Design of Kernel-level Asynchronous Collective
Communication

Akihiro Nomura'! and Yutaka Ishikawa!

Dept. of Computer Science, Graduate School of Information Science and Technology,
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, JAPAN
nomura@il.is.s.u-tokyo.ac. jp
ishikawa@is.s.u-tokyo.ac.jp

Abstract. Overlapping computation and communication, not only point-
to-point but also collective communications, is an important technique
to improve the performance of parallel programs. Since the current non-
blocking collective communications have been mostly implemented using
an extra thread to progress communication, they have extra overhead due
to thread scheduling and context switching. In this paper, a new non-
blocking communication facility, called KACC is proposed to provide
fast asynchronous collective communications. KACC is implemented in
the OS kernel interrupt context to perform non-blocking asynchronous
collective operations without an extra thread. The experimental results
show that the CPU time cost of this method is sufficiently small.
keywords: Non-blocking collective communication, Linux kernel

1 Introduction

In parallel applications, the performance and efficiency of communications of-
ten dominate the performance of the whole calculation. In addition to blocking
point-to-point communication APIs in the MPI (Message Passing Interface) [5],
some APIs for non-blocking communication, such as MPI_Isend and MPI_Irecv,
are defined. Non-blocking communication allows calculations to continue during
communication. This enables the MPI processes to overlap between calculation
and communication.

MPI also defines collective communication APIs, such as MPI_Reduce and
MPI Bcast, to perform the conventional sets of communications easily and ef-
ficiently. The users of the MPI library do not need to know what is going on
during the collective communication. The MPI library offers the most efficient
algorithms for the requested collective communication with regard to the commu-
nication size, topology, and other information. Both APIs are used to efficiently
perform the communication.

In the current version of MPI, due to the lack of non-blocking collective com-
munication APIs, users must implement non-blocking communications in order
to perform the collective communications asynchronously. For example, in the
HPL [8] implementation, a non-blocking version of MPI _Bcast was implemented,

but it is hard to maintain the code due to the complexity of the collective al-
gorithms and a mixture of communication and computation routines. Further-
more, the code might be inefficient in some topologies because the broadcast
algorithm is based on some assumed network topology. Thus, the introduction
of non-blocking collective communication APIs to the MPI standard has been
discussed.

In the next version of the MPI standard, MPI 3.0, non-blocking collective
communication APIs are to be introduced. There is a reference implementation
of those APIs, LibNBC [2,3]. In the implementation, non-blocking communi-
cation operations are implemented using threads for communication progress.
The thread implementation has two limitations. Firstly, if an extra thread that
performs communications is introduced, it consumes CPU resources due to the
overhead of both task scheduling and context switching. For example, if an MPI
application runs on an eight-core cluster in which each process runs on each
CPU core, sixteen threads are created. Eight threads are for processes, and the
other eight threads are for communication progress. This means that the execu-
tion of those threads is multiplexed. Secondly, since the timing of communica-
tion progress depends on the task scheduling in the operating system, it is not
guaranteed that the progress thread runs immediately when the communication
processing is ready when a message arrives.

In this paper, a new non-blocking collective communication facility, called
KACC, is designed and implemented to overcome the limitations described
above. KACC is implemented in the OS kernel interrupt context in order to per-
form the non-blocking collective operations without an extra thread. Since the
communication progress is handled when a message arrives, there is no delay in
the progress, and no extra context switching overhead is introduced. The facility
has been implemented as a kernel module with a user-level library in the Linux
kernel. KACC is evaluated by a benchmark which uses non-blocking broadcast
algorithm. The benchmark reveals how much the non-blocking broadcast oper-
ation contributes to overlapping communication and computation. Four imple-
mentations of the non-blocking broadcast operation are considered: a tree-based
broadcast operation written in MPI, a non-blocking point-to-point operation; a
tree-based broadcast operation written in KACC; a pipeline-based broadcast op-
eration written in the threads; and a pipeline-based broadcast operation written
in KACC.

The CPU waste time depends how often the application program examines
the completion of the non-blocking operations. The results of the benchmarks
show that 97 % of CPU time is lost in LibNBC, while only 31.8 % of CPU time
is lost in KACC during a high frequency of examinations. The total execution
time of non-blocking collective operation is also improved. The result shows that
the execution time in KACC is 79 to 101% of that in LibNBC.

