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Abstract—Non-blocking communications are widely used
in parallel applications for hiding communication overheads
through overlapped computation and communication. While
most of the existing implementations provide a non-blocking
version of point-to-point communications, there is no portable
and efficient implementation of non-blocking collectives, partly
because application execution contexts need to be interrupted
by dependent communications. This paper presents a portable
and efficient user-level implementation technique of non-blocking
communications. It allows users to design non-blocking collectives
by declaring their operations and dependencies using provided
APIs without being concerned with complicated management of
their progression. While user-level implementations can be less
efficient than kernel-level ones due to the cost of OS context
switches, we solve this problem by employing the Marcel user-
level light-weight thread library when invoking communication
operations. More specifically, each communication operation is
mapped to one Marcel thread and scheduled to be executed when
each operation’s dependencies are satisfied by certain events.
All executable operations and main user thread are executed
simultaneously without any explicit invocations. Performance
evaluations with microbenchmarks demonstrate the effectiveness
of our proposed technique. Compared to existing OS-thread
based method, it reduces CPU load to less than 10% while
achieving similar level of communication latencies. We also
discuss and compare the descriptive power of internal expressions
for non-blocking communications.

I. INTRODUCTION

In parallel applications, there is a growing need for non-
blocking collective communication. While the growing scale
of high performance computing systems allows for higher
compute performance, it is becoming more challenging to
efficiently perform collective communication in such large-
scale environments. This problem is further amplified by the
growing performance gap of computation and intra- and inter-
node data movement. Non-blocking collective communication
can alleviate the problem by allowing the programmer to
overlap communication with computation so as to effectively
hide the communication time.

In the next version of the MPI standard, MPI 3.0, non-
blocking collective communication APIs is being planned

as a part of the standard [1]. However, those APIs cannot
be implemented in a straightforward way as was the case
for non-blocking point-to-point communication, due to the
problem of progression [2], [3]. Progression of a collective
communication is the process of performing point-to-point
communications that are part of the collective communication.
Realizing progression with minimum CPU overheads while
achieving optimal data transfer performance is the most impor-
tant challenge in implementing non-blocking collective com-
munication. More specifically, progression can be a source of
significant CPU overheads because of the complex interactions
of communication event handling and OS scheduling involved
in processing of the data dependencies among point-to-point
communications.

Past attempts in implementing non-blocking collective com-
munication had performance problems because of the pro-
gression. LibNBC [4] is a reference implementation of non-
blocking collective communication in the upcoming MPI 3.0
specification. It however consumes significant CPU resources
because of its straightforward thread-based approach, and fur-
thermore its communication performance is much slower than
existing collective blocking communication implementations.
Our past work, KACC, is a more efficient implementation
in that it offloads the progression to the OS kernel in order
to reduce communication latency and CPU consumption [3].
However, since the original KACC uses Linux kernel modules,
which require system administrator’s privileges, it is signif-
icantly limited in terms of applicability to a wide variety
of computing environments, and in fact would be practically
impossible to introduce such a module into large-scale pro-
duction supercomputers. OS kernel-level implementations are
also limited in that there is no appropriate and secure way to
implement user-defined reduction operations into the kernel-
mode context. For the same reason, it is hard to implement
collective communication routines for user-defined types.

In this paper, we extend our previous work and propose
a new design and implementation of non-blocking collective
communication library, uKACC, that is entirely implemented



as a user-level program. The uKACC has the same APIs
as the original KACC so that new collective communication
algorithms can be introduced without modifying KACC it-
self. In order to process the progression efficiently, uKACC
employs the Marcel user-level thread library [5], [6] and the
PIOMan [7] communication scheduler, which are part of the
NewMadeleine communication library [8]. Compared to Lib-
NPBC, the light-weight thread scheduling of Marcel allows for
significant reduction of the overhead caused by the scheduling
of progression threads and main computation threads. Its fine-
grained thread priority control reduces the delay in scheduling
communication threads so that the overall application per-
formance can be improved. Furthermore, uKACC provides
a more powerful mechanism to express complex collective
communication algorithms than the LibNBC’s API. For exam-
ple, unlike LibNBC, the start timing of each communication
primitive is not bound to a specific timing group. Such a
restriction often results in inefficient communication behavior
with combination of rendezvous communication.

