
Network Performance Model
for TCP/IP Based Cluster Computing

Akihiro Nomura #1, Hiroya Matsuba ∗2, Yutaka Ishikawa #∗3

#Dept. of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, JAPAN

1nomura@il.is.s.u-tokyo.ac.jp
3ishikawa@is.s.u-tokyo.ac.jp

∗Information Technology Center, The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, JAPAN

2matsuba@cc.u-tokyo.ac.jp

Abstract— A new communication model, called the PlogPT
model, is proposed to predict communication performance in
a commodity cluster where computing nodes communicate using
TCP/IP. This model extends the PlogP model in order to consider
the variation of bandwidth brought about by bottleneck links
in network switches and the delay of packet retransmission
by TCP/IP handling. Network switches are modeled as binary
tree connections. To demonstrate the PlogPT model’s modeling
capability, the execution time of two all-to-all communication
algorithms are estimated and compared with the actual execution
time and that of the PlogP model. The PlogPT model predicts
the execution time of those two algorithms more precisely than
the existing model.

I. INTRODUCTION

In parallel computing, improving the performance of com-
putation is very important issue. Collective communication
functions are frequently called and their execution time ac-
counts certain amount of whole execution time in parallel
applications. Predicting the execution time of these functions is
important to improve their performance. In order to formalize
the behavior of communication, many communication models
[1]–[5] have been introduced.

Many cluster systems have been built using a commodity
network, such as Ethernet, because this configuration achieves
good cost-performance if the application does not require high
network bandwidth. In such a commodity network environ-
ment, users often assume that the network is a full bisection
bandwidth network if all nodes are connected by a single
network switch. However, this assumption sometimes fails if
the switch consists of several small switches and does not
provide full bisection bandwidth for all ports of the switch.
In fact, large switches often consist of small internal switches
and do not provide full bisection bandwidth [6]. It is difficult
for the user to realize this fact because the information of the
internal switch configuration is not often disclosed.

The communication performance varies if bottleneck links
exist, because a packet loss resulting from congestion causes a
delay of the packet delivery. Such behavior makes performance
prediction hard. The conventional approaches assume two
things. First, the communication path ensures at the hardware
level that the messages are transmitted without loss. Next,

each communication is unaffected by communications in other
nodes. These assumptions are not true in a commodity net-
work. Therefore, the estimation of communication time cannot
be predicted accurately.

In this paper, we propose a new communication model,
called PlogPT (PlogP based on Tree). The PlogPT model ex-
tends the PlogP [4] model to express the impact of bottleneck
links and the delay caused by retransmission timeout (RTO),
neither of which are considered in the PlogP model and other
models [1]–[3], [7].

In PlogPT model, a binary tree model is introduced in
order to express the bottleneck links in network switches. The
bottleneck link is expressed by the network gap, representing
the time of message transfer, based on the throughput, which
varies with the communication pattern. The condition for a
loss of the last packet in communication, which causes RTO
(retransmission time out), is formalized.

By measuring not only unidirectional, but also bidirectional
communication, the estimated parameters of this model get
close to the actual value. Two types of communication mea-
surements make it possible to estimate the communication
time more precisely.

The execution time of two all-to-all communication algo-
rithms will be estimated by the PlogPT model and PlogP.
By comparison between the actual execution time and the
estimations, the PlogPT model estimates the execution time
more accurate than the PlogP estimation.

II. BACKGROUND

In this section, some of traditional communication models
are summarized, and issues arising from applying those models
to a commodity network are revealed. Communication models
related to the proposed model will be shown in Section V.

A. The logP model

The logP model [1] expresses the characteristics of commu-
nication between each node by the following four parameters,
the latency of each message (l), the overhead a processor
spends for each transmission and reception (o), the minimum
interval gap between each message (g), and the number of

Sender

Receiver

L o

o

g

g

Time

Fig. 1. Parameters in the logP model

Sender

L

o

o

G

mG

o

g

Receiver

Time

Fig. 2. Parameters in the logGP model

processors (P). Figure 1 illustrates the meaning of these
parameters. In some variants, the parameter o is divided into
os and or. os represents the overhead of sending a message,
or represents that of receiving. This model expresses the
characteristics of communications using only short messages.
Therefore, this model is not suitable for communications
whose message length varies or is too long.

B. The logGP model

The logGP model [2] extends the logP model to cover
inaccuracy of prediction for long messages. In this model,
the inter message gap g in the logP model is divided into
a constant element and an element proportional to message
size (m), and is represented as g + mG form. Figure 2 shows
the meaning of the logGP parameters. This model assumes
that the inter message gap is linear to the message size. This
assumption is true for large messages. In some networks,
such as an IP network, the behavior of the message gap
changes contingent on the message size reaching the media

TABLE I
EVALUATION ENVIRONMENT

Number of nodes 32
CPU AMD Opteron 2GHz Dual
Memory 3.5GB
OS Linux 2.6.11 SMP
Network adapter Broadcom Tigon 3 1Gbps
MPI Library YAMPI 1.0 [8]
Ethernet Switch BayStack5510-48T

1

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1000000 10000000

Message Size [bytes]

T
im

e
 [
µs

]

Measured Gap

Linear Approximation

Fig. 3. The relationship between message size m and the inter message gap
g(m)

Sender

Receiver

L or(m)

os(m)

g(m)

g(m)

Time

Fig. 4. Parameters in the PlogP model

level MTU. Figure 3 demonstrates that the linearity of the inter
message gap is broken in short messages in the experimental
environment shown in Table I. Thus, this model is not able
to express the behavior of communication well if the message
size is small.

