//!!edit-lock!! [[MatsuLab. Lecture Note]] *ハイパフォーマンスコンピューティング [#tee749b0] :日時|月曜日 10:45〜12:15(3〜4限) :場所|西8号館 832号室 :連絡| |松岡教授 (Prof. S.Matsuoka) | matsu あっと is. | |TA 金刺 (H.Kanezashi) | kanezashi あっと matsulab.is. | &color(red,white){メーリングリストに追加しますので、至急TAまでメールを送ってください。Please email to Kanezashi (TA) as soon as possible in order to add you to the mailing list.}; **目次 [#p6791f79] #contents **休講予定日 Lecture Cancelled [#h582bdca] 10/19, 11/16, 02/08(補講はありません We do not have supplementary lectures) **授業概要と参考資料 Guidance and References [#af4d5298] -ガイダンス資料/Guidance &ref("2015年度ハイパフォーマンスコンピューティング授業内容.pdf"); **発表スケジュール Schedule [#p1183393] &color(red,white){暫定的な割り当ては以下の通りですが、都合が悪い場合はTAまで希望日をメールしてください。}; |CENTER:|CENTER:|CENTER:|CENTER:|LEFT:|c |回|日付|担当|発表資料|文献| | 1 | 10/05 | (ガイダンス) | | | | 2 | 10/26 (W7-302) | 本山 | &ref("hpc_Motoyama.pdf"); | &ref("06735232.pdf"); | | 3 | 11/02 | 本山 | &ref("HPC_Motoyama2.pdf"); | | | 4 | 11/09 (W7-302) | 上原 | &ref("hpc_uehara.pdf"); | &ref("Hyperspectral.pdf"); | | 5 | 11/30 | 金刺 | &ref("hpc_Kanezashi1.pdf"); | &ref("DaDianNao.pdf"); &ref("DianNao.pdf"); | | 6 | 12/07 | 寺西 | &ref("hpc_teranishi.pdf"); | &ref("a1-keuper.pdf"); | | 7 | 12/14 | Jian | &ref("HPC15_2015-12-14_Jian_FireCaffe.pdf"); | &ref("FireCaffe.pdf"); | | 8 | 12/21 | 寺西 | &ref("hpc_teranishi2.pdf"); | | | 9 | 01/04 | Jian | &ref("HPC15_2015-12-14&21_Jian_FireCaffe v2.pdf"); | | | 10 | 01/12 | Piyawath | &ref("Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks.pdf"); | &ref("p161-zhang-small.pdf"); | | 11 | 01/18 | 黒田 | &ref("HPC_kuroda.pdf"); | &ref("fpga2014-wjun.pdf"); | | 12 | 01/25 | 黒田 | | | | 13 | 02/01 | Hamid | &ref("HPC_Class_Presentation_Hamid.pdf"); | &ref("06853195.pdf"); | ** 禁止リスト Inhibited List [#f836aabb] - Training Large Scale Deep Neural Networks on the Intel Xeon Phi Many-Core Coprocessor - Memory fast-forward: A low cost special function unit to enhance energy efficiency in GPU for big data processing - Optimized Deep Learning Architectures with Fast Matrix Operation Kernels on Parallel Platform - Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing - Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison - Performance versus energy consumption of hyperspectral unmixing algorithms on multi-core platforms - Optimizing communication and cooling costs in HPC data centers via intelligent job allocation - Cost Minimization for Big Data Processing in Geo-Distributed Data Centers - On Characterization of Performance and Energy Efficiency in Heterogeneous HPC Cloud Data Centers - DaDianNao: A Machine-Learning Supercomputer - Mariana: tencent deep learning platform and its applications - Performance Modeling and Scalability Optimization of Distributed Deep Learning Systems - Asynchronous parallel stochastic gradient descent: a numeric core for scalable distributed machine learning algorithms - FireCaffe: near-linear acceleration of deep neural network training on compute clusters - CA-SVM: Communication-Avoiding Support Vector Machines on Distributed Systems - Large Scale Distributed Deep Networks - Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks - 24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way Galaxy with 18600 GPUs - Massively Parallel Models of the Human Circulatory System - Moving to memoryland: in-memory computation for existing applications - Intelligent SSD: A Turbo for Big Data Mining - Scalable Multi-Access Flash Store for Big Data Analytics - An FPGA-Based Tightly Coupled Accelerator for Data-Intensive Applications - A reconfigurable fabric for accelerating large-scale datacenter services - An FPGA-based In-Line Accelerator for Memcached - Scaling Up the Training of Deep CNNs for Human Action Recognition **期末レポート Report [#y71cc4e1] - &color(red,white){期限 Due date: 02/08}; - &color(red,white){期限 Due date: 02/17 (Extended)}; - Summarize the general topic covering and including ALL THREE PAPERS regarding the state of the art in HPC and Big Data convergence. - It should be 10 pages in [[IEEE conference paper format>http://www.ieee.org/conferences_events/conferences/publishing/templates.html]] - Please submit it to TA by email &color(red,white){(NOT mailing list)}; **リンク Links [#s10b4a99] -[[ACM/IEEE Supercomputing>http://www.supercomp.org]] -[[IEEE IPDPS>http://www.ipdps.org]] -[[IEEE HPDC>http://www.hpdc.org/]] -[[ACM International Conference on Supercomputing (ICS)>http://www.ics-conference.org/]] -[[ISC>http://www.isc-events.com/]] -[[IEEE Cluster Computing>http://www.clustercomp.org/]] -[[IEEE/ACM Grid Computing>http://www.gridcomputing.org/]] -[[IEEE/ACM CCGrid>http://www.buyya.com/ccgrid/]] -[[IEEE Big Data>http://cci.drexel.edu/bigdata/bigdata2015/]] -[[CiteSeer.IST>http://citeseer.ist.psu.edu]] -[[Google Scholar>http://scholar.google.com]] -[[Windows Live Academic>http://academic.live.com]] -[[The ACM Degital Library>http://dl.acm.org/]]