We compare each method in the performance of non-
blocking broadcast. Our uKACC executes non-blocking col-
lective communication almost as fast as the explicit progres-
sion method without thread under normalized result. In certain
case of TSUBAME2.0, uKACC consumed less than 10%
of CPU time while LibNBC consumes more than 70%. We
also compare uKACC to original OS kernel-based KACC.
UKACC does not outperform original KACC, but marks
comparable performance without the restriction of OS kernel
implementation.

II. RELATED WORK

A. Software based non-blocking collective communication

LibNBC [4], [9] is a reference implementation of non-
blocking collective communication routines in the upcoming
MPI 3.0 specification. The earlier version of LibNBC required
users to call the library periodically, but this strategy was
abandoned later because it cannot ensure that the progression
is executed in a sufficient frequency [2]. The current version
of LibNBC employs Pthreads to progress their collective
communications written in MPI, but does not ensure that
communication threads are always prioritized over other ap-
plication threads because of the limited priority control in
Pthreads. More specifically, while Pthreads allows for spec-
ifying priority of individual threads, but it is not possible to
make arbitrary threads to have higher priority than the prefixed
default. The Pthreads-based implementation works well in
some cases, because blocking in MPI calls are considered
less CPU consuming compared to user calculations and thus
OS scheduler prioritizes communication threads. However, in
other cases, MPI library employs polling to wait for com-
munication completion; in this case, both the communication
thread and user computation thread exhibits high CPU load
and OS scheduler cannot prioritize the threads appropriately.
This leads to inefficient CPU usage and inappropriate context
switch timing, resulting in high latencies in message transmis-
sions and overall performance loss.

A new non-blocking collective I/O interface is proposed by
Venkatesan et al. [10] They extend the non-blocking collective
communication in MPI 3.0 by relaxing constraints that the
amount of data transfer is known a-priori by all MPI processes.
In blocking collective communication, allgather is often used
to exchange the amount of data before calling collective
communication. In non-blocking collective communication,
however, this might become a bottleneck.

We have proposed KACC [3] that is based on a kernel-level
implementation of progression routines. In our previous imple-
mentation, we eliminated communication threads by moving
its functionality into OS kernel’s interrupt handlers and tasklets
invoked by the handlers, and demonstrated its effectiveness
in improving efficiency. However, kernel-level implementation
brings some limitation which will be discussed in the next
section. Schneider also proposed a kernel-level implementation
of non-blocking collective communication, named GOAL [11],
which is similar to our kernel-level implementation with the
same limitations.

B. Hardware assisted non-blocking collective communication

Some network interconnects allow for offloading of col-
lective communication operations such as barrier [12]. Such
hardware-aided solutions, while limited to a small subset
of MPI collective routines, are likely to give better per-
formance than pure software-based implementations. In In-
finiBand network, more complicated non-blocking collective
communications, such as all-to-all [13] and allreduce [14],
are implemented using InfiniBand’s management queue [15].
Our uKACC currently does not use such hardware offloading
engines, but can be extended for potentially better performance
such that it transparently employs hardware mechanisms when
available while keeping the same user API for better portabil-
ity.

III. ISSUES

A. Inefficiencies in Thread-based Progression Implementa-
tions

There are two known approaches in implementing pro-
gression in non-blocking collective communication: having
the user call progression routine explicitly, or creating pro-
gression threads. The former approach requires the user to
call routines such as MPI_Test periodically after issuing
collective communication in order to issue dependent point-
to-point communication operations. However, it is impractical
to assume that this requirement is always satisfied, and when
there are no API calls made during computation, non-blocking
communication cannot progress during computation without
any overlapping. This in effect almost nullifies the original
intent of non-blocking collective communication.