C. PlogP model

The parameterized logP (PlogP) model [4] is another exten-
sion of the logP [1] model. In the PlogP model, the overhead
of the sender and the receiver, os, or, and the gap g are
parameterized by the message size m and written as os(m),
or(m) and g(m). The relationship between these parameters
and the timing of communication are shown in Figure 4.

This model avoids the difficulty involved in describing the
inter message gap in accordance with the message size. The
gap depends on the minimum/maximum packet size of the
physical network layer. It cannot be formulated simply by
linear equations. Thus, the PlogP parameters are measured
independently from the message size so that this model is
able to express the correlation between gaps and message size
for both large and small messages.

The measurement method used for the message gaps is im-
portant in the PlogP model. In the paper [9], a fast measuring
method for a large number of parameters in the PlogP model

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size [bytes]

T
im

e
 [
µs

]

Measured

PlogP

Fig. 5. Difference between the actual execution time and one estimated by
the PlogP model

is introduced. Measurement tools for an MPI environment are
currently available. In this method, first, the parameter g(0)
is estimated from the transmission frequency of zero sized
messages. Then, the latency parameter L is given as follows,
using the RTT (round trip time) of a zero sized message:

RTT = 2(L + g(0)) (1)

Finally, the parameter g(m) for each message size m is
calculated from g(0), L, and the round trip time of a size
m message. os(m) and or(m) are measured at the same time.

Figure 5 shows the estimated execution time in the PlogP
model and the actual execution time in an implementation of
MPI Alltoall communication using TCP/IP. The environment
used in this experiment is shown in Table I.

The estimated time is much shorter than the actual time
due to the following two reasons. One reason is that the
MPI Alltoall implementation uses bidirectional communica-
tion with bandwidth that is usually less than the double
bandwidth of unidirectional communication. However, the gap
parameter is measured using the unidirectional communication
bandwidth in this method. Thus, the estimation of bidirectional
communication bandwidth is larger than the actual bandwidth.

Another reason is that the PlogP model does not consider
the retransmission timeout of TCP/IP. The difference between
the estimated time and the measured time in a larger message
is approximately an integral multiple of 200 ms. The 200 ms
time is the minimum retransmission timeout of the TCP/IP
implementation in Linux. This fact implies that the retransmis-
sion mechanism of TCP/IP when performed in some condition
holds. This mechanism is shown in the next paragraph.

D. Retransmission Control

Unlike a dedicated high performance network such as
Infiniband [10] or Myrinet [11], a commodity network, i.e.,
Ethernet, does not guarantee reliability in the data link layer,
however the upper protocol layer, in the form of transmission
protocol such as TCP/IP supports reliability. In TCP/IP, the
receiver reports the completion of transmission by sending an
acknowledge packet to the sender. If the acknowledge packet

TABLE II
BISECTION BANDWIDTH AND LATENCY

h
unidirectional bidirectional

d(h) b(h)/2h−1 2d(h) b(h)/2h−1

1 500 [µs] 936.4 [Mbps] 502 [µs] 580.2 [Mbps]
2 517 [µs] 935.6 [Mbps] 902 [µs] 580.1 [Mbps]
3 535 [µs] 936.1 [Mbps] 913 [µs] 576.0 [Mbps]
4 527 [µs] 934.1 [Mbps] 910 [µs] 579.2 [Mbps]
5 543 [µs] 625.0 [Mbps] 909 [µs] 485.0 [Mbps]

b(h) denotes the bisection bandwidth of a group of 2h nodes and d(h)
denotes the additional round trip time from the leftmost node to the

rightmost node in the group

does not arrive at the sender within a certain time, called the
retransmission timeout (RTO), the sender assumes that the data
packet sent by the sender has been lost and retransmits the
lost data packet again. The RTO is significantly longer than
the round trip time.

The RTO may frequently happen in MPI communication
[12]. If the last data packet of an MPI message is lost, the
receiver can not detect the loss until a packet of another MPI
message from the same sender is received. In this case, thus,
the sender waits for an RTO to retransmit the lost packet.

E. Bottleneck Links in Network Switches

Inexpensive Ethernet switches with many ports have small
internal sub-switches of the same size. Those sub-switches
may not be fully connected. That is, the communication
performance between sub-switches is lower than that inside
of a sub-switch. For example, the article [6] says that some
24 or 48 port switches consist of six groups of ports and each
group is connected by a 1Gbps internal network. That is, the
bisection bandwidth across two groups is limited to 1Gbps. In
the environment mentioned in Table I, the bisection bandwidth,
shown in Table II as b(h), differs depending on the division.