2 Issues

Implementation of non-blocking collective communications is not trivial due to
progressions. Most of the implementations of collective communications consist
of the set of point-to-point communications that are connected by data depen-
dencies. Progression is the procedure to connect these point-to-point communica-
tions. The MPI library must issue the communication when all of the dependent
communications are completed in order to continue collective communication.
Two implementations have been introduced so far: thread implementation and
explicit progression.

Thread Implementation The straightforward solution to this problem is cre-
ating a thread for communication and performing progression in this thread.
An example of this method is used in the LibNBC implementation [3]. The ad-
vantage of this method is that the communication will execute asynchronously
to computation that runs on another thread. Theoretically, the communication
thread runs independently from the computation thread, and the progression is
always executed at the appropriate timing.

However, the real situation is different due to the limitation of the number of
CPU cores. The user usually spawns the same number of MPI processes as the
number of CPU cores, because the user often assumes that all cores can be used
for computation. In this situation, if the MPI library makes the communication
thread, the number of active threads exceeds the number of cores. This results
in frequent context switches among these threads. If the context switches are
performed by the operating system, and the OS does not know about the de-
pendencies among these threads, then the timing of context switches might not
be optimal. This will result in waste of CPU time and delay of communications.

Explicit Continuation Another way to implement non-blocking communica-
tions instead of creating communication threads is to implement the progressions
in the MPI library, that is, the progression of collective communications is only
done within the MPI functions, such as MPI_Test and MPI Wait, when invoked
by the application program. This method does not create any threads, and thus
the context switching problem does not happen.

On the other hand, the progression is not processed if the application does
not call any MPI functions. This results in no overlapping computation and
communication, that is, although a non-blocking collective communication has
been posted, the communication does not progress during the computation. If the
program waits for the completion of the non-blocking collective communication
by issuing MPI_Wait when computation is completed, the progression starts. If
the user calls the progression too frequently to avoid missing progression timing,
this results in a loss of CPU time.

This kind of explicit progression method is used in some MPI applications.
For example, in the Linpack benchmark program, non-blocking broadcast is im-
plemented using non-blocking send and receive primitives. For example, during

local computation, Linpack polls whether the broadcast has been completed
using the MPI_Test primitive.

3 Design

In order to solve both the frequent context switching and false asynchronization
problems at the same time, the KACC facility is designed and implemented in
this paper. In KACC, the progression routine is implemented as an OS kernel’s
soft-interrupt handler. In this method, the number of threads does not increase,
because the progression routine does not have a thread context, and it is called at
the appropriate time by the kernel interrupt handler instead of the OS scheduler.

3.1 Collective algorithm design

Splitting the collective algorithm from the kernel module is important to design
new collective algorithms. However, it becomes a security hole if the program bi-
naries described in the user-level program can be passed to kernel space directly.
Instead of sending binary, a data structure, called a CAD (Collective Algorithm
Design) structure, is introduced to describe the collective algorithms. The MPI
library creates the CAD structure and passes the structure to the kernel module.

Collective communication algorithms can be mapped to directed acyclic graphs
which shows dependencies among the point-to-point and reductive operations
[3,6]. In the CAD structure, collective algorithms are expressed using these graph
structures instead of the binary program. There are three types of nodes: SEND,
RECV, and CALC. The SEND and RECV nodes represent communication. These
nodes contain information required for communication: address of data, data
size, rank of sender or receiver, and tag information to match the messages. The
CALC node represents calculation in the MPI reduction function, such as MPI_Sum
and MPI_Max. This node contains information about the reductive calculation op-
erator, memory address, size, and data type. The edges between nodes denote
dependencies between each operation.

A CAD, describing a collective algorithm, is created and executed using the
following API:

— InitCADQ): creates new CAD

MakeSendNode (), MakeRecvNode (), MakeCalcNode(): creates CAD nodes
for SEND, RECV and CALC, respectively

ConnectNode (A, B): marks the dependency edges from node A to node B
START and END nodes are pre-defined

IssueCAD(Q): tells the system to start communication

— QueryCAD(): queries to system whether the operation has been completed

An example of a CAD structure, representing a non-blocking broadcast al-
gorithm, is shown in Figure 1. This structure is generated at rank 1 by the
user-level code shown in Figure 2. Note that in this broadcast implementation,
each SEND/RECV node sends/receives a fragment of the message. The message

0 ~NO O WN -

/* Initializing CAD Tree */
cad = InitCAD();

/* Making RO and SO Node */

rn = MakeRecvNode(cad, addr[0],
ConnectNode(cad, START, rn);

sn = MakeSendNode(cad, addr[0],
ConnectNode(cad, rn, sn);
ConnectNode(cad, sn, END);

