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Programming Models for Exascale
Computing

« Extremely parallel supercomputers

— It is expected that the first exascale supercomputer will be deployed
by 2020

— Which programming model will allow easy development and high
performance is still unknown
« Programming models for extremely parallel supercomputers

— Partitioned Global Address Space (PGAS)

» Global view of distributed memory
» Asynchronous PGAS (APGAS)

— Highly Scalable and Productive Computing using APGAS
Programming Model




Problem Statement

« How is the performance of APGAS programming model
compared with existing massage passing model?
— Message Passing (MPI)

@) Good tuning efficiency
High programming complexity

— Asynchronous Partitioned Global Address Space
(APGAS)

@ High programming productivity, Good scalability
@ Limited tuning efficiency

MPI| (> FEEi:




Approach

« Performance analysis of lattice QCD application with
APGAS programming model

— Lattice QCD

» one of the most challenging application for supercomputers

— Implement lattice QCD in X10
e Port C++ |attice QCD to X10

 Parallelize using APGAS programming model

— Performance analysis of lattice QCD in X10
» Analyze parallel efficiency of X10

« Compare the performance of X10 with MPI




Goal and Contributions

e Goal

— Highly scalable computing using APGAS
programming model

 Contributions

— Implementation of lattice QCD application in X10
« Several optimizations on lattice QCD in X10
— Detailed performance analysis on lattice QCD in X10

» 102.8x speedup in strong scaling

 MPI performs 2.26x — 2.58x faster, due to the limited
communication overlapping in X10
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Lattice QCD

e Lattice QCD

— Common technique to simulate a field theory (e.g. Big Bang) of
Quantum ChromoDynamics (QCD) of quarks and gluons on 4D
grid of points in space and time

— A grand challenge in high-performance computing
* Requires high memory/network bandwidth and computational power

e Computing lattice QCD
— Monte-Carlo simulations on 4D grid

— Dominated by solving a system of linear equations of matrix-
vector multiplication using iterative methods (etc. CG method)

— Parallelizable by dividing 4D grid into partial grids for each place
* Boundary exchanges are required between places in each direction




Implementation of lattice QCD in X10

Fully ported from sequential C++ implementation

Data structure

— Use Rail class (1D array) for storing 4D arrays of
quarks and gluons
Parallelization

— Partition 4D grid into places
« Calculate memory offsets on each place at the initialization
« Boundary exchanges using asynchronous copy function
Optimizations
— Communication optimizations
« Overlap boundary exchange and bulk computations

— Hybrid parallelization
* Places and threads



Communication Optimizations

« Communication overlapping by using “asyncCopy” function
— “asyncCopy” creates a new thread then copy asynchronously
— Wait completion of “asyncCopy” by “finish” syntax

« Communication through Put-wise operations

— Put-wise communication uses one-sided communication while Get-wise
communication uses two-sided communication

« Communication is not fully overlapped in the current implementation
— “finish” requires all the places to synchronize

Barrier Synchronizations Boundary data creation
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Hybrid Parallelization

* Hybrid parallelization on places and threads (activities)

* Parallelization strategies for places
— (1) Activate places for each parallelizable part of computation

— (2) Barrier-based synchronization
e Call “finish” for places at the beginning of CG iteration

E>We adopt (2) since calling “finish” for each parallelizable part of
computation causes increase of synchronization overheads
* Parallelization strategies for threads
— (1) Activate threads for each parallelizable part of computation

— (2) Clock-based synchronization
e Call “finish” for threads at the beginning of CG iteration

E>We adopt (1) since we observed “finish” performs better
scalability compared to the clock-based synchronization

10
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Evaluation

* Objective
— Analyze parallel efficiency of our lattice QCD in X10
— Comparison with lattice QCD in MPI

* Measurements
— Effect of multi-threading

. Co&nparison of multi-threaded X10 with OpenMP on a single
node

« Comparison of hybrid parallelization with MPI+OpenMP

— Scalability on multiple nodes
« Comparison of our distributed X10 implementation with MPI
« Measure strong/weak scaling up to 256 places

« Configuration

— Measure elapsed time of one convergence of CG
method

 Typically 300 to 500 CG iterations
— Compare native X10 (C++) and MPI C



Experimental Environments

« |BM BladeCenter HS23 (Use 1 node for multi-threaded performance)

CPU: Xeon E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores) x2
sockets, SMT enabled

— Memory: 32 GB
— MPI: MPICH2 1.2.1
— g++:v4.4.6
— X10: 2.4.0 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)
— Compile option
* Native X10: -x10rt mpi -O -NO_CHECKS
* MPI C: -O2 -finline-functions —fopenmp
« |IBM Power 775 (Use up to 13 nodes for scalability study)
CPU: Power7 (3.84 GHz, 32 cores), SMT Enabled
— Memory 128 GB
— XIC_r:v12.1