III. DESIGN

A. Binary Tree Network Model

First, we propose a network topology model in which the
network is modeled as a perfect binary tree, as shown in
Figure 6. A perfect binary tree has n = 2D leaves at the
same depth D from the root node. All computing nodes are
located as the leaves of the tree. The edges of the tree represent
communication links, and each edge has its own bandwidth.
Each intermediate node represents a switch with two links.

In the following, we often focus on subtrees of the network
tree, and the distance from leaves is more important than that
from the root node for each edge. We introduce the concept
of the height of edges and intermediate nodes for descriptive
purposes. We define the height of node h as the length of
the path from the leaves, which equals D − d, in which d
is the depth of the node. In other words, the height h node
is the root node of the height h subtree. We also define the
height of the edge as the distance between the edge and its
descendant leaves, including the edge itself, the same value as
the edge’s parent node’s height. The edge at height h has 2h−1

descendant leaves, and its bandwidth should be 2h−1 times

n0 n1 n2 n3 n4 n5 n6 n7

height

1

2

3

height: 1

height: 2

Bandwidth : b(2)

Delay: d(2)

Fig. 6. Binary Tree Network Model

larger than the edge at height 1, if the network guarantees full
bisection bandwidth. We define the height of communication
as the maximum height of the edges which are involved in the
communication.

In this model, the network is symmetric about each inter-
mediate node, including the root node. All edges at the same
height h have the same properties, such as bandwidth and
delay. We introduce two parameters b(h) and d(h) for each
height h. b(h) denotes the bandwidth of each height h edge,
which equals the bisection bandwidth of a height h tree. Even
if 2b(h) < b(h + 1) is satisfied in the configuration of an
actual network switch, the flow of the edge at height h + 1
never exceeds twice the flow at height h. So we treat b(h+1)
as the same as 2b(h) in this case. Thus b(h + 1) ≤ 2b(h) is
always satisfied. In a full bisection bandwidth network, b(h)

2h−1

for all 1 ≤ h ≤ D is the same.

A buffer delay d(h) is the latency caused by the message
buffer in a switch and host. It can occur from the difference in
one-way latency in the situation where the network is filled by
burst communication and the situation where the network is
not filled by messages. In this d(h) calculation, the latency is
measured between a left descendant leaf and a right descendant
leaf from some height h intermediate node.

These parameters are measured by the communication be-
tween the node nk and nk⊕2h−1 for all nodes, where the ⊕
operator is the exclusive-or operation. In this communication
pattern, edges with a height smaller than or equal to h are
involved in the communication while other edges not meeting
this criterion are not involved. The d(h) parameter denotes the
time which the packet spends in the buffer of an intermediate
node when the contention occurs in the height h subtree.

The proposed model can express an arbitrary switch con-
figuration. For example, suppose that an actual switch is
configured as shown in Figure 7. In this example, there are
no switches at height 2 and 3 intermediate nodes, but there
are two switches, each of which has eight links, in a height 4
intermediate node. In that case, the model expresses the switch
as follows:

n0 n1 n2 n3 n14 n15

height

1

4

5

n16 n17 n18 n19 n30 n31
……

(8 edges) (8 edges)

3

2

Fig. 7. Image of the Actual Tree Network in the Testing Environment

Sender

C

L or(m)

os(m)

gc(m, C)

gc(m, C)

TRTO
(if the last packet

lost at receiver)

Retransmit

Packet

T

Time

Receiver

Fig. 8. Parameters in the PlogPT model

b(2)
21

=
b(3)
22

=
b(4)
23

(2)

d(2) = d(3) = d(4) (3)

We define the predicate PS(h, h′) which denotes whether
the switches between height h and h′ exist as follows:

PS(h, h′) ⇐⇒ ¬((2h′−hb(h) = b(h′)) ∧ (d(h) = d(h′)))
(4)

In practice, the measured b(h) and d(h) contain errors, and
thus PS(h, h′) should absorb them. The practical definition of
PS(h, h′) is given using the error factor εS as follows:

PS(h, h′) ⇐⇒
(

log
(

2h′−h b(h)
b(h′)

))2

+
(

log
d(h)
d(h′)

)2

> εS

(5)
As noted in section II-E, inexpensive ethernet switches

have small internal sub-switches and therefore communication
performance may differ between intra sub-switch communi-
cation and inter sub-switch communication. Such a switch
configuration is also well expressed in this binary tree model.

B. PlogPT communication model

We propose the PlogPT (PlogP based on Tree) model by
extending the PlogP model. Figure 8 shows the roles of each
parameter.