/* Making R1 and S1 Node */

rn = MakeRecvNode(cad, addr[1],
ConnectNode(cad, START, rn);

sn = MakeSendNode(cad, addr[1],
ConnectNode(cad, rn, sn);
ConnectNode(cad, sn, END);

/* Making Rn and Sn Node */

rn = MakeRecvNode(cad, addr[n],
ConnectNode(cad, START, rn);

sn = MakeSendNode(cad, addr[n],
ConnectNode(cad, rn, sn);
ConnectNode(cad, sn, END);

/* Issuing CAD Tree */

req = IssueCAD(cad);

fragsize,

fragsize,

fragsize,

fragsize,

fragsize,

fragsize,

0);

2);

0);

2);

0);

2);

Fig. 1. CAD tree example

Fig. 2. Code generating CAD Tree

is stored in the addr memory area that is defined as an array for simplicity.
In the code shown in Figure 2, a data structure to store CAD tree is allocated
by InitCAD in line 2 at first. Then, RECV and SEND nodes for each fragment
are created by MakeRecvNode and MakeSendNode. Each RECV/SEND node has
corresponding SEND/RECV node which is created by the code in corresponding
rank. After that, each SEND/RECV nodes and special START and END nodes are
connected using ConnectNode to form dependencies shown in Figure 1. Finally,
the CAD tree is fixed and sent to the KACC system using IssueCAD in line 23.
The progression routine, which will be introduced in the following section, starts
communication in CAD tree at this time. The user can query the completion of
issued CAD using QueryCAD.

4 Implementation

4.1 Structure of KACC System

As shown in Figure 3, the KACC facility consists of three layers: the CAD API,
the Progress Engine (PE), and the point-to-point (P2P) communication inter-
face. The latter two layers are implemented inside the Linux kernel as a kernel
module. The CAD API described in the previous section is implemented as a
user-level library. Using the API, the CAD structure is created in a special mem-
ory area shared by MPI processes and the kernel module, so that no structure
copy between the user and kernel memory spaces is required.

The Progress Engine (PE) plays two roles. The first role, invoked at the user-
level, is to start communication between the CAD structures and to report its
progress. The second role, invoked by the P2P communication interface, is to

MPI Application

MPI Middleware

Communication Schedule

CAD API KACC
L —— CADdata b—=——— User-space

Kernel-space

Progress Engine

[|

1/0 Request
Infiniband

P2P Layer

Kernel I/O Layer

Ethernet Myrinet

Fig. 3. Structure of KACC facility

perform the communication algorithm on the CAD structure. The latter role is
implemented as a tasklet in the Linux kernel, that is, it runs under the kernel
context triggered by the interrupt routine. Thus, the implementation of KACC
does not have threads.

The Linux tasklet runs on the same core as the tasklet is scheduled on. If
the network interrupts always trigger one specific core, all of the PE routine is
executed on that core and fully serialized. In order to avoid this serialization and
balance the PE tasklets among CPU cores, we use inter-processor interrupts(IPI)
to schedule them on arbitrary core. This method enables each PE event to be
executed simultaneously and reduces total execution time. On the other hand,
CPU time loss increases due to IPI costs.

The point-to-point (P2P) layer offers communication APIs to the PE layer.
The P2P APIs are independent from the network devices and are similar to
MPT’s non-blocking point-to-point communication APIs. The difference between
them is the notification method of completion. The P2P layer invokes PE’s call-
back routine immediately after completion, instead of offering a polling interface
of completion. Thus, the PE’s routine is always called at the appropriate timing.

In the current implementation, only the kernel-mode non-blocking TCP has
been implemented in the P2P layer, since the recent interconnect devices often
have an IP interface [4,7]. It is possible to implement the P2P layer using native
APIs for Myrinet or InfiniBand instead of using IP compatibility layer of these
interfaces. The interface between PE and P2P layer is message-oriented, it will
fit nicely to the message-oriented communication in Myrinet MX. If we use the
native implementation, the communication will be faster and the CPU time loss
will be smaller.

Currently, the network connection used in P2P layer is established indepen-
dently from connection of MPI library in order to distinguish KACC’s traffic
from other traffics. We are planning to implement communication device in-
terface for MPICH2 or other MPI implementations. This interface also provides

point-to-point non-blocking communication API and all communications in MPI
programs are executed by KACC facility.