— X10: 2.4.0 trunk r26346 (built with “-Doptimize=true -DNO_CHECKS=true”)

— Compile option
» Native X10: -x10rt pami -O -NO_CHECKS
« MPI C: -O3 —gsmp=omp



The lower the better

Performance on Single Place

Multi-thread parallelization (on 1 Place)
— Create multiple threads (activities) for each parallelizable part of

computation

— Problem size: (x,y, z, t) = (16, 16, 16, 32)
Results

— Native X10 with 8 threads exhibits 4.01x speedup over 1 thread

— Performance of X10 is 71.7% of OpenMP on 8 threads

— Comparable scalability with OpenMP
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Performance on Difference Problem Sizes

» Performance on (x,y,z,t) = (8,8,8,16)
— Poor scalability on Native X10 (2.18x on 8 threads)
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Performance on D

» Performance on (x,y,z,t) = (8,8,8,16)
— Poor scalability on Native X10 (2.18x on 8 threads)
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Performance Breakdown on Single Place

« Running on Native X10 with multi-threads suffers from significant overhead of
— Thread activations (20.5% overhead on 8 threads)
— Thread synchronizations (19.2% overhead on 8 threads)

— Computation is also slower than that on OpenMP (36.3% slower)

Time Breakdown on 8 thread

(Consecutive elapsed time of 460 CG steps, in xp-way computation )
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Comparison of Hybrid Parallelization
with MPI| + OpenMP

Hybrid Parallelization Fix (#Processes) x (# Threads) = 16
— Comparison with MPI 7 35000
Measurement 8| o000 e
— Use 1 node (2 sockets of E ézoooo \W
8 cores, SMT enabled) 2;, S 1500 <
— Vary # Processes and # Threads - § 5000
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. 1x16 2x8 4x4 8x2 16 x 1
IS constant \/ (# Processes) x (# Threads)
Best performance when Fix (#Processes) x (# Threads) = 32
(# Pro.cesses, # Threads). = L o -
(4, 4) in MPI, and (16, 2) in X10 I \ R |
o 8 _ 30000 \ /\\ ——MPI C
— 2 threads per node exhibits best ¢ || £ 25000 7 X10 |
performance ‘é £ 20000 \ —_—
— 1 thread per node also exhibits S || § " )
similar performance as 2 threads ,5\/ 2 o ~

1x32 2x16 4x8 8 x4 16 x 2 32 x 1
(# Processes) x (# Threads)



Table of Contents

— Performance of distributed lattice QCD
 Related Work

 Conclusion



= X10 Implementation

Comparison with MP]

 Compare the performance of X10 Lattice QCD with our
MPI-based lattice QCD

— Point-to-point communication using MPI_Isend/Irecv
(no barrier synchronizations)

Barrier Synchronizations

é,
X:
Y. [ ]
Z.
MPI Implementation Boundary data creation
. H - Comp. < [JJi] Bulk Multiplication
X: - . Boundary reconstruct
Y: Comm. { Boundary exchange

Time

20



Strong Scaling: Comparison with MPI

e

The higher the better
Relative Performance [times]

Measurement on IBM Power 775 (using up to 13 nodes)

— Increase #Places up to 256 places (19-20 places / node)
» Not using hybrid parallelization

— Problem size: (x, y, z, t) = (32, 32, 32, 64)

Results
— 102.8x speedup on 256 places compared to on 1 place
— MPI exhibits better scalability
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Effect of Communication Optimization

 Comparison of Put-wise and Get-wise communications
— Put: “at” to source place, then copy data to destination place
— Get: “at” to destination place, then copy data from source place

— Apply communication overlapping (in Get-wise communication)
— Multiple copies in a finish

= Simple in X10 (Put, Get) Barrier Synchronizations
67
T — N /R
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The higher the better

Results:
Effect of Communication Optimization

« Comparison of PUT with GET in communication

— PUT performs better strong scaling

* Underlying PUT implementation in PAMI uses one-sided communication
while GET implementation uses two-sided communication
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Weak Scaling: Comparison with MPI

Measurement on IBM Power 775
— Increase #Places up to 256 places (19-20 places / node)
— Problem size per Place: 131072 ((x, vy, z, t) = (16, 16, 16, 32))

Results
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— 97.5x speedup on 256 places
— MPI exhibits better scalability

» 2.26x on 256 places compares with X10
* MPI implementation performs more overlapping of communication
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Related work

« Peta-scale lattice QCD on a Blue Gene/Q supercomputer [1]

— Fully overlapping communication and applying node-mapping
optimization for BG/Q

* Performance comparison of PGAS with MPI [2]