1) Improvement in PlogP Parameter Measurement: In sec-
tion II, we pointed out the fact that the method proposed in
the paper [9] does not consider the behavior of bidirectional
communication. Most collective operations, including all to all
communication, are implemented using bidirectional commu-
nications instead of unidirectional communications. The PlogP
parameters should be measured not only unidirectional but also
bidirectional communications. In the PlogPT model, all the
PlogP parameters are measured for bidirectional concurrent
communication.

2) Bottleneck bandwidth: To apply the effect of bottleneck
links represented in the binary tree model, the PlogPT model
introduces a gap parameter gc(m,C) for each communication
C which starts at ts. Let the throughput of the communication
C at time t be bc(C, t). The value of gc(m,C) is derived as
the only solution for the following equation.

b(1)g(m) =
∫ ts+gc(m,C)

ts

bc(C, t) (6)

Note that g(m) is the gap at height 1 in the PlogPT model.
These values do not depend on the pair of communicating
nodes because the same bandwidth for all switches in height
1 is assumed in this model.

The left part of this equation expresses the amount of data
to be sent, including overheads. It is equal to the temporal
integration of the actual throughput. Let E(C, t) be the set
of edges which the communication C uses at time t. We also
define that c(E) be the number of communications used in the
edge E at time t. Then, the throughput bc(C, t) is calculated
by the following equation.

bc(C, t) = min
E∈E(C,t)

(
b(h)
c(E)

)
(7)

We assume that the bandwidth of bottleneck edges are split
among each communications fairly.

3) Penalty of Retransmission Timeouts: The PlogPT model
assumes that a packet is lost when the buffer in a switch is full.
Such a case may happen when the number of communications
participated in by a switch increases. We consider the situation
that communication C ends and communication C ′ starts at the
same time, tC , and the destinations of these communications
are the same. Let h(C) and m(C) be the height and the
message size of communication C, respectively. We define
B(C) as the total size of buffers in switches which are
involved in the communication C that finishes at time tf .

B(C) = d(h(C))bc(C, tf) (8)

Let PB(C) be a predicate denoting whether the buffer of
the switch is filled by the communication C.

PB(C) ⇐⇒ B(C) < m(C) (9)

RTO may occur at message C if the following conditions
are satisfied:

• Existence of C ′ whose destination and timing are men-
tioned above,

• PB(C) is true, and
• PS(h(C), h(C ′)) is true.

If RTO occurs, the communication C additionally takes TRTO.
The constant TRTO denotes the RTO time. The value of

TRTO is 200 ms in Linux TCP environment.

C. Parameters of the PlogPT model

In addition to the PlogP parameters, b(h), d(h) and g(m)
for bidirectional communication are introduced in PlogPT. The
values of parameter h in b(h) and d(h) is proportional to D,
the logarithm of the number of nodes, and the number of
parameter m in g(m) is the same as that in unidirectional g(m)
in the PlogP model. Therefore, the additional measurement
doesn’t break the scalability of parameter measurement.

The bidirectional PlogP g(m), are measured the same way
as the fast measuring method of PlogP [9], except for that
communication nodes in the measurement acts the roles of
sender and receiver simultaneously.

In order to measure b(h) and d(h), we split the computation
nodes c0, . . . , c2n−1 in height h tree into two groups, the
left descendants c0, . . . , c2n−1−1 and the right descendants
c2n−1 , . . . , c2n−1, and measure the communication between
the two groups. The b(h) is obtained as the sum of the
bandwidth of burst communications from ci to c2n−1+i. The
ping-pong latency between the leftmost node c0 and rightmost
node c2n−1 are measured under this workload. The ping-pong
latency of the same nodes are also measured without this
workload. The d(h) is obtained as the difference between these
ping-pong latencies.

The parameters b(h) and d(h) are also measured for bidi-
rectional communications in the same way as the bidirectional
g(m). The only one difference from the unidirectional commu-
nication is that the buffer latency parameters d(h) is calculated
as the half of the difference of the ping-pong latencies.

D. Estimation of Execution time

We propose a method for estimating execution times of MPI
communications based on the PlogPT model.

First, we replace MPI point to point communication func-
tions with simple operations, Isend, Irecv, and Wait where
both Isend and Irecv take three arguments source, destination,
and message size and Wait takes one argument to specify the
corresponding operation. That is, MPI Send and MPI Recv
are replaced with the combinations of Isend, Irecv, and Wait.
MPI collective operations are defined by a sequence of those
simple primitives.

Let the operation O[n, t] be introduced to express the tth
operation issued in the process of the MPI rank n. Each MPI
process is supposed to be assigned in each compute node. The
following variables are associated with each operation O[n, t]:
We refer to these variables as O.e and so on.

• e: the time when the process enters the operation.
• l: the time when the process leaves the operation.
• f : the time when the process finishes the communication

operation (Only for Isend and Irecv).

• fnoRTO: the time when the process finishes the commu-
nication if an RTO does not occur (Only for Isend).