5 Evaluation

The performance of KACC facility is compared to the other implementation,
LibNBC, using a non-blocking broadcast communication in this section. A bench-
mark program is designed based on the HPL benchmark [8] in order to show how
much the non-blocking operation contributes to overlapping communication and
computation. The benchmark is named the HPL codelet because it is not a real
Linpack benchmark, but is a code snippet from HPL that performs broadcast
communication and calculation simultaneously. In this benchmark, after issuing
a non-blocking broadcast operation, the fixed amount of calculation is computed
repeatedly until the broadcast operation is completed, that is, at every end of
calculation, the completion of the operation is examined. The calculation is the
matrix multiplication whose size is specified at the run time so that the exami-
nation frequency of completion is programmable.

Four implementations of the non-blocking broadcast communication have
been carried out. The first implementation is the original HPL non-blocking
broadcast communication implementation, using MPI point-to-point operations,
whose communication algorithm is based on a binary tree, which will be denoted
as MPI Tree. The second implementation is the same algorithm written using
KACC, which will be denoted as KACC Tree. The third implementation is the
version used in the LibNBC’s library, that is based on pipeline processing, which
will be denoted as LibNBC' Pipeline. The fourth implementation is the same
algorithm as LibNBC but written in KACC, which will be denoted as KACC
Pipeline.

The execution time of the benchmark was measured for the four implemen-
tations. The experimental environment consists of eight computing nodes con-
nected by a 1Gbps Ethernet. Each computing node has two dual-core 2GHz
Opteron CPUs; thus, there are 32 cores in this cluster. MPICH2/TCP 1.0.6 [1]
is used as the base MPI environment.

The percentage of CPU time spent for communication is estimated by com-
paring the number of calculation to the ideal number of calculations without
communication. The effect of the frequency of examining the completion of the
communication operation is revealed by varying both computation and commu-
nication lengths. For the granularity of the computation, two different matrix
sizes for calculation are considered: 40 x 40 matrices for coarse-grained testing
and 4 x 4 matrices for fine-grained testing.

The results of CPU time loss are shown in Figures 4 and 5. In order to show
the cost of tasklet load-balancing by IPI, the CPU time loss in KACC without
load-balancing is also shown in graph (b) of each figures. In the coarse-grained
workload shown in Figure 4, the frequency of polling is less, and thus, in this
case, the CPU is not consumed by polling communication activity. However,
in LibNBC, 28.3 to 57.3% of CPU time is always spent for the communication

EY -k-MPI Tree EY -&-MPI Tree

8 ~#-KACC Tree . -#-KACC Tree
. ~/+-LibNBC Pipeline —_ ~/+-LibNBC Pipeline
£ 70 ~~KACC Pipeline £ 70 -13-KACC Pipeline
o o
T 60 & 60 .
@ P Pt
8 50 ipve=coC = 8 50 rv=aco o =
o -~ e o o g
E 40 N - E 40 N e
= . eeen - = S -
2 30 R — 2 30 R
8] - 8] o

2 P «

10 =—¢= — 10

0 0

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Message Size [Bytes] Message Size [Bytes]
(a) With load balancing using IPI (b) Without load balancing using IPI

Fig. 4. CPU time loss during broadcast with coarse-grained workload

_______ IR GRS B U GRS SRR
80 A 80 A
£ 70 £ 70
o o
= -k-MPI Tree 2
© 60 © 60
- ~e-KACC Tree by ~4&-MPI Tree
8 50 ~/+-LibNBC Pipeline 8 s0 - KACC Tree
2 ~~KACC Pipeline @ ~/+-LibNBC Pipeline
E 40 E 40 +11-KACC Pipeline
2 30 - 3 30
8] 8
20 20
0 —_— — 0
0 0o
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+02 1E+03 1E404 1E405 1E+06 1E+07 1E+08
Message Size [Bytes] Message Size [Bytes]
(a) With load balancing using IPI (b) Without load balancing using IPI

Fig. 5. CPU time loss during broadcast with fine-grained workload

thread, and, therefore, the effect from the communication computation overlap is
relatively small. On the other hand, in the same pipeline algorithm with KACC
facility, the CPU time spent for communication is limited to about half of the
case with LibNBC, and about half of the CPU time is due to the cost from IPI
handling.

When the granularity of computation is fine as shown in Figure 5, the fre-
quency of tests for the communication’s completion is high. In this case, 97.0%
of the CPU time is lost to the communication thread in LibNBC. On the other
hand, KACC’s CPU loss rate is limited to 31.8% even if load-balancing using IPI
is enabled. This result shows that the users can continue calculation effectively
during collective communication under the KACC facility.