The latter approach implements progression in different
execution contexts than main computation threads so that it
does not rely on the explicit progression by the programmer.
However, this approach causes another problem where the
extra threads can conflict with the main application threads for
CPU usage when MPI applications use the same number of



threads or processes as the number of CPU cores, resulting in
frequent context switches between the communication threads
and user threads. This scheduling problem can be mitigated by
setting their priority; however, the Pthreads library does not
support fine-grained scheduling policies for progression, and
the priority APIs in operating systems usually do not have
features to give higher priority to specific threads compared
to the main thread. Therefore, we cannot guarantee that the
communication thread is always called at appropriate timings,
which results in the slowdown of communication and ineffi-
cient CPU time consumption as we will demonstrate.

B. Inefficiencies in LibNBC’s algorithm description

In the LibNBC library [9], collective communication algo-
rithms are described in the Collective Schedule structure. The
schedule consists of multiple rounds to express dependencies
among the point-to-point communications. The round is a
set of point-to-point communications and reduction operations
which can be executed simultaneously. The operations in
different rounds may not be executed simultaneously, and
thus may have data dependencies. Operations in each round
are scheduled to be executed after the completion of all the
operations in the previous round.

This round-based method may degrade performance of
pipeline-style implementations of collective communications
as follows. It is possible to improve performance when trans-
ferring large messages by splitting them into small pieces to
overlap the receive and transfer, and in fact, the broadcast
algorithm in LibNBC for large messages employs this pipeline
strategy. In this algorithm, the messages are divided into n
small pieces and each piece is transmitted sequentially in a
chain topology. On each intermediate node, transfer of kth
piece must be executed after the reception of kth piece due
to data dependency, while kth send and (k + 1)th receive can
be done simultaneously and therefore can be packed into a
single round. In LibNBC’s collective schedule structure, these
dependencies are expressed as putting each operation into
different rounds.

The performance of this round-based, pipeline-style broad-
cast suffers from the fact that sending messages before calling
corresponding receive APIs is often inefficient. This is the
case both for two well-known sending strategies, eager com-
munication and rendezvous communication [16]. Generally,
when a message arrives before the issue of MPI_Recv or its
siblings, MPI library cannot determine which memory part to
store the incoming message. In eager communication strategy,
the MPI library will allocate memory for such unexpected
messages and store the content into temporary buffers, and
the content is copied after calling receive APIs. In rendezvous
communication strategy, often employed for larger messages,
the sender asks the receiver whether the corresponding receive
API has been issued and postpones the transfer if it is not
ready. Thus, sending messages before calling corresponding
receive API results in extra cost in both cases.

In the pipeline-style algorithm, this send-before-receive
problem tends to occur for the following reason. In this

algorithm, a round that contains kth receive begins almost the
same time as the round contains kth send in the previous node,
because both of them begin just after finishing the k − 1th
communication. In this case, the send-before-receive problem
can occur in some probability because of jitters in message
handling. However, this restriction is unessential in description
of algorithm, because the receiver’s buffer is ready before fin-
ishing the previous round of communication and the memory
address of receive buffer can be determined. The cause of
the problem is that LibNBC’s collective schedule structure
does not permit to issue receive operations beforehand because
they cannot distinguish whether each receive operation has
an actual dependency or fake dependency. Thus the round-
based pipeline broadcast tends to suffer from slowdown. We
eliminate this problem by using Algorithm Design Graph as
described later.

C. Unfavorable use of OS Kernel modules

The problem in Pthreads-based approaches can be solved by
employing the operating system communication and schedul-
ing components for managing progression. For example, the
KACC library offloads progression to OS kernel’s interrupt
handler and OS kernel threads [3], and is demonstrated
to ensure optimal scheduling among main computation and
communication threads. However, requiring a custom ker-
nel extension prohibits applicability of such an approach in
many of production computing systems, including large-scale
shared supercomputers, where the advantage of non-blocking
communication is more highlighted. In addition, handling all
operations in the OS kernel context brings several difficulties.
For example, it is difficult to allow user-defined reduction
operations and types since OS kernel module code cannot be
changed in each execution of user programs. This can be real-
ized by allowing the user-defined code to be called back from
OS kernel code. It would however nullify all the performance
gains in kernel-level implementations. Furthermore, floating
point arithmetic operations in reductions can also be a problem
since kernel mode contexts in Linux are not expected to use
floating point registers.