The following constraints are held:

O[n, 0].e = 0 (10)
O[n, i + 1].e = O[n, i].l (11)

We will write simply O instead of O[n, i] if the values of
n and i are not important. The execution time of the MPI
communication function described in operations {O[n, i]} is
max({O[n, kn].l}) for all processes n. O.l is defined as
follows:

O.l =

{
O.e if O is Irecv or Isend
max(O.e,O′.f) if O is Wait for O′ (12)

In this formula, the execution cost of both Irecv and Isend is
ignored, but all costs are charged in the Wait operation.

Now we define an O.f that is only available for the Isend
and Irecv operations. First, O.fnoRTO is defined as follows.

O.fnoRTO = O.l + gc(m,O) (13)

The value of the gap parameter gc(m,O) for operation O
is derived from equation (6) in which the variable bc(C, t)
is defined in expression (7). In order to obtain the bc(C, t)
variable, all communications at time t must be counted.

Then, O.f for Isend is defined as follows:

O.f =

O.fnoRTO + TRTO if ∃O′ : Isend s.t.
|O′.e − O.f | < εT ,

PS(h(O), h(O′)),
PB(O)

O.fnoRTO otherwise

(14)

O.f for Irecv is defined as follows:

O.f = O′.f + L (15)

where O′ is the corresponding Isend operation of O.
In equation (14), the last two factors of conditional clause

indicates the condition of RTO delay described in Section III-
B.3. The threshold value εT is used to absorb the jitters of
packet arrival timing, which is ordinarily larger than the time
consumed to process one packet. The value of εT should be
a few times larger than that time.

E. An Example

For example, we consider a sample sequence of operations
shown in Figure 9 on a cluster consisting of four nodes. Let the
PlogPT parameters be as follows: b(1) = 3, b(2) = 4, g(m) =
8, L = 3. That is, the height 2 edges are the bottleneck links.

The sequence of primitive operations in this program, O[r, i]
for all rank r, is illustrated in Figure 10. We will determine
the time parameters for these operations as follows.

Trivially, the variables O[i, 0].e, O[i, 0].l, O[i, 1].e, O[i, 1].l
and O[i, 2].e should be 0. The Wait operation at O[i, 2] of
MPI process rank i waits for Isend operations at O[i, 1]. It’s
leave time O[i, 2].l equals the finish time of Isend O[i, 1].f .

Sample(int r, int m) {// r: Rank , m: message size
Irecv(r, r xor 2, m);
Isend(r, r xor 2, m);
Wait(Isend);
Wait(Irecv);
if (r = 0) {
Isend(0, 3, m);
Wait(Isend);

if (r = 3) {
Irecv(3, 0, m);
Wait(Irecv);

}
}

Fig. 9. Sample Program

Wait

Wait

Wait

Wait

3

WaitIrecvWaitIsend(1)Irecv3

WaitIsend(0)Irecv2

WaitIsend(3)Irecv1

WaitIsend(2)WaitIsend(2)Irecv0

54210r i

The argument of an Isend shows its destination node.
An arrow shows a relationship between operations.

Fig. 10. Sequence of MPI Operations O[r, i] in the Sample MPI program

Then we have to determine the throughput of these Isends
bc(O[i, 1], t) for all MPI processes in order to calculate their
finish time. The communication pattern while these Isends
running are is shown in Figure 11. The height 2 edges are
the bottleneck link of these communications. The throughput
bc(O[i, 1], t) is calculated as 1

2b(2) = 2 from equation (7).
Substituting this value in equation (6), the following simple
equation for O[i, 1].fnoRTO is derived.

3 · 8 =
∫ O[i,1].fnoRT O

0

2dt (16)

O[i, 1].fnoRTO = 12 (17)

The condition for RTO delay at equation (14) requires the
existence of an Isend starting at time 12. Since all processes
wait for the completion of the Irecv issued at time 0, no such
Isend exists. Therefore, O[i, 1].f = O[i, 2].l = 12 is derived.

Next, we will determine the leave time of Wait proce-

0 1 2 3

3 33 3

4 4

The number at each edge denotes total bandwidth available at that edge.

Fig. 11. Communication pattern during first Isends

0

Enter/Leave

0:Irecv

1:Isend

Enter

2:Wait

1:Sending to 1

1:Sending to 0

1:Sending to 3

1:Sending to 2

0:Receiving from 1

0:Receiving from 0

0:Receiving from 3

0:Receiving from 2

1512

4:Sending to 3

4:Receiving from 0

23 26

Leave

2:Wait

Enter

3:Wait

Leave

3:Wait

Enter/Leave

4:Isend/Irecv

Enter

5:Wait

Leave

5:Wait

Finish

5:Wait

Time

1

2

3

0

The leading number j of operations show the index of the operation.
The rectangle shows the timing of actual communications.
The balloons show the timing of MPI operations.

Fig. 12. Timing of each operation in the sample procedure

dures for Irecvs, O[i, 3].l. From the constraints, O[i, 3].l =
O[i, 0].f = O[i ⊕ 2, 1].f + L = 15 are derived.