The ratio of total execution time in broadcast on KACC compared to normal
MPI tree and LibNBC pipeline implementations is shown in Figure 6. If the ratio
is smaller than 1, corresponding method is faster than the compared case, MPI
Tree or LibNBC Pipeline. In the best case, it took 2.15 milliseconds for 12.5kB
broadcast in MPI and 1.19 milliseconds in the same algorithms with KACC
facility and thus execution time ratio is calculated as 0.55. Similarly, it took 22.6

13 13

-0-KACC / MPI Tree 12)) -0-KACC / MPI Tree

<~KACC / LibNBC Pipeline / <~KACC / LibNBC Pipeline
11 11

0.6

Execution Time Ratio
o
©
Execution Time Ratio
o
©

0.6

05 0.5
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
Message Size [Bytes] Message Size [Bytes]
(a) With a coarse-grained workload (b) With a fine-grained workload

Fig. 6. Total execution time ratio in non-blocking broadcast

milliseconds for 1.25MB broadcast in LibNBC and 17.9 milliseconds in the same
algorithms with KACC facility and execution time ratio is calculated as 0.79.
For various communication size and workload granularity, the execution time in
the KACC is 55 to 98% of that in MPI implementation and 79 to 101% of that
in LibNBC except for small message size. However, if the message size is small,
KACC implementation is slower than normal MPI or LibNBC implementation.
We have to improve the performance of small messages in the future.

6 Conclusions

Non-blocking collective operations have been proposed and implemented. If non-
blocking collective operations are performed asynchronously with the main com-
putation, the communication latency can be hidden, and more time can be made
available for computation. However, these implementations are not always scaled
due to the extra cost of asynchronous communication management using threads.

This paper proposed the KACC facility, which performs collective commu-
nications in the OS kernel’s interrupt context. Since non-blocking collective op-
erations are performed in the kernel interrupt context, no extra threads are
introduced. Furthermore, a collective operation is progressed immediately when
a message for the operation arrives. These two features contribute to the appli-
cation program spending more CPU time in computation.

A benchmark was used to test four different implementations, including the
thread implementation in LibNBC [2,3], of the non-blocking broadcast operation.
The results show that the thread implementation, LibNBC, consumes almost half
of the CPU when less frequent polling of completion is requested or 97% of CPU
time when frequent polling is performed, while KACC consumes only 10 to 30%
of CPU time for both cases while keeping its execution time up to 79 to 101%
of that in LibNBC.

There are four limitations in the current implementation. Firstly, the user-
defined operations have not yet been considered. The execution of operations
must be safe in terms of security. There are two potential approaches to this

problem: interpreter and thread approaches. In the interpreter approach, the
function is compiled to virtual machine code, and this code is interpreted in the
kernel. Another approach is to introduce a thread for executing the operations.
In this approach, an extra thread is created. However, unlike the thread for
communication progress, the extra thread is only activated during the operation
of collectives, and the overhead is expected to be small.

Secondly, the current implementation has not yet been optimized for the
intra-node communication, since intra-node communications are handled by the
TCP connections. If messages are directly copied by the memory copy operation,
performance is improved.

Thirdly, the P2P layer supports only TCP in the current implementation.
Porting to other hardware, such as InfiniBand and Myrinet, is being considered.

Fourthly, the current implementation is slow if the messages are small. Im-
proving the performance for small messages is strongly needed. We may recom-
mend not to use non-blocking collective communications if the message size is
small. In this case, we should show reasonable method to determine the threshold
of message size to use non-blocking collective communications.

References

1. Argonne National Laboratory: MPICH2 : High-performance and widely portable
MPI. http://www.mcs.anl.gov/research/projects/mpich2/

2. Hoefler, T., Lumsdaine, A.: Design, Implementation, and Usage of LibNBC. Tech.
rep., Open Systems Lab, Indiana University (Aug 2006)

3. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI. In: Proceedings of the 2007 In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, SC07. IEEE Computer Society/ACM (Nov 2007)

4. Kashyap, V.: IP over InfiniBand (IPoIB) Architecture. RFC 4392 (Informational)
(April 2006), http://www.ietf.org/rfc/rfc4392.txt

5. MPI Forum: Message passing interface. http://www.mpi-forum.org/

6. MPI Forum: MPIplans - an alternative for all other collectives proposals?
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPIplans

7. Myricom, inc.: IP over myrinet. http://www.myri.com/scs/documentation/mug/ip/

8. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - a portable implementa-
tion of the high-performance linpack benchmark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/