IV. DESIGN AND IMPLEMENTATION

The user-level KACC, uKACC, is based on the kernel-
level KACC, but does not rely on kernel modules. KACC
consists of three parts described in Figure 1: the API Layer,
the Progress Engine, and the P2P Layer. The latter two layers
are originally implemented as an OS kernel module using
tasklets, which are kernel-level threads in Linux. In uKACC,
we implement the same functionality on top of the Marcel
light-weight user-level thread library [5], [6] and the PIOMan
communication scheduler [7], both of which are being de-
veloped at INRIA Bordeaux. We design uKACC within the
MadMPI library, which is an MPI implementation provided
in the NewMadeleine communication library [8], [17]. In
MadMPI, all communications are managed by PIOMan and
all threads are managed by Marcel.
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Fig. 1. KACC Facility

A. Algorithm Design Graph

In order to express collective communication algorithms, the
KACC has Algorithm Design Graph (ADG), which allows for
expressing dependency trees among point-to-point communi-
cations and calculations in collective communications. With
ADG, collective communication algorithms can be expressed
as directed acyclic graphs (DAGs). Each DAG node represents
either a point-to-point communication (SEND or RECV) or a
reduction operation (CALC), and is connected by edges that
represent dependencies among nodes. There are two special
nodes, START and END, which are the common source and
sink, respectively.

ADG allows for expressing arbitrary dependencies among
point-to-point communications in collective communications.
As receive operations can be issued independently from send
operation’s dependencies, we can avoid the timing problems
described in Section III-B. The original KACC employed
ADG to pass the algorithm design from user processes to the
KACC OS kernel module, and the same facility is also used
in uKACC to manage collective communication algorithm and
its progress.

B. KACC API to Manipulate ADG

KACC provides API to express collective communications.
Users can manipulate ADG structure and tell KACC to execute
and query for its completion using the following API:
Init()

Creates a new ADG for collective communication.
Make{Send|Recv|Calc}Node()

Creates ADG nodes for SEND, RECV and CALC,
respectively.

ConnectNode(A, B)
Adds the dependency edge from node A to node B.
START and END nodes are pre-defined.

Issue()
Tells KACC to start communication.

Query()
Queries KACC whether the operation has been com-
pleted.

START

SEND[0]→#2

SEND[1]→#2

SEND[n]→#2

END

RECV[0]←#0

RECV[1]←#0

RECV[n]←#0

�

�

�

Fig. 2. ADG tree of Pipeline-Style Broadcast Algorithm

1 /* Initializing ADG Structure */
2 nbc = Init();
3 sprev = START;
4 for (i = 0; i < n; i++) {
5 /* Making Recv and Send Node */
6 rn = MakeRecvNode(nbc, addr[i], fragsize, prevrank);
7 ConnectNode(nbc, START, rn);
8 sn = MakeSendNode(nbc, addr[i], fragsize, nextrank);
9 ConnectNode(nbc, rn, sn);

10 ConnectNode(nbc, sprev, sn);
11 ConnectNode(nbc, sn, END);
12 }
13 ConnectNode(nbc, sprev, END);
14 /* Issuing NB Coll */
15 req = Issue(nbc);

Fig. 3. ADG API Example

For example, an ADG tree corresponding to a pipeline-
style broadcast algorithm in rank #1 node is shown in Figure
2. In ADG API, each MPI process generates its own AGD
tree independently, and all communication primitives and their
dependencies related to the process are placed in the tree. This
tree is generated by the code shown in Figure 3.