The timing variables of operation O[i, 4], O[i, 5] for i = 0, 3
is derived in the same way as shown above. Finally, the leave
time of the last Wait O[3, 5] is derived as 26, which is the
expected time of total communications in this sample program.
The timing of enter and leave for all operations is described
in Figure 12.

IV. EVALUATION

We compared the actual execution time of the P = 2D

process MPI Alltoall operations shown in Figure 13 with the
estimated time in both the PlogP model and the PlogPT model.
Note that the interface of MPI functions in this figure is
simplified. We omitted the execution time of local copy in
the prediction because the overhead of local copy is hidden
by the latency of communication.

A. Environment

The evaluation was obtained on the cluster shown in Table
I. We use YAMPI [8] as the MPI environment. In this cluster,
the flow control between computation nodes and the switch
is not enabled. The bisection bandwidth per node is shown in
Table II, which becomes narrower at height 5 of the tree. Each
MPI process is assigned in each compute node.

B. Alltoall

First, we estimate the execution time of these implemen-
tations in the PlogP model. The communication pattern is
independent from the rank of the node for both algorithms.
Thus, the execution time in only one process is analyzed in
this model. In Alltoall A, as the message is sent after the
arrival of the previous message and there are no overlaps,
these messages are completely independent. So, the total time

Alltoall_A(int P, int r, int m) {
// P: Number of Process, r: Rank m: size
for (i = 0 to P - 1) {
MPI_Irecv(r xor i,m);
MPI_Send(r xor i, m);
MPI_Wait();

}
}

Alltoall_B(int P, int r) {
// P: Number of Process, r: Rank of the node
for (i = 0 to P - 1)
if (i != r) MPI_Irecv(i, m);

for (i = 1 to P - 1)
MPI_Send(r xor i, m);

MPI_Waitall();
}

Fig. 13. Alltoall algorithms

Alltoall_A(int P, int r, int m) {
// P: Number of Processes, r: Rank, m: size
for (i = 0 to P - 1) {
Irecv(r, r xor i, m);
Isend(r, r xor i, m);
Wait(Irecv);
Wait(Isend);

}
}

Alltoall_B(int P, int r, int m) {
// P: Number of Processes, r: Rank, m: size
for (i = 0 to P - 1) {
if (i != r) {

Irecv(r, i, m);
}

}
for (i = 1 to P - 1) {
Isend(r, r xor i, m);
Wait(Isend);

}
for (i = 0 to P -1) {
Wait(Irecv);

}
}

Fig. 14. Transformation of Alltoall algorithms

spent in the entire communication is estimated as the simple
summation of time spent in each message g(m) + L. The
estimated execution time in the PlogP model is as follows:

TA
PlogP = (P − 1)(g(m) + L) (18)

On the other hand, in Alltoall B, the sender never waits for
the arrival of previous messages. Therefore, the latency L is
hidden by the next transmission. The estimated execution time
is as follows:

TB
PlogP = (P − 1)g(m) + L (19)

Comparing these estimation times, the following inequality
is brought forth:

TA
PlogP > TB

PlogP (20)

This means that Alltoall B is estimated to be always faster
than Alltoall A in the PlogP model.

Then, we estimate the execution time of these imple-
mentations in the PlogPT model proposed in this paper.
The sequence of operations is a repetition of Irecv, Isend,
Wait(Isend), Wait(Irecv) as shown in Figure 14. Let Cr,k be

Send Send Send Send

Receive Receive Receive Receive

L L LL gc(m, Cr,2) gc(m, Cr,3) gc(m, Cr,P-1)gc(m,Cr,1)

Fig. 15. Communications in Alltoall A

the kth communication whose receiver node is r. The first
Isend starts at time 0 at each process, and these Isends of all
processes communicate simultaneously through the height 1
network. An RTO never occurs at this time because there is
no process that starts an Isend based on this timing. Thus, the
time spent in these Isends is gc(m,Cr,1) = g(m).

The leave time of Wait for Irecv is L after the finish time
of Isend, and is equal to the next Isend’s start time. After
that, the next Isend starts at time g(m) + L and height 2
communications occur in each process, simultaneously. The
throughput and the execution time of these communications
are shown as follows:

bc(Cr,2, t) =
1
2
b(2) (21)

gc(m,Cr,2) = 2
b(1)
b(2)

g(m) (22)

Continuing similar calculation, finally, we can obtain the
following total execution time estimated by the PlogPT model:

TA
T =

D∑
h=1

(
2h−1

(
2h−1 b(1)

b(h)
g(m)

))
+ (P − 1)L (23)

We consider the execution time of Alltoall B similarly. As
shown in Figure 14, the sequence of operations is as follows:
{{Irecv}P−1, {Isend, Wait(Isend)}P−1, {Wait(Irecv)}P−1},
where the superscript denotes repetition of the same
primitives. We use Cr,k with the same meaning as that given
above.