— Compare the performance of Co-Array Fortran (CAF) with MPI on
micro benchmarks

« Hybrid programming model of PGAS and MPI [3]

— Hybrid programming of Unified Parallel C (UPC) and MPI, which
allows MPI programmers incremental access of a greater amount of
memory by aggregating the memory of several nodes into a global

address space

[1]: Doi, J.: Peta-scale Lattice Quantum Chromodynamics on a Blue Gene/Q supercomputer

[2]: Shan, H. et al.:A preliminary evaluation of the hardware acceleration of the Cray Gemini Interconnect for PGAS
languages and comparison with MPI

[3]: Dinan, J. et al: Hybrid parallel programming with MPI and unified parallel C



Conclusion

Summary
— Towards highly scalable computing with APGAS programming model
— Implementation of lattice QCD application in X10
 Include several optimizations
— Detailed performance analysis on lattice QCD in X10
« 102.8x speedup in strong scaling, 97.5x speedup in weak scaling

* MPI performs 2.26x — 2.58x faster, due to the limited
communication overlapping in X10

Future work

— Further optimizations for lattice QCD in X10
» Further overlapping by using point-to-point synchronizations
» Accelerates computational parts using GPUs

— Performance analysis on supercomputers
« IBM BG/Q, TSUBAME 2.5



Source Code of Lattice QCD in X10
and MPI

 Available from the following URL

— https://svn.code.sourceforge.net/p/x10/code/
applications/trunk/LatticeQCD/



Backup



APGAS Programming Model

« PGAS (Partitioned Global Address Space)
programming model

— Global Address Space

» Every thread sees entire data set

— Partitioned
» Global address space is divided to multiple memories

« APGAS programming model
— Asynchronous PGAS (APGAS)

* Threads can be dynamically created under programmer control

— X10 is a language implementing APGAS model
* New activity (thread) is created dynamically using “async” syntax

« PGAS memories are called Places (Processes)
— Move to other memory using “at” syntax

« Threads and places are synchronized by calling “finish” syntax



Existing Implementation of Lattice
QCD in MPI

» Partition 4D grid into MPI processes

— Boundary data creation => Boundary
exchange => Bulk update

« Computation and communication overlap

— Overlap Boundary exchange and Boundary/
Bulk update

* Hybrid parallelization
— MPI + OpenMP



Effect of Communication Optimization

= Simple in X10 (Put-wise) Barrier Synchronizations

T e | m

= Overlap in X10 (Get-wise overlap)

O O
X: — -
Y: -
Z.

= Overlap in MPI Boundary data creation
T - Comp. < [JJi] Bulk Multiplication
X: - . Boundary reconstruct
Y: Comm. { Boundary exchange
Z. =

Time 32




The lower the better

Hybrid Performance on Multiple
. Hybrid Parallelization on mulipb NS €S

 Measurement
— Use up to 4 nodes
— (# Places, # Threads) = (32, 2) shows best performance
* (# Places, # Threads) = (8, 2) per node

Elapsed Time on multiple threads
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Performance of Hybrid Parallelization on Single Node

Hybrid Parallelization
— Places and Threads
Measurement

— Use 1 node (2 sockets of
8 cores, HT enabled)

— Vary # Places and #
Threads from 1 to 32 for
each

Best performance when
(# Places, # Threads) = (16, 2)

Best balance when
(# Places) x (# Threads) = 32

The lower the better

The lower the better
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The lower the better

Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

Compile option for native x10: -x10rt mpi -O -NO_CHECKS

Lattice <o \TNOUTGIIT)

Time breakdown of Lattice QCD (non-overlapping version)

Communication overhead causes the performance saturation
— Communication overhead increases in proportion to the number of nodes
— Communication ratio increases in proportion to the number of places
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Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

t - Compile option for native x10: -x10rt mpi -O -NO_CHECKS

| attice < LNZTOTIT)
»  Time breakdown of a pa@o corrgp:ugion In a?fr{glle-#nis 4, 128 places

— Significant degradation on 128 places compared to 64 places
— Similar behavior on each place between using 64 places and 128 places
— Hypothesis: invocation overhead of “at async” and/or synchronization overhead of “finish”
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Lattice

Xeon(Sandy bridge) E5 2680 (2.70GHz, L1=32KB, L2=256KB, L3=20MB, 8 cores, HT ON) x2
DDR-3 32GB, Red Hat Enterprise Linux Server 6.3 (2.6.32-279.€16.x86_64)

X10 trunk r25972 (built with “-Doptimize=true -DNO_CHECKS=true”)

g++:44.7

Compile option for native x10: -x10rt mpi -O -NO_CHECKS

X ULY \T\NVUITLIIT)

« at v/s asyncCopy on data transfer
— asyncCopy performs 36.2% better when using 2 places (1 place / node)

The lower the better
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