following URL

— https://svn.code.sourceforge.net/p/x10/code/
applications/trunk/LatticeQCD/

Backup

APGAS Programming Model

« PGAS (Partitioned Global Address Space)
programming model

— Global Address Space

» Every thread sees entire data set

— Partitioned
» Global address space is divided to multiple memories

« APGAS programming model
— Asynchronous PGAS (APGAS)

* Threads can be dynamically created under programmer control

— X10 is a language implementing APGAS model
* New activity (thread) is created dynamically using “async” syntax

« PGAS memories are called Places (Processes)
— Move to other memory using “at” syntax

« Threads and places are synchronized by calling “finish” syntax

Existing Implementation of Lattice
QCD in MPI

» Partition 4D grid into MPI processes

— Boundary data creation => Boundary
exchange => Bulk update

« Computation and communication overlap

— Overlap Boundary exchange and Boundary/
Bulk update

* Hybrid parallelization
— MPI + OpenMP

Effect of Communication Optimization

= Simple in X10 (Put-wise) Barrier Synchronizations

T e | m

= Overlap in X10 (Get-wise overlap)

O O
X: — -
Y: -
Z.

= Overlap in MPI Boundary data creation
T - Comp. < [JJi] Bulk Multiplication
X: - . Boundary reconstruct
Y: Comm. { Boundary exchange
Z. =

Time 32

The lower the better

Hybrid Performance on Multiple
. Hybrid Parallelization on mulipb NS €S

 Measurement
— Use up to 4 nodes
— (# Places, # Threads) = (32, 2) shows best performance
* (# Places, # Threads) = (8, 2) per node

Elapsed Time on multiple threads

Ebpsed Tme [ms]

120000
100000
80000
60000
40000
20000
0

—
N

\‘\

——X10 1thread
—=—X10 2threads
X10 4threads
X10 8threads
——X10 16threads
—— X 10 32threads

———

1 2 4 8 16 32
Num ber of P lces

Performance of Hybrid Parallelization on Single Node

Hybrid Parallelization
— Places and Threads
Measurement

— Use 1 node (2 sockets of
8 cores, HT enabled)

— Vary # Places and #
Threads from 1 to 32 for
each

Best performance when
(# Places, # Threads) = (16, 2)

Best balance when
(# Places) x (# Threads) = 32

The lower the better

The lower the better

Thread Scalability (Elapsed Time)

—
(%]

Elpsed Time [m

90000
80000
70000
60000
50000
40000
30000
20000
10000

0

—

~

N

-\M
=

1 Thread 2 Threads

4 Threads

8 Threads 16 Threads 32 Threads

——1Phce
-=—2 P hces
4 P hces
8 P hces
—*—16 P hces
—=— 32 P hces

Place Scalability (Elapsed Time)

—
(%]
E

Elpsed Time

90000
80000
70000
60000
50000
40000
30000
20000
10000

——1 Thread
—=—2 Threads
4 Threads
8 Threads
——16 Threads
—=— 32 Threads

1P lhce 2 P laces

4 P laces 8 P laces

16 P laces 32 P laces

The lower the better

Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

Compile option for native x10: -x10rt mpi -O -NO_CHECKS

Lattice <o \TNOUTGIIT)

Time breakdown of Lattice QCD (non-overlapping version)

Communication overhead causes the performance saturation
— Communication overhead increases in proportion to the number of nodes
— Communication ratio increases in proportion to the number of places

Elapsed Time

600000
= 500000
£
> 400000
= 300000
ie)
© 900000
g
i 100000
0

Tme breakdown on (16,16,16,32) ushg 4 nodes

I: B comm

O comp

4

8 16 32 64 128
Number of P ces

Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

t - Compile option for native x10: -x10rt mpi -O -NO_CHECKS

| attice < LNZTOTIT)
» Time breakdown of a pa@o corrgp:ugion In a?fr{glle-#nis 4, 128 places

— Significant degradation on 128 places compared to 64 places
— Similar behavior on each place between using 64 places and 128 places
— Hypothesis: invocation overhead of “at async” and/or synchronization overhead of “finish”

Elapsed Time on 64 places fon 4 nodes
80000
70000 f]
60000
L. 50000
finish 40000 1

Elpsed tine [ns]

e A

1 3 5 7 91113151719 212325 2729 31 333537 39414345 47 49 51 535557 59 61 63
P lace D

Elapsed Time on 128 places fn 4 nodes

finish = 40000 |
2 30000 -
19565270 ns |2 - 0000 il O | A
0000 ||‘| Il l |M|‘| i |‘| |M|‘|| ||‘| |‘| | ||‘|M| I |‘| |‘|| | ||M| | ||‘| |M| | ||M| i T| |‘| |‘|| |‘| |‘|
I L

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127
P lace D

Lattice

Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

Compile option for native x10: -x10rt mpi -O -NO_CHECKS

X ULY \T\NVUITLIIT)

« at v/s asyncCopy on data transfer
— asyncCopy performs 36.2% better when using 2 places (1 place / node)

The lower the better

Elapsed Time

E bpsed tme [ms]

16000
14000
12000
10000
8000
6000
4000
2000

LattceQCD on 2phces ushg MP1

O send

at

asyncC opy

