
University of Tokyo
Akihiro Nomura, Yutaka Ishikawa

1

 NBC = Non-blocking + Collective
◦ Exploit communication – computation overlap

◦ Do complicated communications easily and efficiently

 NBC will be introduced in upcoming MPI 3.0
◦ In MPI 2.2, users have to implement collective routines

by hand to do non-blocking collectives.

 In HPL(High-performance Linpack),
6 implementations of non-blocking bcast are provided

 Existing implementation: LibNBC [Hoefler et al, 06-]

◦ Same APIs as MPI 3.0

◦ POSIX pthread is used in the implementation

2

 Progression of collective communications
◦ Collective communication consists of many point-

to-point(P2P) (non-blocking) communications.

◦ P2P communications have data dependencies.

 E.g. send a data AFTER receiving them

◦ Progression resolves these dependencies and issues
all executable P2Ps as soon as possible.

 How to do progression in existing methods?
◦ Call progression explicitly (e.g. HPL’s Ibcasts)

◦ Communication thread (e.g. LibNBC)

3

 Call progression explicitly
◦ HPL’s Ibcasts for example

◦ MPI users have to call
progression routine in
MPI library periodically
by calling MPI_Test etc.

◦ If users don’t call progression,
non-blocking collective
doesn’t progress.

◦ If users call progression
too frequently, CPU time
cost of needless MPI_Tests
becomes bigger.

4

init_for_collective();
while (1) {
do_small_computation();
do_progression();
if (test_for_collective()) {
do_rest_of_computation();
break;

}
if (no_work_left()) {
wait_for_collective();
break;

}
}

 Communication thread (e.g. LibNBC)
◦ Creates a thread to perform progression

◦ No explicit call required

5

NBC_Ibcast(…, &req);

do_long_computation();

NBC_Wait(&req);

while(in_progress) {
do_progression();

}

Main Thread

Communication ThreadCreate
Thread

Context
Switch
by OS

 Gap between MPI users and implementers
◦ MPI user usually assumes all CPU cores can be used to

calculation
 User will create 1 process per core.

◦ Progression thread is required to implement non-
blocking collectives

 In this situation…
◦ #threads exceeds #cores
◦ Threads steals cores

each other
 Context switching cost

 Context switch timing
may not be optimal

6

Computing Node

Core Core Core Core

Communication
(Progression)
Thread

Main(Calculation)
Thread

Context
Switch

 Progression Engine(PE)
◦ Progression is implemented as kernel-mode

routines to avoid cost of using threads.

◦ PE is invoked by network interrupt handler

◦ PE does not have user-mode contexts (memory etc)

7

Computing Node

Core Core Core Core

Communication
Threads

Computing
Threads

Computing Node

Core Core Core Core

Context
Switch

Interrupt

 KACC consists of 3 Layers
◦ Algorithm Design

◦ Progress Engine

◦ P2P Routines

 Implemented on
Linux Kernel 2.6
◦ As User-level library

◦ As OS kernel module

8

MPI Middleware

Algorithm Design API

Progress Engine

TCPOpenIB MX

EthernetInfiniband Myrinet

MPI Application

NBC Request

Communication

Schedule

Algorithm data

Message

Request

I/O Request

P2P Layer

Kernel I/O Layer

KACC

User

Space

Kernel

Space

User

Kernel

 Collective communications can be described as
DAG(Directed Acyclic Graph) [1, 2]
◦ Nodes: Communications and Calculations
◦ Edges: Dependencies

 Make DAG structures on shared
memory with kernel module.
◦ MakeSendNode(), ConnectNode()…
◦ To avoid passing executables to

kernel directly (security issue)

 Call Progress Engine
to execute/query algorithms
◦ IssueCAD(), QueryCAD()
◦ Communication with kernel module

is done by using shared memory
and system calls

9

Recv Recv

START

Calc
+ Calc

+

END

Example of MPI_Reduce
on the root node

[1]: Hoefler et al, 2007
[2]: MPIplans in MPI-Forum Wiki

 Process progression
◦ = Issue P2P as soon as possible

 Issue communications by requests from other
layers
◦ From Algorithm Design: Start collective

communications (by system call)

◦ From P2P Layer: Ready for communication /
Complete communication (by Interrupt handler)

10

User

Kernel

Computation

Computation

Computation

Computation

 Implementation

◦ Implemented using Linux tasklet

◦ Does not have process context (VM address space)

 Drawback: all data have to be stuck to physical memory
before starting collective communication

◦ Executed at the end of system calls and interrupt handlers

◦ Requires Load balancing using IPI (Inter-processor Interrupt)

 Tasklet runs on the same CPU as its invoker (=interrupt)

 Network interrupts is concentrated on one specific core to send
packets efficiently

11

User

Kernel

Comm

INT

Reduce Comm

Core #0

Core #1

Core #2

Core #3

INTINT

Computation

Computation

Computation

Computation

Comm

INT

Reduce

Comm

INTINT

IPI

IPI

 Abstraction Layer for Progress Engine
◦ Executes actual communication in non-blocking

manner

◦ Runs on Linux tasklet context

 API like MPI’s non-blocking P2P (Isend/Irecv)
◦ Completion is reported using callback routines

 Implemented non-blocking P2P on kernel-
level TCP
◦ TCP routine cannot sleep because tasklet doesn’t

have process context

12

User

Kernel

 We compared execution time and CPU usage of
following implementations of non-blocking
broadcasts
◦ KACC – Proposed Method
◦ LibNBC – Using Thread for Progression
◦ MPI – Calling Progression Explicitly and Periodically

 CPU usage is calculated using following formula
◦ Usage[%] = (1 – Flops(Comm) / Flops(Idle)) x 100

 Environment
◦ Dual-core 2Ghz Opteron x 2 (4 core / node)
◦ 8 node cluster, connected with 1Gbps Ethernet (Broadcom)
◦ Linux kernel 2.6.18 (RedHat EL5)

 Algorithm
◦ Pipeline broadcast on 32 MPI process
 Divide messages into small piece and send sequentially

13

#0 #1 #2 #3

0

0.2

0.4

0.6

0.8

1

1.2

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

E
x

e
c

u
ti

o
n

 T
im

e
 R

a
ti

o

Message Size [Bytes]

KACC / LibNBC

KACC / MPI

14

 KACC is faster than existing methods

 If message size is small, KACC slows down due to overheads

K
A

C
C

 i
s
 B

e
tt

e
r

15

0

10

20

30

40

50

60

70

80

90

100

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U
 t

im
e

 l
o

s
s

 r
a
ti

o
 [

%
]

Message Size [Bytes]

KACC

LibNBC

MPI

 KACC consumes less CPU time in the same algorithm

B
e
tt

e
r

16

 If user calls Test/Progression more frequently, most of CPU time
is spent on communication under the existing methods.

 On KACC, CPU time consumption ratio is still small.

0

10

20

30

40

50

60

70

80

90

100

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U
 t

im
e

 l
o

s
s

 r
a
ti

o
 [

%
]

Message Size [Bytes]

KACC
LibNBC
MPI

B
e
tt

e
r

 We have proposed KACC facility
◦ A new method to implement non-blocking collective

communications
◦ Use kernel’s interrupt context to avoid context switching

costs of threads

 We evaluated KACC
◦ KACC is 21% faster than LibNBC
◦ KACC consumes at least 33% less CPU time than LibNBC

 Future work
◦ Provide a way to do user-defined operations.
 Application’s signal handler? VM code w/ verification?

◦ Provide other P2P layers than TCP
◦ Improve performance

17

18

Thank you