C. Progression Using Marcel Thread Library

In order to process non-blocking collective communication
in the background of main application threads, we employ
light-weight user-level threads provided by Marcel. It has sim-
ilar APIs to Pthreads, but implements multithreading without
OS context switches at the user level. Each Marcel thread does
not have its own execution context in the underlying operating
system, but is scheduled on Virtual Processors(VPs), which
are Marcel’s abstractions of execution contexts. Since VPs are
implemented as user-level components, the cost of managing
Marcel threads such as creation and destruction is relatively
smaller than that of Pthreads.

In uKACC, each ADG node is mapped into a Marcel thread.
Each Marcel thread is started when the corresponding ADG
node becomes ready. The threads for the first nodes in ADG
are scheduled to run immediately when the collective com-
munication is issued. Each ADG node has reference count of
preceding dependencies and it is decremented by the progress
engine at the end of each predecessor thread’s operation. When
the reference count of dependent nodes reaches zero, which
means that the corresponding ADG node is ready to run,
the Marcel thread is scheduled to run. The completion of
the overall collective operation can be checked by using the
reference count of END node.
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D. P2P Layer and PIOMan Communication Scheduler

We use the NewMadeleine communication library and the
PIOMan communication scheduler to execute each point-to-
point communication. The aim of the P2P layer is to execute
point-to-point communication as fast as possible and to wake
up Progress Engine at appropriate timings. In uKACC, we
use MadMPI’s MPI_Send and MPI_Recv functions in the
Progress Engine’s thread. Marcel-enabled PIOMan creates
a waiting queue of Marcel threads, and activates a thread
when its dependent message arrives. This feature enables
optimal scheduling between communication threads and user
computations.

V. EVALUATION

A. Evaluation Scenario

We measure the effectiveness of our user-level implementa-
tion of non-blocking collective communication in uKACC. In
our benchmark, one non-blocking broadcast involving all MPI
processes is initially issued, and then a fixed size computation
is executed on each node in a repeated fashion. At the end
of each computation, a process queries whether the collective
communication is finished, and if not, repeats the computation
until so. We measure the length of time taken for the non-
blocking collective communication as well as the time for
the entire computation during the overlapped computation-
communication phase (Figure 4). We employ BLAS dgemm()
routine for fixed-size calculation, and we also measure the
time required for calculation without background collective
communication, repeating the computation the same number
of times as that was for the collective communication, and use
that as a baseline on how much CPU resource is being used
purely for calculation, and how much is spent for the other
parts, namely communication and thread switching.

B. Evaluation Environments and Target Algorithm

We evaluated our systems on two machines, the TSUB-
AME2.0 supercomputer cluster and the Tateyama cluster.
TSUBAME2.0 is a large-scale production supercomputer at
Tokyo Institute of Technology, being fifth fastest on the
Top500 as of November, 2011. TSUBAME2.0 embodies dual-
rail QDR Infiniband, and as such has tremendous network
injection bandwidth, supported by very fast CPUs supporting
up to 24 Intel Hyper-Threads per node. However, since TSUB-
AME2.0 is a production machine, the users are never given
root privileges, and moreover, installation of arbitrary OS ker-
nel module to the nodes is very difficult unless it is shown to be

TABLE I
SPECIFICATION OF EVALUATION CLUSTERS

TSUBAME2.0 Tateyama
CPU Xeon X5670 Opteron 2212HE
CPU Frequency 2.93 GHz 2.0 GHz
CPU Cores 2 socket x 6 core x 2 HT 2 socket x 2 core
Hyper threading Enabled N/A
Memory 54GB 4GB
OS Linux 2.6.32(SuSE EL) Linux 2.6.32(RHEL 6)
Network 2 x Infiniband QDR Gigabit Ethernet

fully tested and debugged, and with widespread benefit to the
2000 or so user base. On the other hand Tateyama is an older
laboratory-owned private cluster at the University of Tokyo,
and there we have administrator privileges to install arbitrary
OS kernel modules. We evaluated the user-level approach,
namely uKACC, LibNBC and manual progression, on both
TSUBAME and Tateyama, while the kernel-level approach
was executed on Tateyama for comparisons with our original
kernel-level implementation KACC. The specifications of the
machines are described in Table I.