The list of heights of Isends is as follows:
{1, {2}2, . . . , {k}2k−1

, . . . , {D}2D−1}, where the superscript
denotes repetition as well. The start time of an Isend is the
finish time of the previous Isend. The latency L is added
to the execution time only once by the Wait(Irecv) at the
end of the communication. The total execution time will be∑

i gc(m,Cr,i) + L if an RTO never happens. However, as
there are Isends starting at the time another Isend ends its
communication, the RTO condition in equation (14) can be
satisfied.

From the equation PS(h, h′) in the condition and the fact
that PS(h, h) = false, the RTO will occur at most D − 1
times when the height of communication changes. As in Figure
16, the finish time of the Isends will delay the TRTO time.
Considering the other condition in equation (14), the finish
time of Isends gets delayed at most at the same frequency as

Send Send

Receive

Send

Receive

Receive Receive Receive

Retransmission

gc(m,C) gs(m,C) gs(m,C)TRTO

Loss of the last packet

Height: h Height: h+1

r,2h-2 r,2h-1 r,2h

Fig. 16. Occurence of the Retransmission Timeout in Alltoall B

the number of h which satisfies the following proposition.

PS(h, h + 1) ∧ PC(Cr,2h−1, Cr,2h) (24)

Let NRTO be the number height h that satisfies this propo-
sition. Although total execution time depends on which nodes
to delay, which is random, there is a pattern that all RTO
delays occur in one certain node. Thus, the worst case delay
time is NRTOTRTO.

Finally, the total execution time of Alltoall B is calculated
as follows:

TB
T =

D∑
h=1

(
2h−1

(
2h−1 b(1)

b(h)
g(m)

))
+ L + NRTOTRTO

(25)
Focusing on the fact that TRTO À L, the execution

time estimated by the PlogPT model derives the following
inequation:

TA
T < TB

T if ∃h satisfies proposition (24) (26)
TA

T > TB
T otherwise (27)

This implies that Alltoall A can be faster than Alltoall B in
certain condition, which is a different consequence from that
based on the PlogP model.

Now, the values of the PlogPT parameters of the evaluation
environment are applied to these estimated expressions. The
PlogPT parameters, which are related to the binary tree model,
are shown in table II. In this network, the equation PS(h, h+
1) = false is satisfied when h is 2 or 3.

Figure 17 shows the execution time of these algorithms and
an estimated one in two cases: 4 and 32 nodes. Experimental
data was taken 10 times for each case and plotted individually.
In every case, the PlogPT model was able to estimate more
accurately than the PlogP model.

We found that the probability of retransmission timeout
occurrence becomes higher when the number of computing
nodes increases. On the other hand, the timeout still occurs
with a certain amount of probability when the number of nodes
is small, and thus makes a certain impact on execution time. In
either case, the timeout doesn’t occur when the message size
is smaller than a particular size. These results correspond to
the expectation of RTO behavior mentioned in section III-B.3.

When the number of nodes is large, the RTO happens even
in Alltoall A with a low probability. One possible reason for

Alltoall_A / 4 nodes

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size [bytes]

T
im

e
 [
µs

]

Measured

PlogPT

PlogP

Alltoall_A / 32 nodes

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size [bytes]

T
im

e
 [
µs

]

Measured

PlogPT

PlogP

Alltoall_B / 4 nodes

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size [bytes]

T
im

e
 [
µs

]

Measured

PlogPT

PlogP

Alltoall_B / 32 nodes

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size [bytes]

T
im

e
 [
µs

]

Measured

PlogPT

PlogP

Fig. 17. Estimated execution time and actual execution time

this phenomenon is that the accumulated jitter exceeds the
latency L and the loss of the last packet is caused for the
same reason as that for Alltoall B.

V. RELATED WORK

A. Queuing extensions of logP-like models

The loGPC model [3] extends both the logP model and the
logGP model to account for the impact of network contention
and DMA behavior. This model uses logP parameters or logGP
parameters depending on the message size, that is dominant
for whichever model covers the situation. This model adds the
delay from network contentions calculated from the M/G/1
queuing model.

In the logPQ model [5], which is an extension of the
PlogP model, the network is modeled using the transmission,
transfer, and receive queues. The bandwidths and latencies
between each queue are parameterized. This model expresses
the transition of messages on these queues sequentially, and
shows where contention occurs and spreads into. However,
the packet level simulation of these queues is needed to
analyze the execution time. Information specific to underlying
MPI implementations is required in order to do the packet

level simulation. Furthermore, a method for analyzing queue
parameters is not mentioned or trivial.

The LoGPC model and the LogPQ model assume a flow
control mechanism which stops the message sending immedi-
ately when the next destination queue is full. This is true only
if flow control is performed by the hardware layer. If flow is
controlled by the software layer, it is not possible to reserve
the bandwidth of the data link ahead of time, especially that
of switches. Instead, the packet is transmitted speculatively
and when contention occurs and the buffers run out, spilled
packets are dropped. Those spilled packets are expected to be
transmitted by the software layer. These behavior patterns are
very different from those that these models expect.