For uKACC we use the MadMPI MPI library, which is
a part of NewMadeleine and also upon which uKACC is
dependent. Unfortunately, we are forced to use OpenMPI for
LibNBC, because we were unable to make LibNBC work on
MadMPI. Because different MPI implementations would ex-
hibit non-uniform baseline performances, in order to conduct a
fair assessment on how much overhead is actually incurred by
the collectives, we pre-measure each MPI implementation for
its non-blocking point-to-point communication performance,
and use that as a baseline to normalize the result,

In MadMPI, we use the following compile options (excerpt):

pkg marcel --enable-keys
--enable-maintainer_mode
--disable-static --with-topo=mono

pkg pioman --with-marcel
pkg nmad --with-pioman --enable-mpi

In this setting, Marcel does not use Pthread to execute their
threads in parallel, but executes them with its own time-sharing
scheduling, with blocking communication information being
derived from PIOMan. We explicitly designate a CPU core
for each MPI process using MadMPI’s launcher’s option or
numactl command to avoid contention between processes on
the same node. To be more specific, we assigned one physical
CPU core to each MPI process, that is 12 processes per node
in TSUBAME2.0 and 4 processes per node in Tateyama.

C. Evaluation Results

We measured the execution time and CPU consumption for
non-blocking broadcast of 1.25MB data for the four systems
being compared: uKACC is our implementation running in
MadMPI, LibNBC is the Pthread-based implementation run-
ning on OpenMPI, MadMPI and OpenMPI are manual MPI
point-to-point based implementations for the corresponding
MPIs, requiring explicit and periodic calls of progression
routines. The algorithms of collective communication are
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identical over all the systems: 1D chain pipeline broadcasting.
Here, the root node divides the messages into small pieces
and sends each piece to the next node sequentially, while an
intermediate node relays a received piece immediately after
reception. In uKACC, the ADG tree of this algorithm on the
intermediate node #1 is shown in Figure 2. In LibNBC, each
kth send and the successive k + 1th receive on the node are
placed into the same round as described in section III-B where
we must have the receive be issued before the corresponding
send. In the manual MPI implementations, all MPI_Irecv
receive requests are issued at the beginning of a non-blocking
broadcast, and the progression routine is called periodically. In
the progression routine, completion of the uncompleted receive
with the smallest index is queried for, and if completion is
detected, then the corresponding MPI_Isend is issued.

The execution time for non-blocking broadcast is shown in
figure 5. As described above, the relative difference in the MPI
implementation performance is apparent, where OpenMPI is
generally an order of magnitude faster than MadMPI, requir-
ing normalization for fair comparison. When we normalize
uKACC and libNBC with respect to the manual MPI non-
blocking point-to-point API implementation as is shown in
Figure 6, we see that uKACC is far superior to LibNBC,
almost matching that of the manual MPI implementations.

CPU usage ration is also compared in figure 7. This shows
that uKACC and manual MPI consume much less CPU than
LibNBC. We attribute the difference in how the asynchronous
messages are treated, either by the kernel or using threads
with differing scheduling strategies. For manual MPI, non-
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blocking communication is issued in the computation thread
and is executed in the background, while no threads dedicated
for communication is created. For LibNBC, a communication
thread is created at the beginning of collective communi-
cation for each rank, and all communications are issued
as non-blocking in the respective thread. Each communi-
cation thread in turn waits for completion of the commu-
nication immediately after it is issued, effectively blocking
with MPI_Waitany. However, many MPI libraries including
OpenMPI wait for the communication completion by polling
instead of the blocking wait in functions like MPI_Waitany
for better performance, because the CPU core is considered to
be available to use. In this case, this polling wait consumes the
CPU core which should be used by overlapping computation
and it leads to performance degradation. On the other hand, for
uKACC each communication is mapped into a Marcel thread
and each thread issues the communication as blocking wait.
Internally within NewMadeleine, the blocking communication
is implemented as non-blocking communication immediately
followed by waiting for the request. Although this would
seem similar to LibNBC case, the MPI library does not
misunderstand availability of CPU core, because for PIOMan
the communication library and scheduler mutually know the
communication state of each thread, and acts appropriately.
More specifically in NewMadeleine, the PIOMan communi-
cation scheduler knows the relationship between threads and
messages, and can schedule execution of a thread just after the
arrival of the message it is waiting for. On the other hand, in
Pthread, no such relationship exists, resulting in the anomalous
behavior described above.

The same experiment conducted with varying message sizes
on TSUBAME2.0 using 48 processes are shown in Figures 8, 9
and 10. The uKACC exhibited almost the same execution time
compared to manual MPI implementations in the worst case,
and if fact 24.2% faster for small message size of 12.5KB.
Contrastingly, LibNBC shows substantial overhead, even for
small message sizes. We believe the reasons for this could
be twofold: one could be that the thread creation and context
switching cost is far larger for LibNBC, incurring constant
overhead. The other reason could be that the difference in
performance of MadMPI and OpenMPI might be deflating
the relative overhead incurred for uKACC. However, the latter
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might not hold, as the increase in execution time for uKACC
is clearly visible for small message sizes whereas for LibNBC
the increase is rather minimal. In fact the manual OpenMPI
performance is rising sharply; this would indicate that LibNBC
would seem less responsive to the performance variance of the
underlying MPI.

D. Comparison to Kernel-mode Implementation

We compared the performance between uKACC and the
original KACC on the Tateyama cluster using 32 processes
(Figures 11, 12 and 13). Comparing execution time is some-
what difficult due to the performance instability introduced
by thread scheduling. As kernel-mode KACC employs Linux
tasklet, its performance is very stable, whereas uKACC and
LibNBC exhibits larger variance. Overall, however, the relative
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execution time is in the same ballpark. Another indicator is the
CPU consumption ratio, where the consumption by uKACC
is much smaller than that of LibNBC, and is being slightly
higher than KACC. The results show that the OS kernel based
implementation by all means is the best choice in terms of
performance, but our uKACC implementation in user space
can be competitive.

VI. CONCLUSION

We showed inefficiencies in the Pthread-base implementa-
tion of non-blocking collective communications. OS thread
scheduler which does not have a knowledge of waiting mes-
sage of blocking threads produces large CPU overhead and
communication delay. Inefficient message handling caused by
the design of collective communication algorithm description



also makes the communication slower. In order to show
the potential of faster and light-weight implementations of
non-blocking collective communication, uKACC is proposed.
In uKACC, communication algorithm is expressed in de-
pendency graph to provide maximum level of expressive-
ness. Non-blocking collective communications are handled in
communication-aware thread scheduler and are scheduled with
appropriate timings.

We evaluated uKACC by comparing communication time
and CPU consumption during non-blocking collective commu-
nication. Our uKACC performed better compared to LibNBC
in large-scale production supercomputer, TSUBAME2.0, and
comparable to kernel-based implementation of our predecessor
KACC.

Current implementation depends on a specific MPI and
communication library, MadMPI in NewMadeleine. Therefore,
it cannot be used with arbitrary MPI implementations such
as OpenMPI and MPICH2. It is an open problem whether
provides portable implementation of KACC, independent of
both OS kernel and base MPI library.

The other open problem is performance. Currently, the
communication layer in uKACC is based upon MadMPI, but
NewMadeleine has internal interfaces that can be used to
implement the non-blocking collective communication, and
how much we could exploit them to eliminate the potential
overhead we are incurring for the MadMPI layer is not clear.
Eventually, we should establish the minimal requirement of
communication thread and its scheduler and implement them
in a portable fashion so that we can adapt to any MPI imple-
mentations without potential overhead. In addition to that, our
P2P layer should be extended to employ interconnect-specific
communication offloading mechanisms, such as InfiniBand’s
management queue, to treat communication more efficiently.
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