B. Contention Aware PlogP Extensions

In the paper [7], the contention parameter γ is introduced
into a logP-like model. In this model, the contention factor
parameter γ is set equal to the number of processors P , and the
time spent in communication is expressed as Tcomm = l+ bγ

W .
The parameter W denotes the bandwidth and b denotes the
message size. In this model, the bandwidth dependent element
of the communication cost is proportional to the number of
nodes.

In the paper [13], the slowdown of TCP/IP communication
caused by contention in 100 Mbps Ethernet networks is
considered. The contention factor parameter γ is introduced
into the PlogP model to simulate the slowdown caused by
contention, where the γ is given by observed results.

Both models simulate the bandwidth degradation caused by
contention. But the contention factor is independent from the
communication pattern in the network. Moreover, they do not
consider the effect of an RTO caused by tail drop.

C. Application of Communication Models

The paper [14] reports that the Hockney [15], LogP [1], and
LogGP [2] models provide useful insights into various aspects
of different collective communication algorithms, though these
models do not consider network congestion. This conclusion
depends on whether or not bottleneck network links exist.
As already shown in Figure 17, unpredicted performance was
observed in such a model.

VI. CONCLUSION

We have proposed the PlogPT model, which is an extension
of the PlogP model, to express communication performance
in a commodity network, such as TCP/IP over Ethernet. In the
PlogPT model, the network topology is modeled as a binary
tree connection where an edge, an intermediate node, and a
leaf node are a network link, a switch, and a computer, respec-
tively. The two links of the intermediate node have the same
bandwidth. All bandwidths of links are estimated by executing
test programs. Unlike other traditional estimation programs,
the network bandwidth is evaluated using the bidirectional
communication pattern.

Unlike the PlogP model, the network gap, expressing the
time of message transfer, is expressed by gc(m,C) for each
communication C that has a message size of m. gc(m,C) is
derived from throughput bc(C, t) calculated based on the other
communications that share the same communication path. The
occurrence of RTO (retransmission timeout), which is domi-
nant in the execution time of communications, is predicted
based on a combination of predicates which shows the change
in the number of intermediate switches PS(h(C), h(C ′)) and
messages in the buffer PB(C) for all transitions from com-
munication C to communication C ′. As a result, the accuracy
of execution time estimation is improved.

The execution time of two all-to-all communication algo-
rithms have been estimated and have been compared to the
actual execution time. The result shows that all estimates are
very close to the actual execution time, while the existing
model, the PlogP model, does not estimate them accurately.

There are some unresolved problems for the PlogPT model.
The fact that the accumulation of jitter affects the RTO
condition is not included in this model. We have stabilized
the PlogPT parameters by measuring them several times. Other
approaches to stabilizing parameters are needed.

REFERENCES

[1] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a
realistic model of parallel computation,” in Principles and Practice of
Parallel Programming, 1993, pp. 1–12.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model for parallel
computation,” Journal of Parallel and Distributed Computing, vol. 44,
no. 1, pp. 71–79, 1997.

[3] C. A. Moritz and M. I. Frank, “LoGPC: Modeling network contention
in message-passing programs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, no. 4, pp. 404–415, 2001.

[4] T. Kielmann, H. E. Bal, and S. Gorlatch, “Bandwidth-efficient collective
communication for clustered wide area systems,” in IPDPS 2000,
Cancun, Mexico, May 2000, pp. 492–499.

[5] T. Touyama and S. Horiguchi, “Performance evaluation of practical
parallel computation model LogPQ,” ispan, vol. 00, p. 216, 1999.

[6] Cisco Systems, Inc, “Cisco Catalyst 4500 series line cards
data sheet,” http://www.cisco.com/en/US/products/hw/switches/ps4324/
products data sheets list.html.

[7] M. J. Clement, M. R. Steed, and P. E. Crandall, “Network performance
modeling for PVM clusters,” 1996.

[8] Y. Ishikawa, “YAMPI, yet another MPI implementation,” http://www.il.
is.s.u-tokyo.ac.jp/yampi/.

[9] T. Kielmann, H. E. Bal, and K. Verstoep, “Fast measurement of LogP
parameters for message passing platforms,” Lecture Notes in Computer
Science, vol. 1800, pp. 1176–1178, 2000.

[10] Infiniband Trade Association, “Infiniband specification,” http://www.
infinibandta.org/specs/.

[11] Myricom, inc., http://www.myri.com/.
[12] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishikawa, “TCP

adaptation for MPI on long-and-fat networks,” in Proceedings of the
2005 IEEE International Conference on Cluster Computing (Cluster
2005), 2005.

[13] L. Barchet-Estefanel and G. Mounié, “Performance characterisation of
intra-cluster collective communications,” in Proceedings of the 16th
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD 2004), 2004, pp. 254–261.

[14] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
in Proceedings of the 2005 IEEE International Conference on Cluster
Computing (Cluster 2005), 2005.

[15] R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel Computing, vol. 20, no. 3, pp. 389–398, 3
1994.

